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YexocioBaukuii MaTemaThieckuii kypuan r. 11 (86) 1961, I'lpara

CHARACTERS ON INVERSE SEMIGROUPS

R. J. WARNE, South Orange, N. J. (USA) and L. K. WiLLIAMS, Baton Rouge (USA)
(Received May 30, 1960)

The main purpose of this paper is to extend the results of §T. SCHWARZ [5]
concerning characters of finite abelian semigroups to an other class of semigroups.

ST. ScHWARZ has investigated the structure of G", the semigroup of characters
for a finite abelian semigroup G [5]. In section 1, we investigate the structure of G*
where G is an infinite abelian inverse semigroup. In particular, we prove two theorems
which are related to Theorem 7, page 246 and Theorem 8, page 246 of [5]. In section
2, we prove an extension theorem for abelian inverse semigroups which is related to
a theorem of K. A. Ross [4]. A separation theorem is a consequence of this theorem.

Inverse semigroups have been investigated by G. B. PrResTON [3].

1. THE STRUCTURE OF G*

1.1 Definition. An inverse semigroup is a semigroup S satisfying the following
conditions:

a) To each a € S there corresponds at least one e € S for which ea = a and such
that the equation ax = e has a solution x € S.

b) If e and f are any two idempotents of S, then ef = fe.

It is shown in [3] that these conditions imply that to each a € S correspond unique
idempotents e and f; called the left and right units of a respectively, and a unique
inverse element a~! such that aa™! = e,a 'a =f, and fa™! = a~! = a~'e. The
left and right units of @~ ! are fand e and the inverse of a~! is a. The inverse of ab
is b~'a™*. If S is abelian, e = f.

It is shown in [2] that an equivalent definition is

1.2 Definition. An inverse semigroup is a semigroup S in which a € S implies there

exists a unique x € S such that axa = g and xax = x. Clearly, x = a~*.

1.3 Definition. If is S a semigroup, x is a character of S if and only if y is a complex
function on S such that a, b € S implies x(ab) = x(a) x(b). If S has an identity 1,
(1) +0.1)

1y We wish to thank Prof. A. H. CriFrorD for helpful suggestions in relation to this paper.
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1.4 Definition. If G is an inverse semigroup, we will denote the set of characters
of G by G*. We will define multiplication in G* as follows. If x;, x, € G*, x1x2(¥) =
= 11(%) %2(%)-

1.5 Lemma. An abelian inverse semigroup G is a semilattice of groups [5],.

Proof: Let G, be the maximal sugroup of G containing e where e is an idempotent
of G. G, is the group of units of eGe. If e + f, G, n G; = ¢. If x € G, then there
exists e € G such that x = exe and x ! € G such that x 'x = xx™! = eand x™! =

= ex"'e. Hence, x € G,. Thus, G = | G, where E is the set of idempotents of G.

ecE

If ae G, and be G, ef(ab) ef = ab,
(ab) (ab)™' = (ab)™'(ab) = ¢f and (ab)™" = (ef) (ab)~'(ef) -
1.6 Lemma. G" is a semilattice of groups.
Proof: If ye G*, define y 7'(x) = x—(lx_) if x(x) # 0 and x'(x) = 0 if x(x) = 0.

Define the unit y, of x as follows: y,(x) = 1 if x(x) # 0 and z,(x) = 0 if x(x) = 0.
Then yx~ ! = ¥ % = %o X%e = Xox = x- Thus, G* is an abelian inverse semigroup.
Therefore, G” is a semilattice of groups by lemma 1.5,

1.7 Remark. Let (G, ) be an abelian inverse semigroup without an identity.
Now let (G°, o) be defined as follows:

G°=GuUe ace=cecoa=aforall aeG’ aob=a.bforalla beG. Then
(Ge, o) is an abelian inverse semigroup with an identity. From definition 1.3 it is
clear that G°” is isomorphic to G". Hence in the theorems investigating the structure
of G" it will be only necessary to consider the case where G has an identity.

1.8 Example. Let I be the non-negative integers under the multiplication:
aob=0ifa+b, aca=a. '
Clearly I is an abelian inverse semigroup and I* consists of the following characters
x(@) =0forallael; y(a) = 1forallael; [x,|a+0€el, xla) = 1 and y,(b) = 0
for a + b]. .
I¢" consists of the following characters: y(a) =1 forallae I [g,|a £ 0el°,
X(@) = 1, x(b) = O for b =+ a, b + e and g,(e) = 1].

1.9 Example. Let G = I*, the positive integers under the multiplication a o0 b =
= min (@, b). Then G* = I* U0 where a0 b = max(a,b),a,bel* and a0 0 =
~=00a=0forallae G. Clearly G" is isomorphic to G°".

1.10 Theorem. Let G be abelian inverse semigroup with an identity such that every
non-void subset of Eg has a minimal element. Then E; and Eg s are anti-isomorphic
as semi-lattices.?)

2) Eg and Ega denote the set of idempotents of G and G” respectively.
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Proof: Let e € Eg and let y, be defined as follows: y,(x) = 1if and only ife < f
where x € G;. x(x) = 0 if and only if f % e where x € G,.

We wish to show first that the mapping e — y, is one to one of E; onto Eg,.
Clearly g.€ Egn. If o=y, x{f) = 2;(f) = 1.Thus f 2 e.In addition y (e) = x.(e) =
and e = f. Hence, e = f. If y € Ega, let H = {fe E; | x(f) = 1}. Since x(1) * 0,
H + ¢. Let e be the minimal element of H. Now, x(e) =1.Ife=<f ef=eand
x(f)=1. If f% e, then ef = h + e. Thus he = h and h < e. Therefore, h < e
and y(h) = 0. Hence, y(f) = 0. Therefore, y(x) = 1 if and only if e < f where
x e Gyand y(x) = Oifand only if f % e where x € G;. Hence y = g,. Next, suppose
e<fiie ef=e IfxeG,and f < h, then yx,(x) = y(x). If xe G, and h %
then xox %) = x,(x). If xox; = x5 %(f) =1 and e < f. Hence e < f if and only
if ¥y = ,(e, i. e. the mapping e — y, is a semi-lattice anti-isomorphism of E; onto
Egnr.

P

1.11 Example. We give an example to show that “minimal” cannot be replaced
by “maximal” in theorem 1.10. Let G be positive integers under the multiplication
x 0y = max (x, y). Then, G" consists of the following characters, y(x) = 1, x < n,
x(x) =0, x>n forn=1,2,3,... and x(x) = 1 for all x e G. Suppose that there
exists an anti-isomorphism: @ : i — y; of G (= Eg) onto G" (= Eg+). Let the y such
that x(x) = 1 for all x € G (the identity character) be denoted by x;. Then xo = x,
forallse G, i.e. y; < y, for all se G. Choose t € G such that t < k. Then y, > y,
and we have a contradiction.

We also note that the replacement of “maximal” for “minimal” and isomorphism
for anti-isomorphism in theorem 1.10 is not valid. For let G and G" be as above.
Suppose @ : i — y; is an isomorphism between G and G”. Let y, be the character
such that y(1) = 1 and y(n) = 0 forn > 1. yx, = xpo i. € 3 < 1, for all 5seG.
Choose ¢ < k. Then y, < y.

1.12 Corollary. If G is an abelian inverse semigroup with an identity and every
non-void subset of Eg has a minimal element, then G, is isomorphic to the character
group of G, where e — y, is the anti-isomorphism of Eg onto Eg » referred to in Theorem
1.10. If G, is finite, then G, is isomorphic to G..

Proof. Let x € G,, and denote by ¥ the restriction of y to G,. Let C(G,) denote
the character group of G.. Clearly, x € C(G,). We wish to show the mapping x & ¥
is an isomorphism of G\ onto C(G,). If y, € C(G,), we define

x(x) = yxo(xe) if and only if xe G, and e < f,

xx)=0 ifand onlyif xeGyandf % e.
Clearly, y € Gy, and y(x) = yo(x) for all xe G,. Thus, y, = y and @ is onto. If
X1 = X2 then x;(x) = 7,(x) for all xe G,. If x € G, and e < f, then y,(ex) = ya(ex)-
Hence, 14(x) = 7,(x). If xe G, and f % e, then x,(x) = x,(x) = 0. Hence, @ is
one to one. Thus, © is an isomorphism. If G, is finite, then G, is isomorphic to C(Ge)
[6] and hence is isomorphic to Gy,
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Let G** denote the semigroup of characters of G*. Clearly G" " is a semi-lattice
of groups.

1.13 Corollary. Let G be an abelian inverse semigroup with an identity. Suppose
every non-void subset of Eg has a maximal element and a minimal element. Then Eg
and Ega n are isomorphic as semi-lattices and as semigroups.

Proof. Let e & y, denote the semi-lattice anti-isomorphism of E; onto Ega of
theorem 1.10. There exists a semi-lattice anti-isomorphism @’ : (y, - @'x,) of Ega
onto Eg a since every non-void subset of Eg+ has a minimal element. Hence ®'®(e —
— @'y,) is a semi-lattice isomorphism of E; onto Ega ». Hence @'® is a semigroup
isomorphism.

1.14 Example.An example to show that it is not enough to just assume the maximal
condition in corollary 1.13. Let G be positive integers under the following multi-
plication: x o y = max (x, y). Then G" = positive integers U e under the following
multiplication: x o y = min (x, y)ifandonlyif x + e,y +eand xoe=eox = x
for all xe G*. Then G"" has a zero, namely the character x(x) = 0 for x + e
and y(e) = 1 while G has no zero.

1.15 Example. An example of an abelian inverse semigroup G such that Ej is an
infinite set in which every non-void subset has a maximal element and a minimal
element is given by example 1.8.

2. EXTENSION THEOREM AND CONSEQUENCES

2.1 Lemma. If x is a bounded character on an inverse semigroup G, then y(x) = 0
or y(x) = €' for all xeG.

Proof. Clearly, lx(x)l = 1. Let a e G. Then there exists a unique x € G such that
axa = a. Thus

(@)l [x(x)I 1x(a)l = |x(a)| -
If x(a) * 0, Ix(a)l Ix(x)l = 1, i. e. [x(a)| = 1.

2.2 Theorem. Let G be an abelian inverse semigroup and H be an inverse sub-semi-
group of G. Suppose x is a bounded character of H such that x % 0 on H. Then x
may be extended to a bounded character x" of G.

Proof. Let Hy = {xe H| y(x) = 0} and H, = {xe H| x(x) + 0}. Clearly H,
is a semigroup. If x € Hy, x(x) = 0. Thus, if e is the unit of x, x(e) = 0. If x™* is
the inverse of x, x(x'l) = 0. Thus, H; is an inverse semigroup. Similarly, H, is an
inverse semigroup. By the single valuedness of y, H; n H; = ¢. Clearly H = H, U
U H,. Let a,be H and suppose ax = b. If a,be H, a,be H, or ae H,, be Hy,
the result follows from Ross’ Theorem since [x(a)| = 0 or 1 for all ae H. Suppose
ae H, and be H,. Now, eaxb™! = f where f denotes the unit of » and e denotes
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the unit of a. Now since e € Hy, y(e) = 0. But, it follows easily from Lemma 2.1
that |x(e)l = [x(f)l. Thus x(f) = 0. But this contradicts the fact fe H,.

2.3 Corollary. Let G be an abelian inverse semigroup and let a and b be distinct
elements of G. Then there exists a bounded character y of G such that y(a) + x(b).

Proof. G is a semi-lattice of groups {G, : e € E} where G, is the maximal subgroup
containing the idempotent e. Let a and b be distinct elements of G. We consider:

CaseI: a, b e G, for some idempotent e. By a result of A. WEIL [6] there exists
a bounded character y of G, such that y(a) = x(b). By theorem 2.2 y may be extended
to a bounded character of G.

Case II. aeG,, be G, with ef = f and e + f. In this case e U f is an inverse
semigroup. Let yx(e) =1 and x(f) =0.y is .a bounded character on eu f.
Thus by Theorem 2,2 y may be extended to a bounded character x* of G such that
x"(a) £ 0, x*(b) = 0.

Case lll. ae G, beGp, ef ¥ f, ef £ e, e+ f. E?learly eV fu ef is an inverse
semigroup. Define y(e) = 1, x(f) = 0, x(ef) = 0. Thus y is a bounded character
one VU fuU ef. Hence the conditions of Theorem 2,2 are satisfied and y may be
extended to a bounded character x* of G such that x"(a) + 0 and x"(6) = 0.

This corollary is also a consequence of results of E. HEwiTT and H. S. ZUCKER-
MANN [1].

PROBLEM. When are G and G** (see section 1) isomorphic semigroups?
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Pesome
XAPAKTEPBI M3BEP3HBIX ITOJIVIPVIIII

P. 1. BAPHE (R. J. Warne) u JI. K. BWJIJIMAMC (L. K. Williams), CIIA

Ilycte G — abeseBa WHBEp3Has moJyiyrpynmna, G* — moJiyrpymnma xapaktepos G.
B otmene 1 Hacrosmeir paboThl MOKa3bIBACTCS HECKOJBKO TEOPEM, KacCalOLIHXCS
cTpoerus monyrpynnsl G*. B ormene 2 mokassiBaeTcs TeopeMa O IPOTOJDKEHUU
XapaKTEepOB M Te€OpeMa O CYIIECTBOBAHHHM OOCTATOYHOTO MHOXECTBA XapaKTepOB.

Ha npumepax moka3aHo, 4TO TPEONOJIONKEHHs HOKAa3BIBAEMBIX TEOPEM HeJb3s

CYILIECTBEHHBIM 00pa3oM OCJIaOHTh.
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