Previous |  Up |  Next

Article

Title: Low Mach number limit of a compressible Euler-Korteweg model (English)
Author: Wang, Yajie
Author: Yang, Jianwei
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 68
Issue: 1
Year: 2023
Pages: 99-108
Summary lang: English
.
Category: math
.
Summary: This article deals with the low Mach number limit of the compressible Euler-Korteweg equations. It is justified rigorously that solutions of the compressible Euler-Korteweg equations converge to those of the incompressible Euler equations as the Mach number tends to zero. Furthermore, the desired convergence rates are also obtained. (English)
Keyword: Euler-Korteweg equation
Keyword: compressible flow
Keyword: low Mach number limit
Keyword: modulated energy function
MSC: 35B40
MSC: 35Q31
MSC: 35Q35
idZBL: Zbl 07655741
idMR: MR4541077
DOI: 10.21136/AM.2022.0067-21
.
Date available: 2023-02-03T11:04:09Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151498
.
Reference: [1] Antonelli, P., Marcati, P.: The quantum hydrodynamics system in two space dimensions.Arch. Ration. Mech. Anal. 203 (2012), 499-527. Zbl 1290.76165, MR 2885568, 10.1007/s00205-011-0454-7
Reference: [2] Asano, K.: On the incompressible limit of the compressible Euler equation.Japan J. Appl. Math. 4 (1987), 455-488. Zbl 0638.35012, MR 0925620, 10.1007/BF03167815
Reference: [3] Audiard, C.: Dispersive smoothing for the Euler-Korteweg model.SIAM J. Math. Anal. 44 (2012), 3018-3040. Zbl 1255.35179, MR 3023402, 10.1137/11083174X
Reference: [4] Audiard, C., Haspot, B.: Global well-posedness of the Euler-Korteweg system for small irrotational data.Commun. Math. Phys. 351 (2017), 201-247. Zbl 1369.35047, MR 3613503, 10.1007/s00220-017-2843-8
Reference: [5] Benzoni-Gavage, S., Danchin, R., Descombes, S.: Well-posedness of one-dimensional Korteweg models.Electron. J. Differ. Equ. 2006 (2006), Article ID 59, 35 pages. Zbl 1114.76058, MR 2226932
Reference: [6] Benzoni-Gavage, S., Danchin, R., Descombes, S.: On the well-posedness for the Euler-Korteweg model in several space dimensions.Indiana Univ. Math. J. 56 (2007), 1499-1579. Zbl 1125.76060, MR 2354691, 10.1512/iumj.2007.56.2974
Reference: [7] Brenier, Y.: Convergence of the Vlasov-Poisson system to the incompressible Euler equations.Commun. Partial Differ. Equations 25 (2000), 737-754. Zbl 0970.35110, MR 1748352, 10.1080/03605300008821529
Reference: [8] Bresch, D., Desjardins, B., Ducomet, B.: Quasi-neutral limit for a viscous capillary model of plasma.Ann. Inst. Henri Poincaré, Anal. Non Linéaire 22 (2005), 1-9. Zbl 1062.35061, MR 2114408, 10.1016/j.anihpc.2004.02.001
Reference: [9] Carles, R., Danchin, R., Saut, J.-C.: Madelung, Gross-Pitaevskii and Korteveg.Nonlinearity 25 (2012), 2843-2873. Zbl 1251.35142, MR 2979973, 10.1088/0951-7715/25/10/2843
Reference: [10] Colombo, R. M., Guerra, G., Schleper, V.: The compressible to incompressible limit of one dimensional Euler equations: The non smooth case.Arch. Ration. Mech. Anal. 219 (2016), 701-718. Zbl 1333.35169, MR 3437860, 10.1007/s00205-015-0904-8
Reference: [11] Donatelli, D., Feireisl, E., Marcati, P.: Well/ill posedness for the Euler-Korteweg-Poisson system and related problems.Commun. Partial Differ. Equations 40 (2015), 1314-1335. Zbl 1326.35253, MR 3341206, 10.1080/03605302.2014.972517
Reference: [12] Feireisl, E., Novotný, A.: Inviscid incompressible limits of the full Navier-Stokes-Fourier system.Commun. Math. Phys. 321 (2013), 605-628. Zbl 1291.35178, MR 3070031, 10.1007/s00220-013-1691-4
Reference: [13] Hmidi, T.: The low Mach number limit for the isentropic Euler system with axisymmetric initial data.J. Inst. Math. Jussieu 12 (2013), 335-389. Zbl 1280.35110, MR 3028789, 10.1017/S1474748012000746
Reference: [14] Hoefer, M. A., Ablowitz, M. J., Coddington, I., Cornell, E. A., Engels, P., Schweikhard, V.: Dispersive and classical shock waves in Bose-Einstein condensates and gas dynamics.Phys. Rev. A 74 (2006), Article ID 023623. 10.1103/PhysRevA.74.023623
Reference: [15] Iguchi, T.: The incompressible limit and the initial layer of the compressible Euler equation in $\mathbb{R}^{n}_+$.Math. Methods Appl. Sci. 20 (1997), 945-958. Zbl 0884.35127, MR 1458527, 10.1002/(SICI)1099-1476(19970725)20:11<945::AID-MMA894>3.0.CO;2-T
Reference: [16] Jamet, D., Torres, D., Brackbill, J. U.: On the theory and computation of surface tension: The elimination of parasitic currents through energy conservation in the second-gradient method.J. Comput. Phys. 182 (2002), 262-276. Zbl 1058.76597, 10.1006/jcph.2002.7165
Reference: [17] Jiang, S., Ju, Q., Li, F.: Incompressible limit of the nonisentropic ideal magnetohydrodynamic equations.SIAM J. Math. Anal. 48 (2016), 302-319. Zbl 1338.35367, MR 3452249, 10.1137/15M102842X
Reference: [18] Jüngel, A., Lin, C.-K., Wu, K.-C.: An asymptotic limit of a Navier-Stokes system with capillary effects.Commun. Math. Phys. 329 (2014), 725-744. Zbl 1297.35169, MR 3210149, 10.1007/s00220-014-1961-9
Reference: [19] Klainerman, S., Majda, A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids.Commun. Pure Appl. Math. 34 (1981), 481-524. Zbl 0476.76068, MR 0615627, 10.1002/cpa.3160340405
Reference: [20] Lions, P.-L., Masmoudi, N.: Incompressible limit for a viscous compressible fluid.J. Math. Pures Appl., IX. Sér. 77 (1998), 585-627. Zbl 0909.35101, MR 1628173, 10.1016/S0021-7824(98)80139-6
Reference: [21] Liu, J., Schneider, J. B., Gollub, J. P.: Three-dimensional instabilities of film flows.Phys. Fluids 7 (1995), 55-67. MR 1307112, 10.1063/1.868782
Reference: [22] Noble, P., Vila, J.-P.: Stability theory for difference approximations of Euler-Korteweg equations and application to thin film flows.SIAM J. Numer. Anal. 52 (2014), 2770-2791. Zbl 1309.76142, MR 3280101, 10.1137/130918009
Reference: [23] Ukai, S.: The incompressible limit and the initial layer of the compressible Euler equation.J. Math. Kyoto Univ. 26 (1986), 323-331. Zbl 0618.76074, MR 0849223, 10.1215/kjm/1250520925
Reference: [24] Wang, D., Yu, C.: Incompressible limit for the compressible flow of liquid crystals.J. Math. Fluid Mech. 16 (2014), 771-786. Zbl 1309.35094, MR 3267548, 10.1007/s00021-014-0185-2
Reference: [25] Yong, W.-A.: A note on the zero Mach number limit of compressible Euler equations.Proc. Am. Math. Soc. 133 (2005), 3079-3085. Zbl 1072.35563, MR 2159788, 10.1090/S0002-9939-05-08077-9
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo