Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
balanced metric; Kähler-Einstein metric; Berezin-Engliš quantization
Summary:
In this paper we study the balanced metrics on some Hartogs triangles of exponent $\gamma \in \mathbb {Z}^{+}$, i.e., $$ \Omega _n(\gamma )= \{z=(z_1,\dots ,z_n)\in \mathbb {C}^n\colon |z_1|^{1/\gamma }<|z_2|<\dots <|z_n|<1 \} $$ equipped with a natural Kähler form $\omega _{g(\mu )} := \frac 12(i /\pi )\partial \overline {\partial }\Phi _n$ with $$ \Phi _n(z)=-\mu _1{\ln (|z_2|^{2\gamma }- |z_1 |^2)}-\sum _{i=2}^{n-1} {\mu _i{\ln (|z_{i+1}|^2-|z_i|^2)}}-\mu _n{\ln (1-{|z_n|^2})}, $$ where $\mu =(\mu _1,\cdots ,\mu _n)$, $\mu _i>0$, depending on $n$ parameters. The purpose of this paper is threefold. First, we compute the explicit expression for the weighted Bergman kernel function for $(\Omega _n(\gamma ),g(\mu ))$ and we prove that $g(\mu )$ is balanced if and only if $\mu _1>1$ and $\gamma \mu _1$ is an integer, $\mu _i$ are integers such that $\mu _i\geq 2$ for all $i=2,\ldots ,n-1$, and $\mu _n>1$. Second, we prove that $g(\mu )$ is Kähler-Einstein if and only if $\mu _1=\mu _2=\cdots =\mu _n=2\lambda $, where $\lambda $ is a nonzero constant. Finally, we show that if $g(\mu )$ is balanced then $(\Omega _n(\gamma ),g(\mu ))$ admits a Berezin-Engliš quantization.
References:
[1] Arezzo, C., Loi, A.: Moment maps, scalar curvature and quantization of Kähler manifolds. Commun. Math. Phys. 246 (2004), 543-559. DOI 10.1007/s00220-004-1053-3 | MR 2053943 | Zbl 1062.32021
[2] Bi, E., Feng, Z., Tu, Z.: Balanced metrics on the Fock-Bargmann-Hartogs domains. Ann. Global Anal. Geom. 49 (2016), 349-359. DOI 10.1007/s10455-016-9495-3 | MR 3510521 | Zbl 1355.32004
[3] Bi, E., Hou, Z.: Canonical metrics on generalized Hartogs triangles. C. R., Math., Acad. Sci. Paris 360 (2022), 305-313. DOI 10.5802/crmath.283 | MR 4415724 | Zbl 07514676
[4] Bi, E., Su, G.: Balanced metrics and Berezin quantization on Hartogs triangles. Ann. Mat. Pura Appl. (4) 200 (2021), 273-285. DOI 10.1007/s10231-020-00995-2 | MR 4208091 | Zbl 1462.32008
[5] Bommier-Hato, H., Engliš, M., Youssfi, E.-H.: Radial balanced metrics on the unit ball of the Kepler manifold. J. Math. Anal. Appl. 475 (2019), 736-754. DOI 10.1016/j.jmaa.2019.02.067 | MR 3944344 | Zbl 1420.32019
[6] Catlin, D.: The Bergman kernel and a theorem of Tian. Analysis and Geometry in Several Complex Variables Trends in Mathematics. Birkhäuser, Boston (1999), 1-23. DOI 10.1007/978-1-4612-2166-1_1 | MR 1699887 | Zbl 0941.32002
[7] Cheng, S.-Y., Yau, S.-T.: On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Fefferman's equation. Commun. Pure Appl. Math. 33 (1980), 507-544. DOI 10.1002/cpa.3160330404 | MR 575736 | Zbl 0506.53031
[8] D'Angelo, J. P.: An explicit computation of the Bergman kernel function. J. Geom. Anal. 4 (1994), 23-34. DOI 10.1007/BF02921591 | MR 1274136 | Zbl 0794.32021
[9] Donaldson, S. K.: Scalar curvature and projective embeddings. I. J. Differ. Geom. 59 (2001), 479-522. DOI 0.4310/jdg/1090349449 | MR 1916953 | Zbl 1052.32017
[10] Engliš, M.: Berezin quantization and reproducing kernels on complex domains. Trans. Am. Math. Soc. 348 (1996), 411-479. DOI 10.1090/S0002-9947-96-01551-6 | MR 1340173 | Zbl 0842.46053
[11] Engliš, M.: The asymptotics of a Laplace integral on a Kähler manifold. J. Reine Angew. Math. 528 (2000), 1-39. DOI 10.1515/crll.2000.090 | MR 1801656 | Zbl 0965.32012
[12] Engliš, M.: Weighted Bergman kernels and balanced metrics. RIMS Kokyuroku 1487 (2006), 40-54. MR 2156503
[13] Feng, Z., Tu, Z.: Balanced metrics on some Hartogs type domains over bounded symmetric domains. Ann. Global Anal. Geom. 47 (2015), 305-333. DOI 10.1007/s10455-014-9447-8 | MR 3331892 | Zbl 1322.32003
[14] Hou, Z., Bi, E.: Remarks on regular quantization and holomorphic isometric immersions on Hartogs triangles. Arch. Math. 118 (2022), 605-614. DOI 10.1007/s00013-022-01718-0 | MR 4423454 | Zbl 07530384
[15] Loi, A., Zedda, M.: Balanced metrics on Hartogs domains. Abh. Math. Semin. Univ. Hamb. 81 (2011), 69-77. DOI 10.1007/s12188-011-0048-1 | MR 2812034 | Zbl 1228.53084
[16] Loi, A., Zedda, M.: Balanced metrics on Cartan and Cartan-Hartogs domains. Math. Z. 270 (2012), 1077-1087. DOI 10.1007/s00209-011-0842-6 | MR 2892939 | Zbl 1239.53093
[17] Ma, X., Marinescu, G.: Generalized Bergman kernels on symplectic manifolds. Adv. Math. 217 (2008), 1756-1815. DOI 10.1016/j.aim.2007.10.008 | MR 2382740 | Zbl 1141.58018
[18] Ma, X., Marinescu, G.: Berezin-Toeplitz quantization on Kähler manifolds. J. Reine Angew. Math. 662 (2012), 1-56. DOI 10.1515/CRELLE.2011.133 | MR 2876259 | Zbl 1251.47030
[19] Yang, H., Bi, E.: Remarks on Rawnsley's $\epsilon$-function on the Fock-Bargmann-Hartogs domains. Arch. Math. 112 (2019), 417-427. DOI 10.1007/s00013-018-1260-3 | MR 3928367 | Zbl 1423.32001
[20] Zedda, M.: Canonical metrics on Cartan-Hartogs domains. Int. J. Geom. Methods Mod. Phys. 9 (2012), Article ID 1250011, 13 pages. DOI 10.1142/S0219887812500119 | MR 2891525 | Zbl 1260.53126
[21] Zedda, M.: Berezin-Engliš' quantization of Cartan-Hartogs domains. J. Geom. Phys. 100 (2016), 62-67. DOI 10.1016/j.geomphys.2015.11.002 | MR 3435762 | Zbl 1330.53104
[22] Zelditch, S.: Szegö kernels and a theorem of Tian. Int. Math. Res. Not. 1998 (1998), 317-331. DOI 10.1155/S107379289800021X | MR 1616718 | Zbl 0922.58082
Partner of
EuDML logo