Previous |  Up |  Next

Article

Keywords:
real measurable function; lattice-ordered ring; realcompact measurable space; real Riesz map; free ideal
Summary:
Let $ M(X, \mathscr{A})$ ($M^{*}(X, \mathscr{A})$) be the $f$-ring of all (bounded) real-measurable functions on a $T$-measurable space $(X, \mathscr{A})$, let $M_{K}(X, \mathscr{A})$ be the family of all $f\in M(X, \mathscr{A})$ such that ${{\,\mathrm{coz}}}(f)$ is compact, and let $M_{\infty }(X, \mathscr{A})$ be all $f\in M(X, \mathscr{A})$ that $\lbrace x\in X: |f(x)|\ge \frac{1}{n}\rbrace $ is compact for any $n\in \mathbb{N}$. We introduce realcompact subrings of $M(X, \mathscr{A})$, we show that $M^{*}(X, \mathscr{A})$ is a realcompact subring of $M(X, \mathscr{A})$, and also $M(X, \mathscr{A})$ is a realcompact if and only if $(X, \mathscr{A})$ is a compact measurable space. For every nonzero real Riesz map $\varphi : M(X, \mathscr{A})\rightarrow \mathbb{R}$, we prove that there is an element $x_0\in X$ such that $\varphi (f) =f(x_0)$ for every $f\in M(X, \mathscr{A})$ if $(X, \mathscr{A})$ is a compact measurable space. We confirm that $M_{\infty }(X, \mathscr{A})$ is equal to the intersection of all free maximal ideals of $M^{*}(X, \mathscr{A})$, and also $M_{K}(X, \mathscr{A})$ is equal to the intersection of all free ideals of $M(X, \mathscr{A})$ (or $M^{*}(X, \mathscr{A})$). We show that $M_{\infty }(X, \mathscr{A})$ and $M_{K}(X, \mathscr{A})$ do not have free ideal.
References:
[1] Acharyya, S., Acharyya, S.K., Bag, S., Sack, J.: Recent progress in rings and subrings of real valued measurable functions. math.GN, 6 Nov. (2018), http://arxiv.org/abs/1811.02126v1 MR 4149117
[2] Aliabad, A.R., Azarpanah, F., Namdari, M.: Rings of continuous functions vanishing at infinity. Comment. Mat. Univ. Carolinae 45 (3) (2004), 519–533. MR 2103146
[3] Dube, T.: On the ideal of functions with compact support in pointfree function rings. Acta Math. Hungar. 129 (3) (2010), 205–226. DOI 10.1007/s10474-010-0024-8 | MR 2737723 | Zbl 1299.06021
[4] Ebrahimi, M.M., Karimi Feizabadi, A.: Prime representation of real Riesz maps. Algebra Universalis 54 (2005), 291–299. DOI 10.1007/s00012-005-1945-x | MR 2219412
[5] Ebrahimi, M.M., Mahmoudi, M.: Frame. Tech. report, Shahid Beheshti University, 1996.
[6] Ercan, Z., Onal, S.: A remark on the homomorphism on C(X). Amer. Math. Soc. 133 (2005), 3609–3611. DOI 10.1090/S0002-9939-05-07930-X | MR 2163596
[7] Estaji, A.A., Mahmoudi Darghadam, A.: Rings of real measurable functions vanishing at infinity on a measurable space. submitted. MR 4028813
[8] Estaji, A.A., Mahmoudi Darghadam, A.: On maximal ideals of $\mathcal{R}_{\infty }$L. J. Algebr. Syst. 6 (1) (2018), 43–57. MR 3833289
[9] Estaji, A.A., Mahmoudi Darghadam, A.: Rings of continuous functions vanishing at infinity on a frame. Quaest. Math. 42 (9) (2019), 1141–1157, http://dx.doi.org/10.2989/16073606.2018.1509151 DOI 10.2989/16073606.2018.1509151 | MR 4028813
[10] Estaji, A.A., Mahmoudi Darghadam, A.: Rings of frame maps from $\mathcal{P}(\mathbb{R})$ to frames which vanish at infinity. Hacet. J. Math. Stat. 49 (2) (2020), 854–868, http://dx.doi.org/10.15672/hujms.624015 DOI 10.15672/hujms.624015 | MR 4089915
[11] Estaji, A.A., Mahmoudi Darghadam, A., Yousefpour, H.: Maximal ideals in rings of real measurable functions. Filomat 32 (15) (2018), 5191–5203, https://doi.org/10.2298/FIL1815191E DOI 10.2298/FIL1815191E | MR 3898565
[12] Gillman, L., Jerison, M.: Rings of continuous functions. Springer Verlag, 1976. MR 0407579
[13] Hager, A.: Algebras of measurable functions. Duke Math. J. 38 (1) (1971), 21–27. DOI 10.1215/S0012-7094-71-03804-X | MR 0273409
[14] Hewitt, E.: Rings of real-valued continuous functions. Trans. Amer. Math. Soc. 64 (1948), 45–99. DOI 10.1090/S0002-9947-1948-0026239-9 | MR 0026239
[15] Kohls, C.W.: Ideals in rings of continuous functions. Fund. Math. 45 (1957), 28–50. DOI 10.4064/fm-45-1-28-50 | MR 0102731
[16] Rudin, W.: Real and complex analysis. 3rd ed., New York: McGraw-Hill Book Co., 1987. MR 0924157
Partner of
EuDML logo