Previous |  Up |  Next

Article

Keywords:
generalized quaternion; dual-generalized complex number; matrix representation
Summary:
We aim to introduce generalized quaternions with dual-generalized complex number coefficients for all real values $\alpha $, $\beta $ and $\mathfrak {p}$. Furthermore, the algebraic structures, properties and matrix forms are expressed as generalized quaternions and dual-generalized complex numbers. Finally, based on their matrix representations, the multiplication of these quaternions is restated and numerical examples are given.
References:
[1] Akar, M., Yüce, S., Şahin, S.: On the dual hyperbolic numbers and the complex hyperbolic numbers. J. Computer Sci. Comput. Math. 8 (2018), 1-6. DOI 10.20967/jcscm.2018.01.001
[2] Alfsmann, D.: On families of $2^N$-dimensional hypercomplex algebras suitable for digital signal processing. 14th European Signal Processing Conference IEEE, Piscataway (2006), 1-4.
[3] Aslan, S., Bekar, M., Yaylı, Y.: Hyper-dual split quaternions and rigid body motion. J. Geom. Phys. 158 (2020), Article ID 103876, 12 pages. DOI 10.1016/j.geomphys.2020.103876 | MR 4145613 | Zbl 1444.11022
[4] Catoni, F., Boccaletti, D., Cannata, R., Catoni, V., Nichelatti, E., Zampetti, P.: The Mathematics of Minkowski Space-Time: With an Introduction to Commutative Hypercomplex Numbers. Frontiers in Mathematics. Birkhäuser, Basel (2008). DOI 10.1007/978-3-7643-8614-6 | MR 2411620 | Zbl 1151.53001
[5] Catoni, F., Cannata, R., Catoni, V., Zampetti, P.: Two-dimensional hypercomplex numbers and related trigonometries and geometries. Adv. Appl. Clifford Algebr. 14 (2004), 47-68. DOI 10.1007/s00006-004-0008-2 | MR 2236099 | Zbl 1118.30300
[6] Catoni, F., Cannata, R., Catoni, V., Zampetti, P.: $N$-dimensional geometries generated by hypercomplex numbers. Adv. Appl. Clifford Algebr. 15 (2005), 1-25. DOI 10.1007/s00006-005-0001-4 | MR 2236622 | Zbl 1114.53003
[7] Cheng, H. H., Thompson, S.: Dual polynomials and complex dual numbers for analysis of spatial mechanisms. Design Engineering Technical Conferences and Computers in Engineering. Conference ASME 1996 ASME, Irvine (1996), 19-22. DOI 10.1115/96-DETC/MECH-1221
[8] Cheng, H. H., Thompson, S.: Singularity analysis of spatial mechanisms using dual polynomials and complex dual numbers. J. Mech. Des. 121 (1999), 200-205. DOI 10.1115/1.2829444
[9] Clifford, W. K.: Mathematical Papers. Chelsea Publishing, New York (1968). MR 0238662
[10] Cockle, J.: On a new imaginary in algebra. Phil. Mag. (3) 34 (1849), 37-47. DOI 10.1080/14786444908646169
[11] Cockle, J.: On systems of algebra involving more than one imaginary; and on equations of the fifth degree. Phil. Mag. (3) 35 (1849), 434-437. DOI 10.1080/14786444908646384
[12] Cohen, A., Shoham, M.: Principle of transference: An extension to hyper-dual numbers. Mech. Mach. Theory 125 (2018), 101-110. DOI 10.1016/j.mechmachtheory.2017.12.007
[13] Dickson, L. E.: On the theory of numbers and generalized quaternions. Am. J. Math. 46 (1924), 1-16 \99999JFM99999 50.0094.02. DOI 10.2307/2370658 | MR 1506514
[14] Fike, J. A., Alonso, J. J.: The development of hyper-dual numbers for exact second-derivative calculations. 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition American Institute of Aeronautics and Astronautics, New York (2011), 1-17. DOI 10.2514/6.2011-886
[15] Fike, J. A., Alonso, J. J.: Automatic differentiation through the use of hyper-dual numbers for second derivatives. Recent Advances in Algorithmic Differentiation Lecture Notes in Computational Science and Engineering 87. Springer, Berlin (2012), 163-173. DOI 10.1007/978-3-642-30023-3_15 | MR 3241221 | Zbl 1251.65026
[16] Fjelstad, P.: Extending special relativity via the perplex numbers. Am. J. Phys. 54 (1986), 416-422. DOI 10.1119/1.14605 | MR 0839491
[17] Fjelstad, P., Gal, G. S.: $n$-dimensional hyperbolic complex numbers. Adv. Appl. Clifford Algebr. 8 (1998), 47-68. DOI 10.1007/BF03041925 | MR 1648833 | Zbl 0937.30029
[18] Griffiths, L. W.: Generalized quaternion algebras and the theory of numbers. Am. J. Math. 50 (1928), 303-314 \99999JFM99999 54.0164.01. DOI 10.2307/2371761 | MR 1506671
[19] Gürses, N., Şentürk, G. Y., Yüce, S.: A study on dual-generalized complex and hyperbolic-generalized complex numbers. Gazi Univ. J. Sci. 34 (2021), 180-194. DOI 10.35378/gujs.653906
[20] Hamilton, W. R.: On quaternions; or on a new system of imaginaries in algebra. Phil. Mag. (3) 25 (1844), 10-13. DOI 10.1080/14786444408644923
[21] Hamilton, W. R.: Lectures on Quaternions. Hodges and Smith, Dublin (1853).
[22] Hamilton, W. R.: Elements of Quaternions. Chelsea Publishing, New York (1969). DOI 10.1017/CBO9780511707162 | MR 0237284
[23] Harkin, A. A., Harkin, J. B.: Geometry of generalized complex numbers. Math. Mag. 77 (2004), 118-129. DOI 10.1080/0025570X.2004.11953236 | MR 1573734 | Zbl 1176.30070
[24] Jafari, M., Yayli, Y.: Generalized quaternions and their algebratic properties. Commun. Fac. Sci. Univ. Ank., Ser. A1 64 (2015), 15-27. DOI 10.1501/Commua1_0000000724 | MR 3453638
[25] Kantor, I. L., Solodovnikov, A. S.: Hypercomplex Numbers: An Elementary Introduction to Algebras. Springer, New York (1989). MR 0996029 | Zbl 0669.17001
[26] Majern{'ık, V.: Multicomponent number systems. Acta Phys. Polon. A 90 (1996), 491-498. DOI 10.12693/APhysPolA.90.491 | MR 1426884
[27] Mamagani, A. B., Jafari, M.: On properties of generalized quaternion algebra. J. Novel Appl. Sci. 2 (2013), 683-689.
[28] Messelmi, F.: Dual-complex numbers and their holomorphic functions. Available at https://hal.archives-ouvertes.fr/hal-01114178 (2015), 11 pages.
[29] Pennestr{\`ı, E., Stefanelli, R.: Linear algebra and numerical algorithms using dual numbers. Multibody Syst. Dyn. 18 (2007), 323-344. DOI 10.1007/s11044-007-9088-9 | MR 2355249 | Zbl 1128.70002
[30] Pottman, H., Wallner, J.: Computational Line Geometry. Mathematics and Visualization. Springer, Berlin (2001). DOI 10.1007/978-3-642-04018-4 | MR 1849803 | Zbl 1006.51015
[31] Price, G. B.: An Introduction to Multicomplex Spaces and Functions. Pure and Applied Mathematics 140. Marcel Dekker, New York (1991). DOI 10.1201/9781315137278 | MR 1094818 | Zbl 0729.30040
[32] Rochon, D., Shapiro, M.: On algebraic properties of bicomplex and hyperbolic numbers. An. Univ. Oradea, Fasc. Mat. 11 (2004), 71-110. MR 2127591 | Zbl 1114.11033
[33] Savin, D., Flaut, C., Ciobanu, C.: Some properties of the symbol algebras. Carpathian J. Math. 25 (2009), 239-245. MR 2731200 | Zbl 1249.17007
[34] Sobczyk, G.: The hyperbolic number plane. Coll. Math. J. 26 (1995), 268-280. DOI 10.1080/07468342.1995.11973712
[35] Study, E.: Geometrie der Dynamen: Die Zusammensetzung von Kräften und verwandte Gegenstände der Geometrie. B. G. Teubner, Leipzig (1903), German \99999JFM99999 33.0691.01.
[36] Toyoshima, H.: Computationally efficient bicomplex multipliers for digital signal processing. IEICE Trans. Inform. Syst. E81-D (1998), 236-238.
[37] Veldsman, S.: Generalized complex numbers over near-fields. Quaest. Math. 42 (2019), 181-200. DOI 10.2989/16073606.2018.1442884 | MR 3918887 | Zbl 1437.16044
[38] Yaglom, I. M.: Complex Numbers in Geometry. Academic Press, New York (1968). MR 0220134 | Zbl 0147.20201
[39] Yaglom, I. M.: A Simple Non-Euclidean Geometry and Its Physical Basis: An Elementary Account of Galilean Geometry and the Galilean Principle of Relativity. Springer, New York (1979). DOI 10.1007/978-1-4612-6135-3 | MR 0520230 | Zbl 0393.51013
Partner of
EuDML logo