
Czechoslovak Mathematical Journal

Štefan Schwarz
Convolution semigroup of measures on compact noncommutative semigroups

Czechoslovak Mathematical Journal, Vol. 14 (1964), No. 1, 95–115

Persistent URL: http://dml.cz/dmlcz/100603

Terms of use:
© Institute of Mathematics AS CR, 1964

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/100603
http://dml.cz


Чехословацкий математический журнал, т. 14 (89) 1964, Прага 

CONVOLUTION SEMIGROUP OF MEASURES ON COMPACT 
NON-COMMUTATIVE SEMIGROUPS^) 

STEFAN SCHWARZ, Bratislava 

(Received March 11, 1962) 

To every compact semigroup S we associate the semigroup 'Ш(5) of all 
probability measures on S with convolution as multiplication. The purpose 
of this paper is the study of the structure of Wfl(S). Here the emphasis is on 
the non-commutative case. 

Let 5 be a compact semigroup, i.e. a compact Hausdorff space with a jointly 
continuous binary operation (multiplication) under which it forms a semigroup. 

Let 21 be the set of all compact subsets of iS and @ the cr-algebra generated by Ш. 
The elements of the d-algebra © are called the Borel subsets of S. 

A probability measure on 5 is a non-negative, real-valued, regular Borel measure fi 
on S such that /̂ i(S) = 1. The set of all probability measures on S is denoted by 9}J(S). 

Let <x>{S) be the Banach space of real continuous functions on S. By the Riesz 
representation theorem (see P. R. HALMOS [2], p. 247 — 248) the set of all positive 
linear functionals Ф on œ{S) such that Ф(1) = 1 is in a biunivoque correspondence 
with 5Ш(5) under the mapping ß -> Ф, where Ф(/) = (^/dju for each / e oj(S). Thus 
we may consider Ш(8) as a subset of co(S)* (the first conjugate space of œ(S)). 

One readily verifies that Ш(3) with the weak* — topology is compact (see J. G. 
WENDEL [11], В. M. KLOSS [4], I. GLICKSBERG [1]). 

We introduce in SK(S') a multiplication. If /i, v G Wl{S), the convolution JJ.V is the 
unique measure G Si}?(S) such that 

(1) f /(z) difiv) (z) = г f f(xy) dfiix) dv(y) , 
J 5 J SJ s 

for each / G œ{S). It is known that this multiplication is associative and jointly 
continuous in the variables /i,v in 5Ш(5). (See I. Glicksberg [1].) Thus SDî(S) becomes 
a compact semigroup. 

) The main results of this paper have been communicated on the International Symposium 
on general topology and its relations to analysis and algebra, Prague, 1961, September 1 — 8. 
(See General Topology and its Relations to Modern Analysis and Algebra. Proceedings of the 
Symposium, Prague 1961, pp. 307 —310.) 
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For any element x G S we define the element x' e Ш{8) as the point mass at x. The 
corresponding functional sends the function/into the number/(x) and the element xy 
goes over into the measure (xy)' = xy'. Therefore the mapping x -^ x of S into 
Wl{S) is a homeomorphic isomorphism, so that henceforth we may regard S as 
embedded in Wl(S) and omit primes. 

Let be ju G Ш{8). The s u p p o r t ofju, denoted by C{ix), is the set of all x e S such 
that for each neighborhood (7 of x we have fi{U) > 0. It is well known that С(/г) is 
a closed subset of S, /i(C(ju)) = 1 and for every relatively open subset V of C{fi) we 
have PL{V) > 0. Also if Л is a closed subset of S such that in{Ä) = 1, we have C{ij) с 
с: Л.^) 

Finally we mention the important fact that if /x, v e Щ8) then C{fiv) = C{ß) C(v) 
(B. M. Kloss [4], I. Glicksberg [1]). 

The purpose of this paper is to study the structure of Ш(8). The results obtained are 
extensions of those of N. N. VOROBJEV [10], E. HEWITT and H. S. ZUCKERMAN [3], 
J. G. Wendel [ U ] , B. M. Kloss [4], I. Glicksberg [1] and K. Stromberg [8] the 
essential novelty being that we are going beyond the restriction of commutativity even 
in the non-group case (for S). The case that S is finite has been treated in detail in the 
paper [7]. Also in the present paper a sort of finiteness condition will be imposed at 
some places by supposing that some simple subsemigroups of S contain only a finite 
number of idempotents. 

In section 1 we are dealing with the idempotents e Wl{S). In section 2 we describe 
the maximal subgroups contained in 9}?(S). In section 3 two limit theorems are given. 

1. THE IDEMPOTENTS бЩ^") 

If г = г^ e SW(S'), then С(г). C{8) = C(e) impHes that C(e) is a semigroup. Moreover 
B. M. Kloss [4] proved that C(e) is a (closed) simple subsemigroup of S. We shall 
prove below that conversely every closed simple subsemigroup of S containing a finite 
number of idempotents is the support of som.e idempotent element e 'Ш(З). 

A semigroup P is called simple if it does not contain a two-sided ideal Ф P. If P 
is compact it is known that P contains minimal right and left ideals. In fact, P = 
= и ^a = [J Lß, where Rj^Lß) runs through all (disjoint) minimal right (left) 

ideals of P. Also R^ n Lß = R^Lß = G^ß is a closed (compact) group and P can be 
written as a union of closed topologically isomorphic groups: P = (J [J G^ß. 

aeAi ßeAi 

The G^ '̂s will be called group-components of P. The symbol e^ß will denote always 
the unit element of the group G^ß. 

Lemma 1Д. Let S be compact, fi an idempotent eWî{S), P = C(fi) and L an 
arbitrary fixed chosen minimal left ideal of P. If f e œ{P), then Jp/(x(^) d/i(x) has 
the same value for every ^ e L. 

^) С(/л) is simply the complement of the union of all open sets of ya-me:isure zero. 
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Remark . This Lemma is a natural generalization of Lemma 2,3 of the paper [7].^^^ 

Proof. Since fi is an idempotent and C(fi) = P, we have^) 

(2) F{x) d/i(x) = f f F{xy) dfi(x) dfi{y) 
p J pjp 

for every F e CD{P). 

Let be e an idempotent e L. Denote (for y e P) ç(y) = \p f{xye) d^(x). Since 
xyeeP ,P .Lcz L, f(xye) is defined. Put in (2) F(x) = /{xye). We have 

Ф) = fi^ye) àfi{x) = I Г f{zxye) аф) d/x(x) = 

= fizxye dß(z)\dfi{x) == ç{xy)dfi{x}. 

Suppose that (p{y) takes its greatest value in the point jo e P. Hence ^(j^o) = 
= Jp 9{^Уо) àfi{x% and since /x(P) = 1 , we have jjp [(р{уо) - Н^Уо)] ^ W = 0. 
With respect to the continuity of cp the last relation implies (р(уо) = 9{^Уо) for 
every xeP, This means: ^pfixye) d^(x) takes the same value for у = Уо and for 
every у e Руо. In other words: ^pfixQ dfi{x) takes the same value for every ^ e Py^e. 
Now Руов с Py^L с L, and since Lis a minimal left ideal of P, we have Руое == L. 
This proves Lemma 1,1. 

In what follows we shall often suppose that P = C{fi) contains only a finite 
s 

number of idempotents. In this case we shall write in the above sense P = (J Pj = 
i=l 

= и Lj, = и и Gik, where r ^ 1, s ^ 1 are integers and Gi^ = RiLj, = Ri n Lj^, 
/ c = l i = l / c = l 

Theorem 1Д. Le^ S be a compact semigroup, fi such an idempotent еШ{8) that 
s r 

C{fi) = P contains a finite number of idempotents. Let P = (J \J Сц,Ье the group-

decomposition of P. Then j^i restricted to Оц^ is an invariant measure on the group 

Remark . Of course the measure /z restricted to Ĝ ^ does not necessarily belong 
to SK(G J since ^(Gf^) Ф 1 if rs > 1. 

^^) (Added in proofs.) In the meantime Lemma 1,1 and some of its consequences have been 
proved also by H. S. COLLINS in the paper [13]. (See also the recent papers [14] and [15].) 

^) We use tacitly the following Lemma: Let P be a closed subsemigroup of S and ^ = 
= {;Ц I /̂  еШ{3), C(ß) cz P} . Then ф is a closed subsemigroup о^Ш{8) which is isomorphic and 
homeomorphic to 30î(P) uider the mapping [л -^ ii\ where ii\E) — yL{E) for each Borel subset 
Eci P. ' -
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Proof . It is sufficient to prove our statement for the group О Ц . The idempotency 
of )u implies that 

(3) {{ f{zy) d^^(z) dii{y) = Г fix) dKx) 

for a n y / e co(P). 
Choose fo r / a function ФЦО^) Ga)(P) which is zero outside of б ц . (This is possible 

since Gil and P — G^^ are closed subsets of P.) To the right hand of (3) we then 
have JG^^Фll(x)d^u(x). 

By Lemma 1Д the expression ^pf{zy) djtx(z) = fp Ф 11(23;) dju(z) has the same value 
for every у e L^. If у e P — L^ (and P — Li Ф 0), we have у e Li for some i, 2 ^ 
^ i S r, and zj; e zL^ cz L ,̂ hence Ф11(г};) = 0. Therefore the left hand side of (3) 
can be written in the form 

pj 

! f Фll(z>;)d/x(z)d/l(>;) = A^(Ll)f 
JzepJyeLi Jp 

f{zy) d/i(z) àix{y) = ^ii{zy) d/x(z) dfi(y) = ii{L,) Ф^^у) dfi(z) . 

The relation (3) implies 

M^i) Фil{zy)dlг(z)= Фll(x)d/^(x) 
Jp J Gil 

for every у e L^. 
Since zy e Gil if ^^^ ^^^У if ^ e i^i, the last relation can be written in the form 

(4) fi{L,) f Ф1 ,(zy)dfi(z) = f Ф1 i(x) dfi{x). 
JZGRI J xeGii 

To prove that 1л is translation invariant on Gn it is sufficient to show that for any 
Фц G co(Gii) the expression [̂ ^̂  ^iii^u) dfi(x) is constant for w e Gn . 

Write in (4) instead of Ф11(х) the function ï^ii(x) defined as follows: For a fixed 
chosen w e Gil ^̂ ^ be 

/Ф11(х^) for x e G i l , 
^''^""^ ^ 0 for x e P - G i i . 

We then have 

^ii{zyu)dfi{z) = Фll{xu)df^{x) 
} zeRi J Gil 

KLi) 

for any у e Lj. Now since ju 6 Li(i?iLi) = Lj, we have by (4) 

M^i) Ф ц [ Ф " ) ] dju(z) = Ф И М М ^ ) . 

Hence 

i f ФцЫуиУ] 
jRi 

\ #1 i(xu) d/j(x) = 1 ^ 1 i(x) dß{x). 
J Gil J Gil 

This completes the proof of Theorem 1,1. 
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Remark . We return to the relation (4) and note again that for any z e Rj^ zy e G^. 
Hence taking for Ф^ ̂ (x) the characteristic function of Gj ̂  in F we obtain fi(L^ ) ii{Ri) = 
— M^ii)- ßy an analogous argument we prove: 

Corollary. / / the suppositions of Theorem 1Д are satisfied, and if we write (in the 
* s r 

sense introduced above) P = (J Ri = \J Lj^, Ĝ -̂  = RtL,^, we have fi{Ri) jj{L,^) = 
i = i fe=i 

= K^ik)-
For later purposes it is necessary to recall some relations concerning the intrinsic 

structure of a simple semigroup P = \J R^ = \j Lß = UU^a^- The following 
cceAi ßeAi a ß 

facts will be freely used. (Hereby g^ß denotes an element e G^ß and e^ß is the unit 
element of G^ß.) 

a) Lßgyö = Ls, gyô^oc = Ry 

b) {eocß, ОСЕ Al} is the set of all idempotents e Lß. Each of them is a right unit 
of Lß. The set {e^ß, ß e Л2] is the set of all idempotents e R^. Each of them is a left 
unit of R^. 

c) Any two minimal left ideals L^, Lß are isomorphic. The corresponding mapping 
can be realized by x G L^ -^ xe^ß e Lß. The inverse mapping is 3; e L^ -^ yeß^ G L^. 

d ) QoLß^ = ^ay» RyGaß = Gyß-

e) G^ßgyö = G^̂ , g^ßGy^ = G^̂ . 

f) G^ßGy^ = G 5̂. (Note that e^ße^^ e ^«5 but - in general - e^ße^^ = e^^ need not 
hold. Of course, we have e^ße^y = e^^ and e^ßCyß = e^) 

g) Any two groups G^ß and Ĝ ^ are topologically isomorphic. The corresponding 
mapping can be realized by '̂ ) 

(5) ayö e Gys -^ e^ßa^^e^ß e G^ß . 

The inverse mapping is given by 

(6) a^ß e G^ß -> eyßa^ßeyö e Gy^. 

Denote by /̂ ^̂  the normalized Haar measure on the group Gi^ and extend the defini­
tion of ßik to all Borel subsets E of S by putting fiij,{E) = fiii^(E n Gf^). If /1 is an 
idempotent e Ш{8) and C{ß) = P, then by Theorem 1,1 we have necessarily 

s r s r 

ß ~ л TJ ̂ ikl^ik with positive numbers Г,̂  satisfying ^ Y^tik = ^^ 

^) To prove that (5) is a honiomorphism let be «^^ - » e^ßüy^Cyß, by^ -> e^ßby^Cyß. Then (since 

ŷ/?̂ «̂  = ŷ̂  ^^^ ŷ̂  is a left unit of ̂ ŷ G Ry) we have (e^ßüy^eyß) {e^ßby^eyß) = e^ßUy^ieyßC^ßby^) Cyß = 
= e^ßüy^by^eyß. Hence ö̂ ^̂ ŷ̂  -> e^ßißy^y^ Cyß. To prove that it is an isomorphism suppose that 

^aßVyß ^ ^ocß^ya^yß- Multiplying by Cy^ to the right and by Cyß to the left we have eyßC^ßüy^. 

.eypeyô= eyße^ßby^eyßey^ and successively ^У^О^^^У^ = ^У^/>У5^У^, ^y^^y^ßy ĵ = ^ У ^ ^ У Л ^ ' ^уе^г = 



To prove the converse of Theorem 1,1 we first prove the following 

Lemma 1,2. Under the suppositions and notations introduced above we have: 

a) gikßji = l^ikQji = Pilfor any point mass g^,, QJ,. 

b ) fiikf^ji = l^ii-

c) If V e SDî(iS) and C(v) с P, then fiikVfiji = [Хц. 

Proof, a) We first prove that eikfiu = ßn- In fact (since ei^ is a left unit for every 
z G Gil) we have: 

/ (x) d(e,fe/î )̂ (x) = /(j^z) deifc(>̂ ) . diLif̂ (z) = /(e^.z) d/i,.̂ (z) = 
J p J pj p JGH 

= f / ( z ) d|/,,(z) = f / ( z ) d / a z ) . 

This implies the required formula. Analogously we prove е̂ /̂1д = fin, and /х̂ й̂ и = 

Now we have 

9ikl^ji = Qiki^ji^^ji) = (gik^ji) ßji • 

The measure д^к^л is the point mass at the point gik^ji — g\i^ Оц. Therefore 

gtkßji = g'iii^ji = {g'ii^^i^ Мл = gai^ui^ji) = d'nf^n • 
Since fill is the Haar measure on Сц and д'ц e G^, we have 

P J J Gil J Gil 

/ ( z ) d/i,i(z) , 
il 

hence о̂ /̂̂ /г = 1^ш ^^d finally öfütMjf = ßn, which proves the first relation. The second 
statement can be proved analogously. 

b) By a) we have /х.-̂ Мя = (A r̂fĉ iOĈ j/A ĵ/) = ß-Aeik^ji) ßji- Denoting e^^eji = д^ 
(point mass at a point eGn) we further have 1Л11,1Лл = iiikignl^ji) = ßikßu- Again 
by a) and noting that finis an idempotent e Ш(8) we finally have jUî /iĵ  = fiikienfiu) = 
= ißik^ii) P^ii = Â ü/̂ i/ = Âü» which proves our assertion. 

c) Write first piik^piji = ßik^ik^ejißji = ßikQfiji, where ^ is a measure with the support 
C{Q) = C{eikVej,) <=• eikPeji c= G^^PG^ = Gn. Since ^е..̂  = eaQ = ö, we further have 

TOO 



Now (since in what follows z .te G^ and ß^ is invariant on G^) we have for / e co{S) 

I f{x) d{fiiiQ^i) (x) = f{yzt) dfiaiy) M^) ^f^iM = 
Gil 

Gil 

fiy)àfia{y) 
Gil 

dQ{z)dixM= f{y)^f^ii{y). 
J G il 

whence liikVfiji = ßuQßn = i^n-

Lemma 1,2 is completely proved. 

R e m a r k . The relation between the translates of a subset of a group-component 
into the various G.-̂  is clarified by the following result which is a consequence of the 
isomorphisms (5) and (6). By Lemma 1Д we have en^fij^ejj, = (eiuptjijejk = finejk = 
= fiik. Therefore, for a n y / e co(P), 

f(x) dfi f{x) diHij,(x) = f(yzt)de,,(y)dfijiz).dej,{t) 

fie^kzejk) dfijiz). 
Gji 

If £ is a Borel subset of Gif^ we have therefore 

f^ik{E) = fiji{z e G J, I eikzejk e E} . 

Now eij^zejk e E implies ej^le^j^zeji) eji e ejjßeji, hence ej^ze^ e Cj^ECji and (since 
z G Gj/) z G Cjj^Eeji. This imphes the remarkable result: 

(7) liik{E) = f^fjiiejuEeji) . 

Note also that the fii^s are completely given by means of a fixed /^/j, say /ХЦ, 
and the idempotents e P, since we have /х,^(£) = /iu(^ifc^^ii) for any Borel subset 
E cz Ĝ ĵ  or alternatively fiik = ^u/^n^i^. 

s г 

Write now ß = fi^e Щ8) with C(/<) = P in the form /i = E E л̂/̂ ;* with 

Z t «,, = 1, t,, > 0. We have 

and with respect to Lemma 1,2b 

i к j I ' ^ 

(8) E i -̂.Ог ̂  ^ii ' 

Put £ ff, = ^,, E 0^ = '/^ Then (8) implies ta = <̂ î /-
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Let conversely /*i = E 2^ ^t^if^n be an element e Щ8), where f ;, rji are positive 

numbers satisfying 2]^i — L f̂c = 1 - We then have 

s r s r 

i = l l = i J = l f c = l i I j к 

= ( Z ^0 ( Z ^,) Z Z ^i^kf^ik = i" i . 
^ = 1 j=i i = l fc=l 

We have proved: 

Theorem 1,2. Le^ S be compact and P such a closed simple subsemigroup of S 
s г 

that contains a finite number of idempotents. Let be P =^ \J (J Сц^ its decomposition 
i=l k=l 

into the union of groups. Let jXu^ denote the normalized Haar measure on G^^. 
Then every idempotent г e Ш{8) with C{&) = P is of the form 

(9) B = t t^in^t^ik, 

S г 

where î^i, rjj^ are positive numbers satisfying Z ^i ~ Z f̂c ~ •̂ 

s r 

Conversely, if ^i.rjk ^^^ positive numbers satisfying Z ^ i ' ^ Z ^ f e ^ Ь ^^^^ 

Z Z ^i^kßik is ^^ idempotent e Wl(S) whose support is exactly P. 

R e m a r k . If we admit in (9) some ^ ,̂ rji^ to be zero the formula (9) gives again an 
idempotent e SOî(S) but the corresponding support is a proper (simple and closed) 
subsemigroup of P. Of course there can exist also other simple (closed) subsemi-
groups of P, the group-components of which are isomorphic with proper subgroups 
ofG,,. 

We now proceed to the determination of p r im i t i ve i d e m p o t e n t s and the 
ke rne l ( = minimal two-sided ideal) of Ш(5). If S is finite the problem has been 
treated in detail in [7], so that we can be concise by only quoting the results that 
can be proved in the same manner as in [7]. 

The kernel of 5: will be denoted by N and the kernel of ЩЗ) by 91. 
An idempotent л; of a semigroup T is said to be primitive if there does not exist 

an idempotent ju e T, /i Ф тг such that п/л = fin = fi holds. Those and only those 
idempotents of a compact semigroup T which are contained in the kernel X of T are 
primitive idempotents of T. (See [7], Lemma 3,1.) 

The following two lemmas can be proved analogously as Theorems 3,1 and 3,2 
in the paper [7]. 
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Lemma 1,3. Let S be a compact semigroup with the kernel N. Suppose that N 
contains a finite number of idempotents. Let P be a closed subsemigroup of N 
containing at least one maximal group of N.^) Then every idempotent the support 
of which is equal to P is a primitive idempotent e Wl{S). 

Lemma 1,4. Let S be compact with the kernel N containing a finite number of 
idempotents. If n is a primitive idempotent e 5Ш(5), then C{n) a N. 

Lemma 1,5. Let the suppositions of Lemma 1,4 be satisfied. If n is a primitive 
idempotent e ?Ш(5), then C(n) is a union of some maximal groups contained in N, 

s r 

Proof. Let N = \J Ri = \J L^ht the decomposition of N into its minimal right 
i — l k = l a Q 

and left ideals respectively. Denote C{n) = P' and let P' = K) R\ = \J i4 be the 

decomposition of P' into the union of minimal right and left ideals of P' respectively. 
By Lemma 1Д of the paper [6] to every L̂  there is a Ly, 1 ^ 7 ^ r such that L^ = 
= P' n Lj. Analogously for minimal right ideals R'l. Without loss of generality let 
be Li = P' n L; (i = 1,2,... , Q) and R[ = R^ n P' (i = 1, 2 , . . . , a). Consider the 

semigroup P = (\J Ri) n(\J Lj^). Denoting G^j, = RiL^ and G'^^ = R'^L^ we have 
i=l k=l 

a Q a Q 

P' = (J и f̂fc? P = и и ^ib ^^^ ^ ^^^ ^^ written in the form 
i = l fe=l i=l / c = l 

i=l k=l i=l k=l 

where fi'^^ is the normalized Haar measure on the group GĴ . 
Suppose now for an indirect proof that the group-components of P ' are not maxi­

mal groups of iV, i.e. GJfc с Gi^ and GĴ  Ф Gij^. To prove that n is not a primitive 
idempotent e 5Ш(5) it is sufficient to find an idempotent v such that 71 ф v and KV = 

(T Q 

= V7C = V. Construct the idempotent v = ^ ^ ^i^kf^ib where [Лц^ is the normalized 
1=1fc=i 

Haar measure on G^̂ . Then v Ф я since C(v) Ф C(7i). 
We first prove that j^i^fiji = 1Лц. We have 

i^ikl^ji = (ßikeik) ̂ ji = f^iki^ikf^ji) = ßikf^n = ^iki^iif^n) = if^ik^ii) ß'ii = l^ii • И-а • 

Further, for / e co(P), 

Г fix) din,,fi'u) (x) = f f f(yz) duaiy) d/i;,(z) = 
Jp J yeGiiJ zeG'ii 

f(y^)àHuiy)\àtiuiz). 
J zeG'ii L J yeGii 

^) P is then automatically a closed simple subsemigroup all group-components of which are 
maximal groups of Л̂ . (See [6].) 
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Since z e Сц and f^u is invariant on G^, the bracket is equal to jjyeCm f(y) ^1^и{у)^ 
so that 

/(x)d(/.„/i;,)(x) = Г d/i;,(z)1.rr f(y)d^^n(y)\ 
JzeG'ii J L.J yeGii Jj yeP 

whence fi^ . ц'ц == ßn and finally li^kfiji = /х,̂ . Analogously we prove fi[,^iiji = fi^. 
Now 

a Q a Q (T P - T ß 

i = l f c = l 7 = 1 1 = 1 7 = 1 fc=l i = l i = l 

Analogously яу = v. This proves Lemma 1,5. 
Summarily we have 

Theorem 1,3« Let S be a compact semigroup the kernel N of which contains 
a finite number of idempotents. An idempotent n e 5Ш(5) /5 primitive if and only 
if C(n) is a union of some maximal subgroups of N. 

The next two theorems clarify the structure of ÏÏI. 

Theorem 1,4. Let S be a compact semigroup the kernel of which contains 
a finite number of idempotents. Then the kernel 91 of Ш{3) is identical with the 
set of primitive idempotents e SDî(S'). 

Proof. Let be 7Г = TÎ  e 91. Since it is known that the maximal group &(n) с 91 
containing n as its unit element is given by the formula ©(тг) = 7г91л; it is sufficient to 
show that for any v e 91 we have nvn = n. 

Note first: Since v G 9Î; and 91 is a union of groups, there is a TI' e 91 such that 
V G @(7i% hence vn = v. This implies C(v) = C(v) C(n) с C(v) N cz N. 

s r s r 

Write N = \J (J Gil, ^^^ ^ = Z Z ^i^kl^ik with non-negative ^i, i]i, satisfying the 
i = l k = l i=l k=l 

usual conditions. Then 
s r s r 

71V71 = Y, Z ^i^kf^ik • '̂  • Z Z ^j^ii^ji • 
i = i f c = i i = i 1 = 1 

Now by Lemma 1,2 c) f^i^viHji = fi^. Hence 
s r s r 

nvn = (Y, rjk) ( Z ^j) Z Z ^i^lf^il = ^ ' 
fc=l j=l i=l 1=1 

which proves our theorem. 
By means of Theorem 1,4 and an analogous argument as used in [7] (Theorem 3,6) 

we can now prove: 

Theorem 1,5. Let S be a compact semigroup containing s minimal right ideals 
and r minimal left ideals respectively. Let % be the set of all (s + r)-tuples of 
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non-negative real numbers (c^, ...,(^^, r}^,...,rj^) satisfying (̂ i 4- . . . + 4 ~ 
= rji -\- ... + rj^ = I. Define in X a multiplication о by 

Т/геп 2 is isomorphic with the kernel У1 of the semigroup 5Ш(5). 

2. THE MAXIMAL GROUPS OF Ш(5) 

In this section we shall identify the maximal groups e 5W(5). To this end it is 
useful to make first some remarks concerning the location of simple subsemigroups 
of S. 

The principal ideal generated by x (i.e. the set x u Sx u x5 u SxS) will be denoted 
by J(x). By an F^-class we shall denote the set F^ = {y \ y G 5, J{y) = J(x)}. 
Clearly S can be written as a union of disjoint F-classes: S = (JF^. 

X 

If я is a simple subsemigroup of S it is easy to see that all elements e H generate 
the same principal ideal which we shall denote by J(H). Hence a simple subsemigroup 
cannot meet two different F-classes. 

Let now be Я a simple subsemigroup of S and F^ the F-class containing Я, 
J(H) the two-sided ideal as above. It is known that the set Кд = J (H) — F^ is 
a two-sided ideal of J(H). The difference semigroup J(H)IKjj is a simple semigroup 
with zero. The elements of this semigroup are the elements e J{H) — Кц = F^ 
together with an adjoint zero element O^ and the product in FQ = Ffj ^ {0^} is 
defined in an obvious manner. 

Suppose now that S is compact and Я is closed. Then, since Я contains an idem-
potent which is contained in FH, we have FQ Ф О и, hence Fl = FQ. Moreover 
(if S is compact) FQ is known to be completely simple with zero. (See R. J. Косн-
A. D. WALLACE [5].) 

We can now use Lemma 2,2 of the paper [6] by which under our hypotheses 
there exists a unique greatest simple subsemigroup H^ of FQ contained in F ^ and 
having exactly the same idempotents as Я.^) 

Returning to the semigroup S we have: 

Lemma 2Д. Let S be a compact semigroup and H a closed simple subsemigroup 
of S. Then there exists a unique greatest subsemigroup H^ :э H having the same 
idempotents as H. 

^) The precise formulation of this Lemma is as follows: If *S is a completely simple semigroup 
with zero 0 satisfying 5"̂  =j= 0 and T a simple subsemigroup of S containing an idempotent but 
not containing the zero element, then there exists a unique greatest simple subsemigroup T^ ZD T 
of S having (exactly) the same idempotents as T. The semigroup T^ is completely simple and it 
can be written in the form T^ = [{U R^ П {(J Lß]] — {o} with suitably chosen minimal right 

a ß 
and left ideals i?̂ ,̂ Lß of S respectively. 
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f ? ' Г с ? """ '^^^" consequently use the following notations, г will be an idem-
potent e 5»(S) with C(e) = Я. Further я = U К = U L;, is the decomposition of H 

into tue union of its minimal right and left ideals respectively and Я = U U ^aß 

l^aß = KJ-^ßi is the group decomposition of H. H^ will denote the largest simple 
subsemigroup of S having the same idempotents as H and Я^ = U ^a = U Ь^ = 

aeAi ßeAj 

— [JUGo,ß\^G^ß = R^Lß^ the corresponding decompositions of Я^. Without loss of 
a ß 

generality we may suppose that R'^ ~ R^ n H (a G Л J , Lß = Lß n H(ß e Л 2), so 
that G'^ß a G^ß. (See [6], Lemma 1Д.) 

In [6] it has been proved also that Hi admits a decomposition mod (Я, Я) into 
a union of pairwise disjoint classes 

(10) Hi = H и HaH u HbH и ... 

with suitably chosen a, b,... eHi. In particular HaH = Я if and only if a е Я . 
Moreover HaH n Ĝ ^ = G'^ßaG'^ß for any a e Я1. (See [6], Theorem 3,2.) Hence if 
T,^ - HaH n G,̂ ,, then Я ^ Я = U U ^^ß = иис^^/^^^^д. 

ae/li /^бЛг aß 

The following simple lemma will be used in computations. 

Lemma 2,2. / / a is any element e Я^, ^/len G'^paG^^ ~ G^^aG^ .̂ 
Proof. Suppose that a e G^^ cz Я^. Then e^^öe^^ = a. Hence G'^paG^^ = 

= (G'^pe^g) a{e^fiy^) = G'^^aG'^^. Since this is clearly independent of ß and 7 we may 
take ß = Ô and 7 = a, so that G'^paG'^^ = G'^^aG'^^. 

If P is a compact semigroup and a eP, then a is said to be long to the idem-
p o t e n t ^ i f ^ i s the (unique) idempotent contained in the closure of the sequence 
{a, a^, a ^ , . . . } . An element a is called m-regular if it is contained in some subgroup 
of P. 

In the next two theorems we do not suppose that C(e) contains only a finite number 
of idempotents. The first of them can be proved by the same argument as Theorem 5,1 
in the paper [7]. We omit the proof of it. 

Theorem 2,1. Let S be a compact semigroup and s an idempotent e Wl{S) with 
C(s) = Я . Let Hi denote the largest subsemigroup of S having the same idempotents 
as H. If V is an m-regular element belonging to s, then C(v) = HaH with a suitably 
chosen element aeHi. 

Theorem 2,2. Let the suppositions of Theorem 2,1 be satisfied. Denote H = 
= и и G'^ß, Я1 = и и O^ß. Then T^ß = HaH n G^ß is exactly one two-sided 

aeAi ß&At aeAißeAz 

class of the decomposition of the group G^ß modulo the group G'^ß fi.e. T^ß = 

= G'^ßtt^ß = ciaß^aß ^^^^^ ^ suitably chosen a^ß e G^^). 

Proof. If V is m-regular, then there exists an m-regular v̂ ^̂  e Ш{3) belonging to e 
such that vv<̂ > = v̂ ^̂ v = e. Denote C(v(^>) = HbH and Т/î ^ = С'^^ЩО ^ G,,. Since 
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C(v) = [JUT^ß = UUG^ßaG'aß, C(v<o>) = U U T^Ö = UUG;,&G;„ the relation 
aß aß yeAi öeAz y ô 

C(v) C(v<̂ 0 = H imphes 

UUUUG;^aG;^G;,bG;, = UUG; , . 
Oi ß y à a ô 

By Lemma 2,2 we have 

G'^ßaG'^ßG^.bG^ö = (G'aßaG',,) bG;, = (G'^^aG^J ÖG;, = 

= (G»{G'^sbG;,) = G'^,aG',,bG',,, 

Therefore 

Now since 

a Ô a Ô 

G'^^{aG'^öb) G'^ö ^ G'^^H^G'^^ с R^H^L^ = R^L^ = G^^ . 

we have G',,aG',,bG',, = G;, and (G',,aG'J(G',,bG'J = G;„ i.e. T,,. T^^^ - G;,. 
Analogously v̂ ^̂ v = s implies T^^^T^^ = Ĝ .̂ 

The expresion T^^ = G'^^aG'^^ shows that we can write 

To^ô = ci^G'^3^ ^iG'^ö^ •" (öfi,a2, . . . e G j 

and analogously 

n^' = G^sbi u G;,Z>2 U . . . (b„ b„ .. . G G J . 

We prove that 7̂ ^ contains a unique left class of the decomposition of G^§ modulo Ĝ .̂ 
Suppose that a^G ,̂ Ф a^G ,̂. The relation TJî ^T,, = G ,̂ implies G',,b^a,G',, cz 
<= G;^, G'^sbia2G'^s c= G;^. But then ^̂ ^̂  = bi«! G Ĝ ,̂ b^ = QO^Ö^IK i.e. Ĝ b̂̂  = 
= GaôQaô^i^ = G'o^o^ï^ and G'^sbia2G'^s = <̂ а5«Г̂ «2<̂ ао ^ G'^s implies а '̂̂ Дг = 
= giV e <̂a<5, «2 = ^igiV and a2G;5 = flié^i^^G;^ = ÖIG;^, which is a contradiction. 

Hence, T^ß = a^G'^ß, and analogously T̂ ^ = G'^ßä^, with a ,̂ ä̂  G Ĝ ^̂ J. NOW a^G'^ß = 
= Ĝ Ä̂i implies öl = ^^^äi with^^^ G Ĝ .̂ Therefore a^G;^ = G'^ß{g^ßY^ ßi = G^^ÖI 
{and also G'^ßa^G'^ß = «iG^^ = G'^ßa^). This proves our Theorem. 

Remark 1. It is necessary to remark that though for a m-regular v T^ß = G^^ß п 
n C(v) is a two-sided class of Ĝ^̂  mod G'^ß it is in general not true that C(v) = HaH 
is a two-sided clas of the decomposition (10), i.e. HaH — Ha = аН. (See [7], 
Example 5,1.) 

Remark 2. We prove the following assertion: If for one couple, say (oc, ß), 
Taß = G^ß n HaH == G'^ßaG'^ß = G'^ß(e^ßae^ß) G'^ß = G'^ßa^ßG'^ß is a two-sided class 
of the decomposition G^/mod Ĝ )̂ the same holds for every other couple (c^, Q), 
<F E Ai, Q e Л 2 . 
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By supposition a^ßG'^ß = G'^ßü^ß. This implies G'^^a^ßG'^ße^^ =̂  G^^G^^a^^e^ .̂ The 
left hand side can be written in the following form: 

For the right hand side we have 

G'aßClaß^aQ == G'^ßi^^rß^aß^ao) = ^aß^aQ ^ 

where ^a^ = e^ßü^ßC^^e G^ßG^ßG^^e G„^. Therefore G;^^% = G^^e^^^^^) = G;^(^^,.. 
Finally we have G'^^aG'^^ = G'^QLQ-

The relation a^ßG'^ß = G'^ßü^ß implies also e^^a^ßG'^ßG'^^ = e^fi'^ßü^ßG'^^, which can 
be transformed by an analogous argument into the relation G'^^aG'^^ = rj^fi'^g, 
where t]^^ = e^^a^ßC^^ e G^ .̂ 

Now G'^^aG'^^ - fj^fi'^^ = G;^(^^^ implies that г]„^ = g^^^„^ with g^^ e G;^. Hence 
Пев^'сге = 0'ад{9аоПад) = О'^^Пад- This says that T^Q is a two-sided class in the 
decomposition of G^̂  modulo G^̂  which completes the proof of our assertion. 

(Of course, since е^^ае^^ G fj^^G'^g, we can write e^^ae^^ = rj^^g^^ and 
= ecrQ^^e^gdâe^Gae = e^.aG'^^. Hence T̂ ^ = e^^aG^,, and analogously T̂ ^ = G'^^ae^^.) 

For the rest of this section we shall again make the restriction as to the finiteness 
of the number of idempotents in H (and a fortiori in H^). We shall therefore write 

я = Ù Ù G;„ HI = Ù Ù G,,. 
i = l fc=l i = l k = l 

Lemma 2,3. / / a is a point mass at any element e H^ and f.i[j^ the normalized Haar 
measure on G^^, then lÂ^^ajUji = fi^afi'ii. 

Proof. Suppose that aeG^^czH^, then fi[k^l^ji == (fi'tkeuv) ^^i^uvl^ji) = l^[v^l^ui-
Since the last element is clearly independent of к and j we can take к = I and j = i 
so that jii'ikaßfi = fiaa/^i'n. 

We shall now identify the m-regular measures v with C(v) = HaH that belong to 
s r 

the idempotent ß = X! Z ^t^kl^'ik- It will turn out that there exists exactly one such 
i=l k=l 

measure. 

Since V is m-regular, we have v = eve and C(v) = HaH. This implies 

(11) V = YZZZ^i^k^J^i^'ik^^Ji • 
i к j I 

Our next (and main) goal is to show that jw^̂ A ĵ/ = f^'n^f^'n-

Denote Q = eu^veji, then enQ = дец = Q and 

C{Q) = e,,HaHejt = e,,{[(j \JG',ß-]a[U (j G;,]} ej^ = 

= [UG;J а[ус;,] = G;,aG;,. 
ß у 
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(The last relation follows by Lemma 2,2.) Further 

l^'ik^ßji = (^k^t/c) ^(ejißji) = l^'ikQI^ji = l^ikieuQen) ц'^ = 

and 
C{ii\mQ = G[i C(Q) G;, = G[,aG[, . 

We have 
Тц = G\iaG\i = G[i{e,iaeii) G'n = G'^a^G'^ 

with fl^f = ^i/^^/z e Ĝ i/- Now since v is m-regular, we also have (by Theorem 2,2) 
Тц = G'liaii = anG'ii (and this is very essential in the following). 

Put a = li'iiQ. Then aa^i^ = i^iuQa^i^ is a measure with the support 

С{аа;,') = G\, do) a-' = G\^',,a,fi\;) a^^ = G\ia,fi\;) аТ,' = 
= G'ii{G\iaii) a^i^ = G'iiea = G[i . 

Now it is known (and easy to prove) that every measure with the support G[i is 
annihilated by fi'n, hence, in particular, /̂ п(о-а^^ )̂ = /l•^. This implies successively 
ßüil^iiQ^H^) = ß'ih NiQ^ii = l^'ii^ib f^uQ = l^'ii^ih and n'iiQl^a = ^п^пИп- Therefore 
we finally have 

Returning to (11) we get 
r s s r s r 

k=l . / = 1 i=i 1=^1 i = l f = l 

We have proved: 
s r 

Theorem 2,3« Let S be a compact semigroup and s = Y, E ^Лк^ш <^^ idempotent 
i = l k = l 

e 3)1{S) with C{8) = H containing a finite number of idempotents. If v is a m-regular 
s r 

dement e 9}?(5) belonging to г with C(v) = HaH, then v = ^ E î̂ fc'̂ ifc' ^"^here 
'^ik — f^ik^ßik-

Note that v is uniquely determined by C(v) and г. 
Conversely: 

s r 

Theorem 2,4. Let e == E E ^i^kl^'ik ^^ ^^ idempotent e W}{S) with С(г) = Я == 
s r i= 1 k= 1 s r 

= и и G'ik containing a finite number of idempotents e S. Let Я^ = (J [J Gn^ be 
i=l k=l / = l / c = l 

as in Theorem 2,1. Let HaH be a class of the decomposition 

such that HaH n Gik is exactly one two-sided class of Gu, modulo G-̂ . Denote 
s r 

"^'ik = l^ußf^'ik- Th£n v = Y, T.ii^k'^'ik '̂5 « m-regular element eWl{S) belonging 
1 = 1 k = l 

to S with C(v) = HaH. 
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Proof. It is sufficient to prove that 1) ve = ev = v, 2) there is a VQ with VVQ =: 
= VQV = 8, 3) VQB = SVQ = VQ. For then v is contained in the cyclic group generated 
by V and VQ. 

1) Since 

we have 

and analogously ve = v. 

2) The element ae H^ is contained in a group, say Ĝ^̂  с H^. Denote by ä the 

element e Ĝ ?̂ such that aä = äa = e^ß and construct the measure VQ = Z Z ^j^iiji' 
j = i 1=1 

with Tji = f-ijiänji. We then have 
s r s r 

(12) ^^0 = Z Z Z Z ii^k^j^lJ^'ik^f^^f^jl^f^jl • 
i = 1 fc = 1 j=l 1=1 

Now 
l^'ik^ßikl^'jiali'ji = fi\^aii\iâii'ji = li[k(^e^ßl^'iie^ßä) fiji = fi[k{aß'^ßä) ßji . 

The measure ^ = ö/x^^ä is an idempotent since ^^ = ö/x̂ ^̂ ä а/х /̂з̂  = ^(f^'ocß^otpl^aß) ^ = 
= ajû ĵä. Further C(Q) = aC{fi'^ß) ä = aG'^ßä. Now by supposition (and this is 
essential) aG^̂ j = G^ â so that C(^) = G'^ßüä = G^̂ ê /? = G'^ß. But the unique 
idempotent measure with the support G'^ß is the normalized Haar measure on G^̂ ,. 
i.e. ix'^ß. Therefore a^'^ßä = fi'^ß. 

The relation filk{cifiaß^) l^ji = Р^шЫ^'п = /̂ n and (12) imply (by the usual argu­
ment) VVQ = e. Analogously VQV = e. 

3) Since (by Lemma 2,3) f^jiäßji fi[k = ßjßj^jk = l^jk'^P-jb we have 

s r s r 

^0^ = Z Z Z Z ^j^iii^kf^ji^^ji ^'ik = YL^jnki^'jk^k = vo » 
j = l / = 1 i = l fc=l j к 

and analogously evo = VQ. This proves Theorem 2,4. 
Theorems 2,1-2,4 give a clear insight into the group @(e) of all m-regular elements 

G Wl{S) belonging to the idempotent e (at least in the case when С(г) contains a finite 
number of idempotents). 

With the same notations as above write again 

Я1 = H ^ HaH и HbH и . . . . 

Take an arbitrary fixed group, say G^ , and consider the double coset decomposition 

(13) Gil = Gil ^ G[iaG[, u G[,bG[, и . . . . 

The totality of all classes in (13) which are two-sided constitutes the normalizer G^^^ 
of Gil ^^ ^11* 
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Let fil, fi2 be two m-regular elements (belonging to the same г) with C(/ii) = HaH, 
C(fi2) = HbH, Consider the correspondence 

iUi -> HaH n Gil = Gii^fG'ii , fi2 -> HbH n Gn = GlibG'u . 

Theorem 2,3 and 2,4 imply that this correspondence is a one-to-one. Since the 
product 1.L1J.I2 is a m-regular measure (belonging to e) and C(ßijLi2) = НаННЬН, 
there is necessarily a с such that HaHbH = HcH. Hence in our correspondence we 
have 

HiH2-^ HcH nGii = G[icG[i. 

To prove that our correspondence is an (algebraic) isomorphism it is sufficient to 
show that GiiflGii G^ibG'n = GiicGii. This is an immediate consequence of 
HaHbH = HcH. Multiplying this relation to both sides by Gii, taking account 
of G[iH = G'li U U G ; ^ = UG[ß and HG[i = \JG',u we have 

(X ß ß a 

(UG;,) aiDUG'J iUUG'J HUG î) = (UG;,) C(\JG',,) . 
ß y Ô <j Q a ß a 

By Lemma 2,2 the right hand side is clearly euqal to GiicG'n. The left hand side can 
be simplified (again by Lemma 2,2) as follows: 

(UG'uaG;, ) (UG;ibG„) = G\,a{\JG',,[jG'„,)bG\, = G',,aG\,bG\, . 
Ô a Ö a 

This proves our assertion. 

We have proved: 
s r 

Theorem 2,5. Let г be an idempotent e 9Jc(S) with С(г) = H = \J \J G'^j^ containing 
s r t = 1 fe= 1 

a finite number of idempotents, and H^ = [J \J Gu^ the greatest simple subsemi-

group containing the same idempotents as H. Denote by G^^^ the normalizer of G'n 
in Gil. Then the group @(s) of all m-regular elements belonging to e {i.e. the maxi­
mal group еШ{8) belonging to e) is algebraically isomorphic to the factor group 

3. TWO LIMIT THEOREMS 

Recall first that in accordance with our earlier considerations we shall use the 
following notation. If {̂ Ui, /^2, ßs,. • •} is a sequence of elements e Wl(S) we shall say 
that fi„ converges to fie Ш(8) if j / d / i „ -> J/dju for eve ry /e œ(S). 

Let fi belong to the idempotent e. It is known and easy to prove that lim /г" exists 
11=00 

if and only if eju = jus =' e. An alternative answer to this question (in the case treated 
above) is given by the following theorem: 

Theorem 3,1. Let jue9}î(5) belong to s and suppose that H = C(s) contains 
a finite number of idempotents. Then lim ß" exists if and only if H С{р)Н = H. 

n — со 
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Proof, a) If lim /x" exists, we have sfi = e, hence Я C(f^) = H and H C{fi) H = H. 
n= oo 

s r s r 
b) Write (in our usual notations) e = J! Z ii^kf^'ik^ Я = y (j G-^ and consider 

i=l k=l i = l f e = l 

the measure ^ = sfis. Since Я C(iu) Я = Я , we have C(^) = Я and 

i к j I 

Further (by Lemma 1,2 c) n'luQl^'ji = /̂ ш hence ^ = e. This implies &цг = г, {ejif = 
= г^ and since г/( is an idempotent and at the same time an element belonging to г 
we have &ii = г. Analogously /ie = e. This proves our theorem. 

Before proving a second limit theorem in which no finiteness assumption as to the 
number of idempotents is required we shall prove Lemma 3,1 formulated below. 

If Э1 is a subset of 'Ш{8) we shall call the closure of (J С(/г) the support of SR and 
we shall denote it by С{Щ, ^'^ 

If 5K is a subsemigroup of Wl(S), then C(SR) is a (closed) subsemigroup of S. 
Moreover it can be easily seen that C(3fl) = С{Ш) (see I. Glicksberg [1]). 

Let ^^ = { ,̂ ji^, /л^, ...}bQ the cyclic subsemigroup generated by /z, @^ the maximal 
group contained in Ç^. If fi belongs to 8, we have of course se(B^ a ^^ and C(e) = 
= H cz C(@^) с C{^^) = С(^^У) If Я1 is the largest simple subsemigroup con­
taining the same idempotents as Я, we have (by Theorem 2,1) C{Q) С Я ^ for every 
^ e @^. Therefore С(@д) с: Я^. Now it is easy to prove that the closure of a simple 
semigroup is itself simple. Consider the relation C{(S^) cz Я^. Since H^ is a compact 
simple semigroup and C(®^) a closed subsemigroup, we may use a result of [6] 
(Theorem 1,1) which implies: C(®^) is a c losed s imple s u b s e m i g r o u p of S 
(contained in Я^). 

We next show that C((^^) is exactly the minimal two-sided ideal of C(^^^). Denote 
for brevity C ( ^ J = P, C{&^) = К and let be J the minimal two-sided ideal of P. 
Denote PQ = C(fi) u C(̂ u )̂ u .. . . This is a subsemigroup of P which is dense in P. 

Let be X e Po, i.e. x e C{ß^) for some / > 0. We have C(e) x C(e) с С(г) C()uO C(e) = 
= C(eju'e), and since гд'е e ®^, we have C(e) x C(e) с К. Therefore PxP n К Ф ф 
for every XEPQ. NOW since Рхз;Р с PxP n PyP (for any x, j ; e PQ) it follows from the 
compactness of i^ that [ П P>^P^ n i^ Ф 0. Now it can be proved (in the same manner 

xePo 
as in I. Glicksberg [1], 1,11, for the abehan case) that f) PxP is the minimal two-sided 

xePo 
ideal J of P (i.e. it is equal to П P^P)- Hence J n iC Ф 0. Since Ж is a simple sub-

xeP 
semigroup of P we have necessarily К ^ J (for if a G К n J, the relation KaK ~ К 
implies i^ c= KJK a J), 

Let be again x e P o and x e С(д^) for an integer / > 0. Let further v be any 

'') C(^^) is the closure of C(p) U C("^) U С(/л^) U .. . , i.e. the closure of the algebraic subse­
migroup of S generated by C(jLt), 
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élément e @ .̂ Then x C(v) с C{fi') C(v) = C(/iV) с C(®^) = i^. Hence x \J C(v) 

cz K. Since i^ is closed x U C(v) с ÜC and by continuity of the multiplication 

X C(®^) = X и C{v) cz X и Ф ) ^K, 

i.e. xK cz К for any x e FQ- This implies уК с JK: for any у e P and analogously 
Ky c= i^. Therefore i^ is a two-sided ideal of P. Since К a J, and J is minimal, we 
have К — J. 

We have proved: 

Lemma ЗД. Let S he a compact semigroup, jn e Wl(S) and ^^, = {jU, fi^, ju^,.. .}. 
/ /@д is /̂le maximal group (= minimal idet) contained in фд, and J is the minimal 
two-sided ideal of C(^^), then C(®^) = J, 

n 

Theorem 3,2. Let She a compact semigroup and ß e 5Ш(5). Denote a„ = (1/n) Y, И^-
k=l 

Then lim ö-„ exists and it is equal to an idempotent aeWl{S). If P is the closed 
И = 00 

subsemigroup generated by C{p) and J the minimal two-sided ideal of P, then 
C(a) = J. 

Proof. If S^^ is the closed convex hull of the subsemigroup ?)^ = {fi, p}, /i^,...,} 
then C(%) = С(ад = P. 

Let a be any cluster point of the sequence {a^. Clearly a e S^^. Since jucr„ — a„ = 
= l//t(ju"^^ — p) it is easily seen that JKT = a. Since this implies a = fia = p^a = 
= . . . , we also have a = (t^fi + t2P^ + t^p^ + ...) a for any t̂  ^ 0 with YjU — 1-

i 

Consequently (with respect to the continuity) a = Àa for every Я e »Ç)̂ .̂ This means 
that S^f^ (an abelian subsemigroup of SOî(S)) contains a as its zero element. But any 
semigroup contains at most one zero element. Therefore there is a unique cluster 
point of {a„} and lim ст„ = a follows by compactness. Moreover a is an idempotent 

H = 00 

(and a trivial minimal two-sided ideal of ^ ^ ) . 
Now if 1 e ^^, then a^^ = S?^a = a implies C((x) С(Л) = C(A) C{a) = C{a) and 

C{a) и C(l) = и С(Я)С(<7)= С{(т). Further 

C(a) = C{a) и С(Я) с С((г) U С(А) = С(а) Р 

and analogously C(Ö-) CZ P C(a). This says that C(Ö-) is a two-sided ideal of P. Since 
J C(ö-) cz J n C{(T), J n C((j) Ф 0, and since C(cr) is a simple subsemigroup, we 
have C(cr) c= J. Finally with respect to the minimality of J we have C{a) = J. This 
completes the proof of our theorem.^) 

^) After this paper has been finished for publication prof. E. HEWITT has drawn my attention 
to the fact that a part of Theorem 3,2 is proved in a recent paper of M. ROSENBLATT [12]. Our 
proof differs essentially from that of [12]. 
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Резюме 

ПОЛУГРУППА МЕР НА БИКО]ИПАКТНЫХ 
НЕКОМ]У[УТАТИВНЫХ ПОЛУГРУППАХ 

ШТЕФАН ШВАРЦ (Stefan Schwarz), Братислава 

Пусть S — бикомпактная хаусдорфова полугруппа. Под мерой pi мы будем 
подразумеванть (т-аддитивную неотрицательную регулярную множественную 
функцию, определенную на борелевских множествах из S такую, что ц{8) = 1. 
Обозначим символом Ш.{8) множество всех мер полугруппы S. 

Пусть co(S) -- банахово пространство непрерывных действительных функ­
ций /(х), определенных на S. Известно, что Ж{3) можно погрузить в a;(S)* 
(сопряженное пространство к CÜ(S)) И если задать в ш(5)* слабую топологию, 
то Ш{8) образует бикомпактное хаусдорфово пространство. Если определить 
произведение мер ju, v с помощью уравнения (1), Ш{3) превращается в биком­
пактную топологическую полугруппу. Цель работы-изучение строения по­
лугруппы Ш{8). 
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1. Пусть е = e^G9}i(5) — идемпотентная мера, носителем которой являетая 
множество С(г) cz S. С[е) — простая замкнутая полугруппа и, следовательно, 
вида С(е) = UU ^aß^ ^̂Д̂  ^ocß ~ изоморфные между собою бикомпактные 

а ß 

группы. Предположим что С^е) имеем конечное число идемпотентов 
и а = 1, ..., 5, j5 = 1, ..., г. (Известно, что s, г — число минимальных правых, 
соотвественно левых, идеалов из С(г).) 

В теоремах 1„1 и 1,2 доказаны следующие утверждения. Идемпотент е инду­
цирует на каждой из групп G^ß инвариантную меру. Если fi^ß — нормализиро-

ванная мера Хаара на G^ß, то е имеем вид е = X Z ^a^ßl^ocß^ Д̂̂  а̂? ̂ ß — "о-
1Х=1 ß=l s г 

ложитсльные числа, удовлетворяющие соотношениям Y^^a = Yj^ß = ^- Каж-
а = 1 ß=l 

дая из мер такого вида-идемпотент е 2Й(5), и всякая замкнутая простая под­
полугруппа из S, имеющая конечное число идемпотентов-носитель некоторой 
идемпотентной меры из Ш{8). (Если носитель не является группой, то число 
таких мер бесконечно.) 

В теоремах 1,3 — 1,5 характеризуются примитивные идемптотенты полу­
группы SK(5) и дается строение ядра пслугруппы 5Ш(5). 

2. В разделе 2 изучаются максималные подгруппы ®(е) с: S!}((S), имееющие а 
в качестве единичного элемента. 

Пусть С^е) = Я и /-/i — наибольшая простая полугруппа из S, имеющая те 
же идемпотенты как Н. Рассмотрим разложение Я^ = Яи НаН и НЬН и .... 
(а, Ь,... еЯ^). Такое разложение в дизъюнктные слагаемые существует. Обо­
значим Я = и и âj?» ^1 = и и Goiß- Если fi е @(е), то имеет место С(//) = НаН 

ос ß aß ^ 

(где а — удобно выбранный элемент е Н^). Далее, С(//) п G^ß — двусторонний 
класс смежности разложения группы G^ß мод]уло G'^ß. 

Если Я имеет конечное число идемпотентов, ja е ©'(е) и С(/х) = НаН, то ß 
s г 

определено однозначно. Именно, если е = }] Y ^o^ßf^'otß {f^aß — нормализиро-
a = l / 5 = 1 

ванная мера Хаара на Ĝ /?), то имеет место 
s г 

i" = Z Z ^a^ßf^aß^Kß • 
а = 1 / ? = 1 

Класс НЬН есть носитель некоторой меры е ©(г) тогда и только тогда, если 
НЬН п G^ß лежит в нормализаторе Ĝ ^̂  группы G'^ß в групйе G^ß. Кроме того, 
<S{s) = G^'\G:ß. ' 

3. В разделе 3 доказывается следующая теорема: 
Пусть fi е S[)î(S). Обозначим (7„ = l/n {fi -^ fi^ + ... -\- ju"). Тогда lim cr„ сущг-̂  

•'"-•- и = 00 

ствует и равняется некоторому идемпотенту а е 5W(5). Если Р-замкнутая 
подполугруппа из S, порожденная С(/х), J-минимальный двусторонний идеал 
и з р , т о с ( < т ) = J . , . •• . ̂ •'••' . •. - . . 1 - . •-:•,• '*:.•'."..:. • • 
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