Previous |  Up |  Next

Article

Title: Identification of source term in a nonlinear degenerate parabolic equation with memory (English)
Author: Abid, Soufiane
Author: Atifi, Khalid
Author: Essoufi, El-Hassan
Author: Zafrar, Abderrahim
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 69
Issue: 2
Year: 2024
Pages: 209-232
Summary lang: English
.
Category: math
.
Summary: In this work, we consider an inverse backward problem for a nonlinear parabolic equation of the Burgers' type with a memory term from final data. To this aim, we first establish the well-posedness of the direct problem. On the basis of the optimal control framework, the existence and necessary condition of the minimizer for the cost functional are established. The global uniqueness and stability of the minimizer are deduced from the necessary condition. Numerical experiments demonstrate the effectiveness of this approach. (English)
Keyword: inverse source problem
Keyword: nonlinear parabolic equation
Keyword: memory term
Keyword: optimal control
MSC: 35K55
MSC: 35R30
MSC: 49N45
DOI: 10.21136/AM.2024.0049-23
.
Date available: 2024-04-04T12:09:03Z
Last updated: 2024-04-04
Stable URL: http://hdl.handle.net/10338.dmlcz/152313
.
Reference: [1] Allal, B., Fragnelli, G.: Null controllability of degenerate parabolic equation with memory.Math. Methods Appl. Sci. 44 (2021), 9163-9190. Zbl 1470.35205, MR 4279843, 10.1002/mma.7342
Reference: [2] Belov, Y. Y., Korshun, K. V.: An identification problem of source function in the Burgers-type equation.J. Sib. Fed. Univ., Math. Phys. 5 (2012), 497-506 Russian. Zbl 07324917
Reference: [3] Biazar, J., Ghazvini, H.: Convergence of the homotopy perturbation method for partial differential equations.Nonlinear Anal., Real World Appl. 10 (2009), 2633-2640. Zbl 1173.35395, MR 2523226, 10.1016/j.nonrwa.2008.07.002
Reference: [4] Biot, M. A.: Mechanics of Incremental Deformations.John Wiley & Sons, New York (1965). MR 0185873
Reference: [5] Biskamp, D.: Collisionless shock waves in plasmas.Nuclear Fusion 13 (1973), Article ID 719. 10.1088/0029-5515/13/5/010
Reference: [6] Burgers, J. M.: A mathematical model illustrating the theory of turbulence.Advances in Applied Mechanics. Vol. 1 Academic Press, New York (1948), 171-199. Zbl 0038.36807, MR 0027195, 10.1016/S0065-2156(08)70100-5
Reference: [7] Campanella, B., Legnaioli, S., Pagnotta, S., Poggialini, F., Palleschi, V.: Shock waves in laser-induced plasmas.Atoms 7 (2019), Article ID 57, 14 pages. 10.3390/atoms7020057
Reference: [8] Carneiro, F. L., Ulhoa, S. C., Maluf, J. W., Rocha-Neto, J. F. da: Non-linear plane gravitational waves as space-time defects.Eur. Phys. J. C 81 (2021), Article ID 67, 9 pages. MR 3847069, 10.1140/epjc/s10052-021-08862-x
Reference: [9] Dağ, I., Irk, D., Saka, B.: A numerical solution of the Burgers' equation using cubic B-splines.Appl. Math. Comput. 163 (2005), 199-211. Zbl 1060.65652, MR 2115588, 10.1016/j.amc.2004.01.028
Reference: [10] Dussault, J.-P.: La différentiation automatique et son utilisation en optimisation.RAIRO, Oper. Res. 42 (2008), 141-155 French. Zbl 1153.65027, MR 2431397, 10.1051/ro:2008007
Reference: [11] Grasselli, M., Lorenzi, A.: Abstract nonlinear Volterra integrodifferential equations with nonsmooth kernels.Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 2 (1991), 43-53. Zbl 0819.45006, MR 1120122
Reference: [12] Inc, M.: The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by variational iteration method.J. Math. Anal. Appl. 345 (2008), 476-484. Zbl 1146.35304, MR 2422665, 10.1016/j.jmaa.2008.04.007
Reference: [13] Jeffrey, A., Taniuti, T.: Non-Linear Wave Propagation with Applications to Physics and Magnetohydrodynamics.Mathematics in Science and Engineering 9. Academic Press, New York (1964). Zbl 0117.21103, MR 0167137, 10.1016/s0076-5392(08)x6141-7
Reference: [14] Jiwari, R.: A Haar wavelet quasilinearization approach for numerical simulation of Burgers' equation.Comput. Phys. Commun. 183 (2012), 2413-2423. Zbl 1302.35337, MR 2956605, 10.1016/j.cpc.2012.06.009
Reference: [15] Jiwari, R.: A hybrid numerical scheme for the numerical solution of the Burgers' equation.Comput. Phys. Commun. 188 (2015), 59-67. Zbl 1344.65082, MR 3294321, 10.1016/j.cpc.2014.11.004
Reference: [16] Leonenko, N. N., Woyczynski, W. A.: Parameter identification for singular random fields arising in Burgers' turbulence.J. Stat. Plann. Inference 80 (1999), 1-13. Zbl 0986.62077, MR 1713800, 10.1016/S0378-3758(98)00239-0
Reference: [17] Leonenko, N. N., Woyczynski, W. A.: Parameter identification for stochastic Burgers' flows via parabolic rescaling.Probab. Math. Stat. 21 (2001), 1-55. Zbl 1075.62627, MR 1869720
Reference: [18] Lions, J. L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications. Vol. 1.Die Grundlehren der mathematischen Wissenschaften 181. Springer, Berlin (1972). Zbl 0223.35039, MR 0350177, 10.1007/978-3-642-65161-8
Reference: [19] Popel, S. I., Yu, M. Y., Tsytovich, V. N.: Shock waves in plasmas containing variable-charge impurities.Phys. Plasmas 3 (1996), 4313-4315. 10.1063/1.872048
Reference: [20] Simon, J.: Compact sets in the space $L^p(0,T;B)$.Ann. Mat. Pura Appl., IV. Ser. 146 (1986), 65-96. Zbl 0629.46031, MR 0916688, 10.1007/BF01762360
Reference: [21] Wang, Z., Vanden-Broeck, J.-M., Milewski, P. A.: Two-dimensional flexural-gravity waves of finite amplitude in deep water.IMA J. Appl. Math. 78 (2013), 750-761. Zbl 1282.76080, MR 3085313, 10.1093/imamat/hxt020
Reference: [22] Zakharov, V. E., Musher, S. L., Rubenchik, A. M.: Hamiltonian approach to the description of non-linear plasma phenomena.Phys. Reports 129 (1985), 285-366. MR 0824169, 10.1016/0370-1573(85)90040-7
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo