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Чехословацкий математический журнал, т. 13 (88) 1963, Прага 

А NOTE ON PERIMETER AND MEASURE 

JOSEF KRAL, Praha 

(Received January 25, 1961) 

Several sufficient conditions are given for a compact set of finite perimeter 
to be of measure zero. 

1. Introductory remark. Simple examples may be given of an open set G cz E^ 
such that both G and G are of finite perimeter and F ~ G ~ G has positive volume. 
Moreover, for m ^ 3, G may be assumed connected and uniformly locally connected 
(cf. section 6.3). Such a situation cannot occur if certain topological restrictions are 
imposed on F or on G. In the relatively simple case m = 2, F is of (plane) measure 
zero provided G is a domain or a uniformly locally connected open set and F has 
finite perimeter. If F is a simple closed curve and G is its complementary domain 
then F has measure zero v^henever G is of fiinite perimeter (for the perimeter of G coin
cides with the length of F)}) More complicated situations arise if m ^ 3. In the well-
known example of A. S. BESICOVITCH of a topological sphere F in £3 of finite Lebesgue 
area and of positive volume (as constructed in [2]) the bounded complementary do
main G of F has finite perimeter. However, this is no longer true about G. Generally, 
if F is a closed surface in £3, G one of its complementary domains and if both G and G 
have finite perimeter, then F is of (3-dimensional) measure zero. (As W. H. FLEMING 
noticed in [6], remark on p. 437, this was pointed out by H. FÉDÉRER; the same result 
was announced in [8] and proved in [9].) Similar conclusion remains in force if only 
F = G — G is assumed to be of finite perimeter. The present note deals with condi
tions which, imposed on a closed set F (in F3 or F2) of finite perimeter and on an open 
set G disjoint with F and "close" to F, imply that F has measure zero. 

2. Notation. Given an open set G с F„, and an integer i with 0 ^ i < m, we shall 
denote by J / ^ G the set of all x in G ( = closure of G) with the following property: 
To any neighbourhood UQ{X) of x (in F^) there can be assigned a neighbourhood 
и^{x) c= UQ{X) of X such that every i-cycle (with integer coefficients)^) in G n U^ix) 

•̂ ) To be interpreted in the sense of § 3, chap. XIV of P. S. ALEKSANDROFF*S (П. C. Александров) 
^) Cf. J. MARIK [12]. 
•̂ ) To be interpreted ii 

monograph [1] (cf also chap. XV, 0 :1 ) . 
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bounds in G n UQ{X). (For a general study of analoguous properties, the reader is 
referred to R. L. WILDER'S.monograph [13].) 

2.1. Lemma. For every open sei G cz E„, and every integer i e <0, m) the set se^ G is 
an F^g. 

Proof. Fix G and /. Write U(x, r) for {y; y e E^, \x — y\ < r]. Given positive 
integers n < /c, denote by H^j^ the set of all x G G for which the following condition is 
satisfied: For every e > 0 and every /-cycle z' in G n U(x, l/k) there is an (i + 1)-
chain c'^^ in G n lJ{x, 1/n H- s) bounded by z'. H^j^ is closed. To see this it is sufficient 
to observe that, given г > 0 and an /'-cycle z' with z' с L/(x, !//<) n G^) we have 
U[y, Ijn -h le) cz U(x, Î//7 + E) and z'' cz lJ{y, l/k) for every y sufficiently close to x. 

ОС) . x ; 

Since, clearly, .c/.G = f) [J H^j^, we see that s^fi is an F^^. 
/ 3 = 1 k^n+l 

3. Notation. Fix a positive integer m. Given an integer / e <1, m>, we denote by 
@i the system of all Lebesgue measurable subsets A in £,„ for v/hich there exists a 
finite signed Borel measure Ф/ over the boundary ^A of A, such that 

(1) r ^Wd.x= Г ф)аФ^ 
JA ^^i J âSA 

for every infinitely differentiable function cp with compact support. Let ]|У4||̂  stand for 
the total variation of Ф/ on ^A. and put |[Л[|,- = -f oo for every Lebesgue measurable 
A cz £,^ which does not belong to ©,. We have thus 

^ | I . = . s u p | ^ ^ d x . sup 
^ JA 

cp ranging over the class of all infinitely differentiable functions (p with compact sup
port for which max \(p{x)\ ^ 1. We shall denote by ®^ the system of all Lebesgue 

X 

measurable A such that A n К G&I for every cube К cz E^. (Thus (3i coincides with 
the system of all Lebesgue measurable A for which there exists a locally finite signed 
Borel measure Фf over 3^A such that (l) holds whenever cp is an infinitely differentiable 
function with compact support on E^.) Further, put 

m m 

® = f)®i. @ =- n ®/. 
i = l 1 = 1 

Defining (for Lebesgue measurable Л с £^) 

||yl|| = sup div v[x) ax , 
'̂  JA 

V ranging over the class of all (m-dimensional) infinitely differentiable vector-valued 

^) Cf. [1] (chap. XV, 0 : 1) for notation. 
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functions V with compact support for which max \v(x)\ ;g 1, we see that @ is the 

system of all Lebesgue measurable Л a E^ such that \\A\\ < +00. ® is an algebra. 
||£„, "~ 1̂1 ~ 1И11 for every Lebesgue measurable A. с E^,. Given a monotone se
quence {^}^=i of elements of® with sup \\A„\\ < +00, we have lim A^e @. \\A\\ will 

n n 

be termed the perimeter of A. (For bounded A the notation ||^||,-, \\A\\ was introduced 
by J. MARIK in [11]. Another equivalent definition of perimeter for Borel subsets in £,„ 
was given by E. DE GIORGÏ in [3]; cf. also [4] and H. FÉDÉRER [5]. The reader is re
ferred to [7] for further bibliography on the subject.) 

4. We shall collect here several known results to be used later. Suppose there is 
given a set M с E^. A point a e E^ will be termed an eM-point provided both 
(El — M) n / and M n I have positive outer linear measure for every open interval 
I cz El containing a. The number (possibly zero or infinite) of all eM-points will be 
denoted by e(M). Further we shall use the following notation. Given positive integers 
/ ^ m, a subset A in E,̂  and a point x = [xj, ..., x„,_j] e E,„-i, we write Al. for the 
set of all С e El with [x^, .,., x^.^, C, Xi, ..., x^_i] G A. The following assertion is 
known ([7]; cf. also J. MARIK [11] and chap. 7 of K. KRICKEBERG [10]). 

4.1. Let A be a Lebesgue measurable subset in £„,. Then e(/l^), considered as a 
function of the variable x on E^_i, /5 Lebesgue measurable and 

Ah 8{A^) dx . 

Write A} = {x; x e E,„-i, С ^ 4̂"'} [A cz £,„, 4' G EI). Using Fubini's theorem, we 
obtain from 4.1 the following assertion: 

4.2. Let A be a Lebesgue measurable subset in £,„, i a positive integer with i < m. 
Then \A^\I '̂ ) /5 a Lebesgue measurable function of the variable С on Ei and 

{cf. also W. H. FLEMING [6], p. 455, and K. KRICKEBERG [10], p. 125). Hence it fol
lows, in particular, that A^ e @j- (in £„,-1; i < m) for almost every С e Ei provided 
A E ®, (in E,„). 

Given a set /4 с £,„, we denote by .4* the set of all [x^, ..., x,„_i, Q = [x, C] 
(x G £,„_!, С ^ ^1) for which С belongs to the interior of A"^ (in Ei). Further we write Ц 
for the /<-dimensional Lebesgue measure. 

4.3. Let A c: E,„ be a closed set, A G @„,. T/ien Л* /'5 an F„-setamil„{A - A*) = 0. 
(Cf. [7].) 

'*•) Here II ... II j is considered in £„-!• 
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5. Theorem. Let F be a locally compact subset in E^, and suppose that F e @/ n 
n (§y, where 1 ^ i Ф / ^ 3. Further suppose that G is an open subset in £3 with 
G n F = 0, séç,G •=> F, Then either L3F = 0 or L^{F - .^jG) > 0. 

Proof. Let i = 2, j = 3. We may clearly assume that F is compact and F G @2 ^ 
n ©3. Suppose, if possible, that 

L^{F - j / i G ) = 0 and L3F > 0 . 

Then a С e Fl can be chosen such that 

l2F^ > 0 , |!F^|J2 < + 00 , L2(F - F*)^ = 0 - l2{F - j / i G ) ^ . 

Write В = F^. Let Б„ stand for the set of all [^, tj] e E2 with 

\ n n/ 
00 

so that J5* = и J5„. Clearly, every ß„ is closed. We have l2{B - B*) = 0 because 

j|ß||2 <4-oo. Taking into account that L2B > 0, we fix a positive integer n with 
L2ß„ > 0, so that 

L2{B„n(F^yn{^,Gy)>0. 

Consequently, we have a 

[^o,rio]e{F^ynU,GynB„ 

such that [Co, '/o] ŝ a point of density of J5„. Fix a sequence {[^^, /̂с]}Г=1 of points in 
ß„ such that 

lim[^j,,rjj,] = [io,r]o], ^2i-i<^o, ^2i>^o ( 1 - 1 , 2 , . . . ) . 
k-* 00 

Further fix an 8 > 0 such that the segment 

F = {e} X {̂ «} X <C - г, С + г> 
is completely contained in F and write (7Q for the (open) sphere of center [^^Q, rjQ, Q 
and radius e. Let U^ be a sphere of center [(̂ Q» ^O» Q ^^^ radius ^ < e such that any 
1-cycle in G r\Ui bounds in G n UQ- Put q = min (1/n, |(5) and write S^, S2 for the 
sphere of radius ^q and of center 

respectively. Clearly, S^ u S2 c: l/j - F. Further, write *§;, for the sphere concentric 
with Sh{h == 1,2) and of radius e^ < \q small enough to secure that any 0-cycle in 
G n S^ bounds in G n S,,. Put 

and fix a /7 such that 

K „ ^p - k , C] e ^1 Э [^^^^, rj^^, - k , C] , 

K P . ^P + k , C] e ^2 Э [^^.,^, ^^^j + k , C] . 
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Let Op and Op^^ be convex neighbourhoods of Hp and H^+j respectively, such that 
Op u Op+i cz и I — E. Since Hp a secß, we can fix an a > 0 such that any 0-cycle 
^1 — ^2 bounds in O ,̂ n G provided o^, о2 are points in G with 

a > ^(oi, 02) + ^(02, Я ,̂) . )̂ 

Suppose now that Яр is naturally ordered from \^p, Цр — \q, C] = "po to [ĉ p, ̂ 7̂  + 
-f fg, C], and decompose Я^, into segments of length not exceeding ^a by means of 
points 

WpO < Wpi < .. . < Up, = [(^p, rjp + |(?, C] . 

Let us associate with every Up^ a point Opj e G such that 

Qi^pP ^Pj) < 1 -̂ ' P̂O ^ -^l ' ^Ps ̂  ^2 • 
We have thus 

Qi^pj-u(^pj) + Q{opr^p) < ^ 
and, consequently, the 0-cycle Opj — Opj^i bounds a 1-chain ĉ y (1 ^ 7 ^ s) in G n 
n O^. In a similar way we fix points Op+ijE Op+i nG {0 ^ j ^ t) such that 
^p+1,0 ^ »̂ г» ^p+i,f ^ *̂ i and such that the 0-cycle Op^u - Op^ij_^ bounds a 1-chain 
с p+ij( l ujut) in G n Op+i. Since 0^+^,0 ^ ^2 n G э o^,, the 0-cycle o^+i^o - <?ps 
bounds a 1-chain cl in S2 n G. Similarly, the 0-cycle ô o — ^p+i^t bounds a 1-chain cj 
in Si n G. Put 

z' - c^i + .. . + c'p, -f 4 + с^+1д + ... + c^+i,, + c\ . 

Clearly, z' is a 1-cycle in 

(Ol u ^2 u O2 u Si) n G с (7i n G . 

Thus z^ should bound in G n I/Q cz I/Q - ' ^- P^̂ t 
Vi = [^p+i, ^p+i - i^, C], î̂ 2 = [^р+ь ^p+i + Iq. C] 

and let с J, C2, C3, ci be 1-chains corresponding naturally to the oriented segments 
"po^ps» "pst̂ 2» 2̂̂ 1? ^i^po respectively. It is easily seen that ẑ  is homologous to 
c} + C2 + C3 + ci = Zi in 

Ol u S2 u O2 u Si c: (7o - £ . 

Since [(Jo, '/o] belongs to the interior of the parallelogram with vertices 

[^p, ^p - k] ^ l^p^ Пр + \q] , Kp+b ^p+i + hi , K P + 1 , ?7p+i - Ы , 
the straight line {^Q} X {^Q} X E^ = P prevents P from bounding. Consequently^ 
not even z^ can bound in I/Q — E CZ E^ — P, which is a contradiction. 

6. Corollaries. A set S c: £3 will be termed a simple surface provided every point 
xe S has a neighbourhood in S which is homeomorphic with £2- If» moreover, S is 
a continuum, then S will be termed a simple closed surface. It follows from known 

)̂ We write Q for the Euclidean distance function. 
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theorems in topology and from the above theorem that the following assertions are 
true. 

6.1. Corollary. Let S he a simple surface in E^ and suppose that S e @,- n @y, 
where 1 ^ f Ф j ^ 3. Then l^S = 0. 

6.2. Corollary. Let S be a simple closed surface in £3 and let G^, G2 be its comple
mentary domains. If both G^ and G2 belong to @̂  n ®^ (1 ^ Î Ф j ^ З), then 
L3.S: - 0. 

Remark . A result slightly more general than 6.2 was proved in [9]. 

6.3. Example. Consider a closed cube К in £3. For every n > I divide К into 2^" 
equal cubes X" (1 ^ / ^ 2'̂ ") and denote by D„ the union of the edges of all the cubes 
K"i that are interior to K. Further, fix a descending sequence {е̂ }Г=1 of positive real 
numbers with lim ê  = 0 and put 

к 
Uk = {x; X e £3, Q{X, DJ) < e j , 

n 00 

G„ = [JU,, G = \JG„, F^K-G. 
k=l n = l 

if Sj, tends rapidly to zero as /c -^00, then L3F > 0; moreover, one can achieve 
sup |]G„j| < + co. Then G (as a Hmit of a non-descending sequence of sets having 

H 

uniformly bounded perimeters) belongs to ® and the same is true about G = К and 
F = X — G. G is easily seen to be connected and uniformly locally connected, so that 
F c= J^QG. 

7. Theorem. Let F be a locally compact subset in E2, F e @ Д/ = 1 or 2). Further, 
let G с £2 ^ '̂ ^^ open set, G r\ F = 0. Then either L2F == 0 or L2(£ — S/^^G) > 0. 

Proof. We may clearly assume that F is compact and F e @2- Suppose, if possible, 
that L2£ > 0 and L2(£ - ^ 0 ^ ) = 0. Write F„ for the set of all [^, rj] with 

{Q X <^ - 1/n, ri + l//i> cz £ , 
00 

so that и £,. - £*. Every £„ is closed. Since L2F > 0 and L2(£ - £*) = 0, we have 

^2^п > 0 for suitably chosen n. Consequently, L2(£„ n S/QG) > 0. Let 

Ко. ^1o] == oeF„n s^oG 
be a point of density of the set £„ n J^QG, We have then a sequence {[4\, ??л]}Г=1 <̂f 
points in F„ n ^QG С G tending to о as /с -^00 and such that ^2j~i ^ ô» 2̂7 > ^0 
(/ = 1,2,...). Let us associate with every [ĉ ;̂ , r],^'] a point [|;̂ > ^/d = /̂c ^ <Ĵ  such that 
lim Ofc = o, |2i~i < so. l2i > ^0 0' = 1. 2, . . . ) . Write (7 for the open circular disc of 

к 
center 0 and of radius I//7. We have then a /CQ such that o^eU whenever к > UQ. 
Since [ / ~ G = ) t / n £ „ = D {[(̂ , ^ ] ; ^ = (̂ Q} n 17, we see that the 0-cycle Oj, - o^+i 
(/c > /CQ) cannot bound in I/ n G. This is in contradiction with 0 G S^QG, lim ô  = o. 
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8. Definition. Write e^ = [1 ,0] , e^ = [0, 1]. A point о e E2 will be termed a 
c-point of v4 c= £2 provided there is a ^ > 0 such that о + oce^ e A э о + ae^' when
ever |a| ^ Ö, The set of all c-points of A will be denoted by A'^, 

9. Lemma. Let F be a locally compact subset in E2, F e &. Then L2(F — F^) = 0. 
Proof. We may clearly suppose that F is compact and F e @. Write F | = F* for 

the set of all [( ,̂ Г]~\Е F for which f] belongs to the interior of F | (with respect to F^). 
Similarly, let F* be the set of all [^, rj~\e F for which F^ contains ä, in its interior. Since 
F G ®25 we have L2(F — F*) = 0. In exactly the same way, F e^^ implies L2(F — 
- FÎ) = 0. Consequently, 

L 2 ( F - ( F t n F 2 * ) ) = 0 . 

Now it is sufficient to observe that F^ = F'l n F^. 

Remark . An analogous assertion may also be proved for subsets in F„, with 

m > 2. 

10. Theorem. Let F be a locally compact subset in E2, Fe @. Further, let G be 
Ü domain in F2, G n F = 0. Then either L2F — 0 or i-iiF — G) > 0. 

Proof. We may assume that F is compact and F еЩ. Suppose that 

(2) L2F > 0 and L2(F - G) = 0 . 

Write F\ for the set of all [( ,̂ J7] = 0 e F for which the set 

Cn{o) - «(^ - i/n, ^ + l/n> X {n]) u {{Q x i n - 1/n, Ц + 1/n» 
сю 

is completely contained in F. Clearly, every F\ is closed and (J ^+ = ^^- We have 

thus L2F+ > 0 for suitably chosen n. Consequently, L2(F'̂  n G) > 0 (compare (2)). 
Fix a point 

Oo = Ко. ^o] eF\ nG 

such that Oo is a point of density of the set F+. Put 

Ô1 = IK ' ^Ъ ^> ^0. n> По} . 
бз = {[^. n]\ ^ <U П < По} • 

Then there is a sequence {[4 , ^л]}Г=1 of points in F'V such that 

[^2j-1,^2.1-il = ö 2 ; - i e ß 3 , [^ipHij] --= 02jeQi и = 1,2,...) 

and lim Of^ = OQ. Write 
k 

Ph = {^ih-u Ы X (nih-u Hih) (^ = 1, 2, ...) . 
We have then a ho such that the boundary of P^ is completely contained in 

C„{02h-l) ^ C„{02}) C= F с F2 - G 

whenever h > h^. Since о e Pf^ n G, we conclude that P^ n G Ф 0 (/г = 1, 2, . . . ) . 
Noting that the diameter of P|^ tends to zero as /7 -> + 00 we see that G cannot be con
nected. Thus we have a contradiction. 
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Резюме 

ЗАМЕТКА О ПЕРИМЕТРЕ И МЕРЕ 

ЙОСЕФ КРАЛ (Josef Kral), Прага 

Если G — открытое множество в Е^, то символом ^ fi ф ^ i < m) обозна
чим множество всех точек х замыкания G множества G, обладающих следую
щим свойством: Для каждой окрестности UQ{X) точки х существует такая окрест
ность Ui{x) с Uo(x) точки X, что каждый целочисленный /-мерный цикл 
в G n Ui(x) гомологичен нулю в G n UQ(X) (СООТВ. топологические понятия 
надо понимать в смысле монографии П. С. Александрова [1], §3, гл. XIV; 
см. тоже гл. XV, О : 1). 

Символом ®fc (1 ^ ^ ^ m) обозначим систему всех измеримых (по Лебегу) 
множеств Ä cz Е^, для которых конечно число sup J^ (ô(p(x)/ôxj,) dx; здесь верхняя 

грань берётся по отношению ко всем бесконечно дифференцируемым функ
циям (р, обращающимся в нуль вне некоторого компактного множества 
и удовлетворяющим условию max \(р(х)\ ̂  1. Пусть @̂^ — система всех А cz Е^, 

X 
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для которых А г\ Ke&f, для каждого т-мерного куба К. Символом L,„ обозна
чим меру Лебега в пространстве Д„. 

Теорема. Т/усть F—локально компактное мноэн:ество в Е^, 1 S i <j S 3, 
F ei^i n (Sj. Пусть, далее, G — открытое множ:ество в Е^, G п F = 0, 
.s^^G =5 F. Тогда l^F = О или l^(F~-~^^G) > 0. 

Теорема. Пусть F^—локально компактное множество в Е2, Fe(3i {^ ~ ^ 
или 2). Пусть, далее, G — открытое множ:ество в Е2, G п F = 0. Тогда L2F — О 
или12(Е~:-.я/оО) > 0. 

Теорема. Пусть F—локально компактное множ:ество в Е2, Ее ^i г\ (32-
Пусть, далее, G — область в Ej, G г\ F — 0. Тогда 1.2F ~ О или L2(F— G) > 0. 
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