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Yexoc,10BAUKHI MaTeMaTHYeCKHii skypHas, 1. 13 (88) 1963, Ilpara

A NOTE ON PERIMETER AND MEASURE

Joser KRAL, Praha

(Received January 25, 1961)

Several sufficient conditions are given for a compact set of finite perimeter
to be of measure zero.

1. Introductory remark. Simple examples may be given of an open set G < E,,
such that both G and G are of finite perimeter and F = G — G has positive volume.
Moreover, for m = 3, G may be assumed connected and uniformly locally connected
(cf. section 6.3). Such a situation cannot occur if certain topological restrictions are
imposed on F or on G. In the relatively simple case m = 2, F is of (plane) measure
zero provided G is a domain or a uniformly locally connected open set and F has
finite perimeter. If F is a simple closed curve and G is its complementary domain
then F has measure zero whenever G is of finite perimeter (for the perimeter of G coin-
cides with the length of F).‘) More complicated situations arise if m = 3. In the well-
known example of A. S. BesicoviTcH of a topological sphere F in E; of finite Lebesgue
area and of positive volume (as constructed in [2]) the bounded complementary do-
main G of F has finite perimeter. However, this is no longer true about G. Generally,
if F is a closed surface in E;, G one of its complementary domains and if both G and G
have finite perimeter, then F is of (3-dimensional) measure zero. (As W. H. FLEMING
noticed in [6], remark on p. 437, this was pointed out by H. FEDERER; the same result
was announced in [&] and proved in [9].) Similar conclusion remains in force if only
F = G — G is assumed to be of finite perimeter. The present note deals with condi-
tions which, imposed on a closed set F (in E; or E,) of finite perimeter and on an open
set G disjoint with F and “close” to F, imply that F has measure zero.

2. Notation. Given an open set G < E,, and an integer i with 0 < i < m, we shall
denote by «Z,G the set of all x in G (= closure of G) with the following property:
To any neighbourhood Uy(x) of x (in E,,) there can be assigned a neighbourhood
U,(x) = Uy(x) of x such that every i-cycle (with integer coefficients)?) in G n U,(x)

1y Cf. J. Makik [12].
2) To be interpreted in the sense of § 3, chap. XIV of P. S. ALEkKSANDROFF’s (IT. C. AnekcaHAPOB)
monograph [1] (cf. also chap. XV, 0: 1).
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bounds in G N Uy(x). (For a general study of analoguous properties, the reader is
referred to R. L. WILDER's.monograph [13].)

2.1. Lemma. For every open set G < E,, and every integer i € 0, m) the set of ; G is
an F;.

Proof. Fix G and i. Write U(x, r) for {y; ye€ E,, |x — y| < r}. Given positive
integers n < k, denote by H,, the set of all x € G for which the following condition is
satisfied: For every ¢ > 0 and every i-cycle z' in G n U(x, 1/k) there is an (i + 1)-
chain ¢'*'in G n U(x, 1/n + ¢) bounded by z'. H,, is closed. To see this it is sufficient
to observe that, given ¢ > 0 and an i-cycle z* with zi < U(x, 1/k) n G*) we have
U(y, 1/n + 3¢) < U(x, 1/n + €) and z' < U(y, 1/k) for every y sufficiently close to x.

o 0
Since, clearly, o,G = U H,, we see that o7;G is an F ;.
n=1 k=n+1

3. Notation. Fix a positive integer m. Given an integer i € {1, m), we denote by
&, the system of all Lebesgue measurable subsets A in E,, for which there exists a
finite signed Borel measure ®{ over the boundary #4 of A, such that

(1) j 200x) g j o(x) dof
A BA

0x;

for every infinitely differentiable function ¢ with compact support. Let | A|; stand for
the total variation of @ on %A and put ||A]|; = + oo for every Lebesgue measurable
A < E,, which does not belong to ;. We have thus

“,4”,- = supf de ,
o Ja 0x;

¢ ranging over the class of all infinitely differentiable functions ¢ with compact sup-
port for which max [p(x)| £ 1. We shall denote by &; the system of all Lebesgue

measurable 4 such that 4 n K € &; for every cube K < E,,. (Thus ®; coincides with
the system of all Lebesgue measurable A for which there exists a locally finite signed
Borel measure ¢4 over %A such that (1) holds whenever ¢ is an infinitely differentiable
function with compact support on E,,.) Further, put

Defining (for Lebesgue measurable 4 < E,,)
"A” = supj div o(x) dx ,
v Ja

v ranging over the class of all (m-dimensional) infinitely differentiable vector-valued

3) Cf. [1] (chap. XV, 0: 1) for notation.
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functions v with compact support for which max [v(x)] < 1, we see that & is the

system of all Lebesgue measurable 4 < E,, such that | 4| <+o0. @ is an algebra.
o — A|| = ”A” for every Lebesgue measurable A < E,. Given a monotone se-
quence {4} of elements of & with sup [A,]| <+ oo, we have lim 4, € G. |4 will

be termed the perimeter of A. (For bounded A the notation 4] [[A[[ was introduced
by J. MaRix in [ 11]. Another equivalent definition of perimeter for Borel subsets in E,,
was given by E. DE GIorat in [3]; ¢f. also [4] and H. FEDERER [5]. The reader is re-
ferred to [7] for further bibliography on the subject.)

4. We shall collect here several known results to be used later. Suppose there is
given a set M < E,. A point a € E; will be termed an eM-point provided both
(E, — M)~ I and M N I have positive outer linear measure for every open interval
I = E, containing a. The number (possibly zero or infinite) of all eM-points will be
denoted by &(M). Further we shall use the foliowing notation. Given positive integers
i < m, asubset 4 in E, and a point x =[xy, ..., x,,_, | € E,,_;, we write Al for the
set of all { e E, with [x,,...,x;_1,{, X; ..., X,—1 | € A. The following assertion is
known ([7]; ¢f. also J. Makik [11] and chap. 7 of K. KRICKEBERG [10]).

4.1. Let A be a Lebesgue measurable subset in E,,. Then s(Ai). considered as a
function of the variable x on E,,_, is Lebesgue measurable and

4], =L o(A,) dx .

Write A* = {x; x€E,,_,{ €AY} (A< E,,{eE,). Using Fubini’s theorem, we
obtain from 4.1 the following assertion:

4.2. Let A be a Lebesgue measurable subset in E,,, i a positive integer with i < m.
Then |A%|; *) is a Lebesgue measurable function of the variable { on E, and

)= [ 14t

(cf. also W. H. FLEMING [6], p. 455, and K. KRICKEBERG [10], p. 125). Hence it fol-
lows, in particular, that A°e &, (in E,,_; i < m) for almost every { € E; provided
Ae®,(in E,).

Given a set A < E,, we denote by A* the set of all [xy,..., x,_, ] =[x, {]
(x € E, _y, { € E;) for which { belongs to the interior of A7 (in E,). Further we write L,
for the k-dimensional Lebesgue measure. .

4.3. Let A < E, bea closed set, A € ,. Then A* isan F ~set and L,,(4 — 4%) = 0.

(cf. [7])

) Here || . |l ; is considered in E,, _,
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5. Theorem. Let F be a locally compact subset in Ey and suppose that F e &; 0
N &, where 1 < i # j < 3. Further suppose that G is an open subset in E; with
GNF =0, 9,G > F. Then either LyF = 0 or Ly(F — ,G) > 0.

Proof. Let i = 2, j = 3. We may clearly assume that F is compact and Fe &, n
n ;. Suppose, if possible, that
Ly(F — &,G) =0 and L;F >0.
Then a { € E, can be chosen such that
LF >0, |[FY, <+, Ly(F— F*'=0=Ly(F - «,G).
Write B = F°. Let B, stand for the set of all [, n] € E, with

{é}x(n—l,n+1>cs,
n n

so that B* = {J B,. Clearly, every B, is closed. We have L,(B — B*) = 0 because
n=1

| Bl <+ oo0. Taking into account that L,B > 0, we fix a positive integer n with

L,B, > 0, so that

La(B, o (F¥) 0 (4,G)9) > 0.
Consequently, we have a
[£o0s M0] € (F¥)* n (#,G)* 0 B,

such that [, 1] is a point of density of B,. Fix a sequence {[&,, n]}x=y of points in
B, such that

klim [fk, 'Ik] = [fo, ’Io] , i <&y, &> & (=12, )

Further fix an ¢ > 0 such that the segment

E={ x{n} x < —-el+e
is completely contained in F and write U, for the (open) sphere of center [60, No» C]
and radius e. Let U, be a sphere of center [, 70, {] and radius 6 < & such that any
I-cycle in G n U, bounds in G n U,. Put ¢ = min (1/n, ;6) and write S, S, for the
sphere of radius }q and of center '

[60’ Mo — ;q’ C] > [50, Mo + %q, C]
respectively. Clearly, S; U S, < U; — E. Further, write S, for the sphere concentric

with S, (h = 1, 2) and of radius ¢; < %q small enough to secure that any 0-cycle in
G n S, bounds in G n S,. Put

Hy = {&} x (e~ ’21'61, M + ;"1> x {C}
and fix a p such that
[ém Np — %q’ {]e S [ép+17 Mp+1 — %‘17 C] >
[éw M, + %q’ C] € Sl 3 [ép»n’ Np+1 + %‘19 C] .
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Let O, and O, be convex neighbourhoods of H, and H ., respectively, such that
0,V 0, «U,; — E. Since H, © #,G, we can fix an « > 0 such that any 0-cycle
0y — 0, bounds in O, n G provided o,, 0, are points in G with

a > 0(04,02) + (03, H,) . )
Suppose now that H, is naturally ordered from [¢,, 1, — 34, (] = upo to [£,, 1, +
+ %q, {], and decompose H, into segments of length not exceeding ;‘l—a by means of
points
Upo < Upy < .o < Uy = [Epm, + 10, (].

Let us associate with every u,; a point 0,; € G such that

Q(“pi’ Opj) < %“ » 0p0 €Sy, Op€ S,.
We have thus
Q(Op,j-l’ opj) + Q(Om” Hﬂ) <

and, consequently, the 0-cycle 0,; — 0, ;_; bounds a 1-chain c;j (1£jSs)inGn
A O”. In a similar way we fix points 0,4, €0, NG (0 £j < 1) such that
o,,H 0 €Sy, 0,41, € S, and such that the 0-cycle 0, ; ; — 0,4 ;—; bounds a 1-chain
¢ 1 1 SjS1)inGn O,y Since 0,,4,0€S, N G0, the O-cycle 0, o — 0
bounds a 1-chain ¢} in S, N G. Similarly, the 0-cycle 0, — 0,4, bounds a I-chain c}
in §; n G. Put

Sl 1 1 1 1 1 1
i =cCppt oo F gt F Cprn T T Cppg e TGy
1

Clearly, z' is a 1-cycle in

(0,UuS, L0, US)NGcU; NG.
Thus z' should bound in G N U, < U, — E. Put

vy = [ép+l7r’p+l - %q C] vy = [£p+l’r’p+l + %Qs (]
and let cl, cz, 3, ¢4 be 1-chains corresponding naturally to the oriented segments

—_ —_—

Upol psy Upgla, UaVy, Dyl po respectively. It is easily seen that z! is homologous to

c}+c2+c3+c4—-,_1m

C,uS,u0,uS; cU,—-E.

Since [&,, 10 ] belongs to the interior of the parallelogram with vertices

[ép’ 'Ip - %q] > [ép’ np + ;_CI] > [ép'f‘l’ 17p+1 + %4] ] [§p+1’ r’p+1 - %q] })
the straight line {&,} % {no} x E, = P prevents z' from bounding. Consequently,
not even z' can bound in Uy — E < E; — P, which is a contradiction.

6. Corollaries. A set S — E; will be termed a simple surface provided every point
x € S has a neighbourhood in S which is homeomorphic with E,. If, moreover, S is
a continuum, then S will be termed a simple closed surface. It follows from known

5) We write o for the Euclidean distance function.
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theorems in topology and from the above theorem that the following assertions are
true.

6.1. Corollary. Let S be a simple surface in Ey and suppose that Se &; n &,
where 1 < i % j < 3. Then LS = 0.

6.2. Corollary. Let S be a simple closed surface in E5 and let G, G, be its comple-
mentary domains. If both G; and G, belong to &, n®; (1 < i+ j < 3), then
L,S = 0.

Remark. A result slightly more general than 6.2 was proved in [9].

6.3. Example. Consider a closed cube K in E;. For every n > 1 divide K into 2"
equal cubes K (1 < i < 2%") and denote by D, the union of the edges of all the cubes
K that are interior to K. Further, fix a descending sequence {¢,};= of positive real

numbers with lim g, = 0 and put
k

U, = {x;x€Es, 0(x, D) < &},
G,=UU,, 6=UG,, F=K-G.
k=1 n=1
If ¢ tends rapidly to zero as k —oo0, then LyF > 0; moreover, one can achieve
sup ||G,|| <+oco. Then G (as a limit of a non-descending sequence of sets having

uniformly bounded perimeters) belongs to & and the same is true about G = K and
F = K — G. Gis easily seen to be connected and uniformly Iocally connected, so that
Fc o,G.

7. Theorem. Let F be a locally compact subset in E,, F € &, (i=1lor 2). Further,
let G < E, be an open set, G N F = (. Then either L,F = 0 or Ly(F — s£,G) > 0.

Proof. We may clearly assume that F is compact and F € &,. Suppose, if possible,
that L,F > 0 and L,(F — o/,G) = 0. Write F, for the set of all [, ] with

{&} x & = UYn,n + 1/ny = F,
so that G F, = F*. Every F, is closed. Since L,F > 0 and L,(F — F*) = 0, we have
L,F, >n(_)1f0r suitably chosen n. Consequéntly, Ly(F, N oZ,G) > 0. Let
[0, 0] = 0 € F, 144G

be a point of density of the set F, N «/,G. We have then a sequence {[&, m]}i=1 of

points in F, n &/,G = G tending to o as k - oo and such that &,;_; < o, &3; > &o

(j = 1,2,...). Let us associate with every [&,, n,] a point [&, 1] = ox € G such that

limo, = 0, &1 < &, &; > & (j = 1,2,...). Write U for the open circular disc of
k

center o and of radius 1/n. We have then a k, such that o, € U whenever k > k.

Since U — GoUn F, > {[¢ ;1]; ¢ =¢&,} nU, we see that the 0-cycle o, — 0444

(k > ko) cannot bound in U n G. This is in contradiction with 0 € &/,G, lim 0, = 0.
k
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8. Definition. Write ¢! = [1,0], ¢* = [0,1]. A point o€ E, will be termed a
¢-point of A4 = E, provided thereisa 6 > 0 such that o + xe' € 450 + ae® when-
ever |a| < 8. The set of all c-points of 4 will be denoted by 4.

9. Lemma. Let F be a locally compact subset in E,, F € &. Then Ly(F — F*) = 0.

Proof. We may clearly suppose that F is compact and F € &. Write F3 = F* for
the set of all [, n] € F for which # belongs to the interior of F (with respect to E;).
Similarly, let F{ be the set of all [, #] € F for which F,y contains £ in its interior. Since
F e ®,, we have L,(F — F3) = 0. In exactly the same way, F € &, implies L,(F —
— F}) = 0. Consequently,

L(F — (Ff n F) = 0.
Now it is sufficient to observe that F* = F} n F3.

Remark. An analogous assertion may also be proved for subsets in E, with

m> 2.

10. Theorem. Let F be a locally compact subset in E,, F € &. Further, let G be
a domain in E;, G\ F = (. Then either L,F = 0 or L(F — G) > 0.
Proof. We may assume that F is compact and F € ®. Suppose that
(2) L,F>0 and L(F—-G)=0.
Write F'y for the set of all [£, n] = o € F for which the set
C,(0) = (€€ = Un, &+ 1ny x {n) v ({&} x <y — l({:x, 1+ 1/n))

is completely contained in F. Clearly, every F", is closed and {J F, = F*. We have
n=1
thus L,F", > 0 for suitably chosen n. Consequently, L,(F", n G) > 0 (compare (2)).
Fix a point
09 = [éo,ﬂo]EF:- NG

such that o, is a point of density of the set F}.. Put

0, = {[&n]; €> &, n > no},

Qs ={[&n]; & <&, n<mo}-

Then there is a sequence {[ &, 7]}, of points in F”, such that
[ézj—n ’12j~1] = 03j-1 €Q;, [52," '72j] = 0,;€Q, (j =12, )
and lim o, = 0,. Write
k P, = (5zh—1a 521.) X (’IZh—l’ 7’2h) (h = 1,2, ) .
We have then a h, such that the boundary of P, is completely contained in
Ci024-1) L Cn(olh) cFcE -G

whenever h > h,. Since o€ P, n G, we conclude that P,n G + 0 (h = 1,2,...).
Noting that the diameter of P, tends to zero as h — + oo we see that G cannot be con-
nected. Thus we have a contradiction.
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Pesowme

3AMETKA O IIEPMMETPE M MEPE

MOCE® KPAJI (Josef Kral), IMpara

Eciu G — oTkpbiTOe MHOXECTBO B E,,, To cuMBoJioM & ;G (0 < i < m) 06Go3Ha-
YMM MHOXECTBO BCEX TOYEK X 3amblkanua G MHoxecTBa G, 06MaJalolIuX CleayIo-
uwmM cBoiictBom: Jluist kaxoit okpecTHOCTH Uy(X) TOUKH X CYLIECTBYET TaKasi OKPECT-
Hocth Uy (x) < Uy(x) TOYKHM X, YTO KaXAbIH IEJIOUMCICHHBIH I-MEPHBI MK
B G n U, (x) romonoruyen Hymo B G N Uy(x) (COOTB. TOMOJOrHMYECKHEe MOHSTHS
Hajo noHuMath B cMbiciie MoHorpaduu II. C. Anexcanaposa [1], § 3, rn. XIV;
cM. Toxe 1. XV, 0 : 1).

Cumposiom &, (1 £ k £ m) o6o3HauuM cHcTeMy Bcex uamepuMbix (o Jlebery)
MHOX)ecTB 4 < E,,, IS KOTOPBIX KOHEYHO YHCJIO SUp f 4(00(x)[0x,) dx; 3mech BepxHsisi

@
rpaHp OepéTcs IO OTHOLUEHUIO KO BceM OeckoHeuHO aupdepeHunpyeMbIM (QyHK-
UMM @, obpallaioluMcs B HyJIb BHE HEKOTOPOrO KOMIIAKTHOTO MHOXECTBA

M YIOBJIETBOPSIIOLLIMM YCJIOBUIO max I(p(x)[ < 1. Iycte &, — cucrema Becex 4 < E,,,
X
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Juist koropbix A N K e ®, nns xaxmoro m-meproro xyba K. Cumsonom L, 0603na-
yuM Mepy Jlebera B nmpocTpaHcTee E,,.

Teopema. ITycmb F — aokanvHo Komnakmuoe muoxmcecmeo ¢ Ei, | < i< j <
F 663,- a) 65, ITycmo, oOasee, G — omxpvimoe mHoncecmeo ¢ E;, G N F =
.G o F. Toeoa L3F = 0 uau Ly(F — o/,G) > 0.

3)
0,

Teopema. ITycms F — aoxaavio xomnaxmuoe mmoxncecmeo ¢ E,, Fe @i (i=1
uau 2). ITycmo, oanee, G — omipvimoe muoxcecmeo 6 E,, G N F = 0. Toeda L,F =0
uau Ly(F - £ ,G) > 0.

Teopema. ITycmv F — a0kaavho Komnakmuoe mmuoxncecmeo 8 E,, Fe @1 8] @2.
ITycmo, dasee, G — obaacme 6 E,, G n F = B, Toeda LyF = 0 wau Ly(F— G) > 0.
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