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CONVOLUTION SEMIGROUP OF MEASURES ON COMPACT
NON-COMMUTATIVE SEMIGROUPS?)

STEFAN SCHWARZ, Bratislava

(Received March 11, 1962)

To every compact semigroup S we associate the semigroup M(S) of all
probability measures on .S with convolution as multiplication. The purpose
of this paper is the study of the structure of MM(S). Here the emphasis is on
the non-commutative case.

Let S be a compact semigroup, i.e. a compact Hausdorff space with a jointly
continuous binary operation (multiplication) under which it forms a semigroup.

Let U be the set of all compact subsets of S and & the g-algebra generated by 2.
The elements of the o-algebra & are called the Borel subsets of S.

A probability measure on S is a non-negative, real-valued, regular Borel measure p
on S such that p(S) = 1. The set of all probability measures on S is denoted by IM(S).

Let w(S) be the Banach space of real continuous functions on S. By the Riesz
representation theorem (see P. R. HALmoOs [2], p. 247 —248) the set of all positive
linear functionals @ on (S) such that ¢(1) = 1 is in a biunivoque correspondence
with M(S) under the mapping u — &, where &(f) = [ f du for each f € w(S). Thus
we may consider IM(S) as a subset of w(S)* (the first conjugate space of w(S)).

One readily verifies that IM(S) with the weak* — topology is compact (see J. G.
WENDEL [11], B. M. Kross [4], I. GLicKsBERG [1]).

We introduce in 9M(S) a multiplication. If u, v e M(S), the convolution uv is the
unique measure € M(S) such that

0 j JOLEICE f j ) 4 )

for each f e w(S). It is known that this multiplication is associative and jointly
continuous in the variables p,v in M(S). (See I. Glicksberg [1].) Thus M(S) becomes
a compact semigroup. '

1) The main resulis of this paper have been communicated on the International Symposium
on general topology and its relations to analysis and algebra, Prague, 1961, S:ptember 1—8.
(See General Topology and its Relations to Modern Analysis and Algebra. Proceedings of the
Symposium, Prague 1961, pp. 307 —310.) '
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For any element x € S we define the element x" € IM(S) as the point mass at x. The
corresponding functional sends the function f into the number f(x) and the element xy
goes over into the measure (xy)’ = x’y’. Therefore the mapping x — x’ of S into
M(S) is a homeomorphic isomorphism, so that henceforth we may regard S as
embedded in M(S) and omit primes.

Let be p e M(S). The support of u, denoted by C(p), is the set of all x € S such
that for each neighborhood U of x we have u(U) > 0. It is well known that C(y) is
a closed subset of S, u(C(x)) = 1 and for every relatively open subset V of C(r) we
have u(V) > 0. Also if 4 is a closed subset of S such that u(4) = 1, we have C(u) <=
c A%

Finally we mention the important fact that if u, v € IM(S) then C(uv) = C(n) C(v)
(B. M. Kloss [4], I. Glicksberg [1]).

The purpose of this paper is to study the structure of M(S). The results obtained are
extensions of those of N. N. Vorossev [10], E. HEwrtT and H. S. ZUCKERMAN [3],
J. G. Wendel [11], B. M. Kloss [4], I. Glicksberg [1] and K. Stromberg [8] the
essential novelty being that we are going beyond the restriction of commutativity even
in the non-group case (for S). The case that S is finite has been treated in detail in the
paper [7]. Also in the present paper a sort of finiteness condition will be imposed at
some places by supposing that some simple subsemigroups of S contain only a finite
number of idempotents.

In section 1 we are dealing with the idempotents € M(S). In section 2 we describe
the maximal subgroups contained in SR(S). In section 3 two limit theorems are given.

1. THE IDEMPOTENTS € M(S)

If e = &2 € M(S), then C(e) . C(g) = C(e) implies that C(e) is a semigroup. Moreover
B. M. Kloss [4] proved that C(¢) is a (closed) simple subsemigroup of S. We shall
prove below that conversely every closed simple subsemigroup of S containing a finite
number of idempotents is the support of some idempotent element € M(S).

A semigroup P is called simple if it does not contain a two-sided ideal + P. If P
is compact it is known that P contains minimal right and left ideals. In fact, P =
= U R, = U L;, where R,(L;) runs through all (disjoint) minimal right (left)

aedy BeAdz

ideals of P. Also R, n L; = R,Ly; = G, is a closed (compact) group and P can be

written as a union of closed topologically isomorphic groups: P = U U G
aedy Pedy

The G,4’s will be called group-components of P. The symbol e,; will denote always
the unit element of the group G,;.

Lemma 1,1. Let S be compact, p an idempotent € M(S), P = C(u) and L an
arbitrary fixed chosen minimal left ideal of P. If f € w(P), then [pf(x£) du(x) has
the same value for every & € L.

2) C(u) is simply the complement of the union of all open sets of y-measure ze:o.
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Remark. This Lemma is a natural generalization of Lemma 2,3 of the paper [7].2“)

Proof. Since y is an idempotent and C(i) = P, we have?)

@ f FC) () = f j Flsy) du(s) dul)

for every F € w(P).

Let be e an idempotent € L. Denote (for y e P) ¢(y) = [p f(xye) dp(x)- Since
xyeeP.P.Lc L, f(xye) is defined. Put in (2) F(x) = f(xye). We have

o0y) = j Fere) du) = f ,, j Flexye) tz) i) =

- L [ f Staxye du(z)] du(x) = j 00) ).

Suppose that ¢(y) takes its greatest value in the point y, € P. Hence ¢(y,) =
= [p @(xyo) du(x), and since u(P) = 1, we have [, [@(yo) — @(xy0)] du(x) = 0.
With respect to the continuity of ¢ the last relation implies ¢(yo) = @(XYo) for
every x € P. This means: [, f(xye) du(x) takes the same value for y = y, and for
every y € Py,. In other words: [ f(x&) du(x) takes the same value for every & € Py e.
Now Pyse = PyoL = L, and since Lis a minimal left ideal of P, we have Pyje = L.
This proves Lemma 1,1.

In what follows we shall often suppose that P = C(u) contains only a finite

number of idempotents. In this case we shall wnte in the above sense P = U R;

s r i=1

= U L, =U U Gy, where r 2 1, s 2 1 are integers and G;, = R,L, = R; n L,.

i=1 k=1

Theorem 1,1. Let S be a compact semigroup, p such an ldempotent € M(S) that

C(n) = P contains a finite number of idempotents. Let P = U U G, be the group-

i=1 k=1
decomposition of P. Then p restricted to Gy is an invariant measure on the group
G

Remark. Of course the measure u restricted to G, does not necessarlly belong
to M(Gy) since p(Gy) + 1if rs > 1.

Za) (Added in proofs.) In the meantimes Lemma 1,1 and some of its consequences have been

* proved also by H. S. CoLLINs in the paper [13]. (See also the recent papers [14] and [15].)

3) We use tacitly the following Lemma: Let P be a closed subsemigroup of S and P =

{,u | nEeMS), Cu) < P} Then 9 is a closed subsemigroup of M(:S) which is isomorphic and
homeomorphic to M(P) uader the mapping u—> w, wherv W (E) = u(E) for each Borel subset
EcP.
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Proof. It is sufficient to prove our statement for the group G,;. The idempotency
of p implies that

) [ ] s6e3) autz) anto) = [ s e
pJ P P
for any f € w(P).

Choose for f a function @, (x) € w(P)which is zero outside of G,. (This is possible
since Gy; and P — G, are closed subsets of P.) To the right hand of (3) we then
have [, ®,,(x) du(x).

By Lemma 1,1 the expression [, f(zy) du(z) = [p @1(zy) du(z) has the same value
for every ye L. If ye P — Ly (and P — L, # ), we have y € L; for some i,2 £

Li=<r and zyezL;, = L; hence @,,(zy) = 0. Therefore the left hand side of (3)
can be written in the form ‘

_[ j J(zy) du(z) du(y) = J j Py4(zy) du(z) du(y) = u(Ll)f Py4(zy) du(z) -
The relation (3) implies

(L) [ 21 dn(e) = [ ou e
for every y € L,. !

Since zy € G, if and only if z € R,, the last relation can be written in the form

0) W) [ euEnae = e .
z€Ry xeGyy
To prove that u is translation invariant on Gy it is sufficient to show that for any
®,, € o(Gy,) the expression [¢,, ®4,(xu)du(x) is constant for u € Gy;.
Write in (4) instead of @,4(x) the function ¥;;(x) defined as follows: For a fixed
chosen u € Gy let be

_ /®Pui(xu) for xeGy,
Pu =707 for X€P — Gy, .
We then have

H(Ly) Dy4(zyu) du(z) = Py4(xu) du(x)

zeRy Gy

for any y € L,. Now since yu € L,(R,L,) = L;, we have by (4)

W) j & [z(yu)] du(z) = j JEXCLTCY
Hence

j B1,(vu) du(x) = f @1,(3) du(x)
G11 Giy
This completes the proof of Theorem 1,1.
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Remark. We return to the relation (4) and note again that for any z € R, zy € G ;.
Hence taking for &, ,(x) the characteristic function of G, in P we obtain u(L,) u(R,) =
= u(Gy,). By an analogous argument we prove:

Corollary. If the suppositions of Theorem 1,1 are satisfied, and if we write (in the
sense introduced above) P = U R, = U L,, Gy = R,L,, we have p(R)) u(L,) =

i=1
= #(Gik)‘
For later purposes it is necessary to recall some relations concerning the intrinsic
structure of a simple semigroup P= U R, = U L; = UUGaB The following

aed; peA:
facts will be freely used. (Hereby g,; denotes an element € Gm[f and e,; is the unit
element of G,;.)

a) Lﬂgyé = L&a gyc‘iRa = Ry'

b) {e,, a €4} is the set of all idempotents € L;. Each of them is a right unit
of Ly. The set {e,, B € A,} is the set of all idempotents € R,. Each of them is a left
unit of R,. '

¢) Any two minimal left ideals L,, L, are isomorphic. The corresponding mapping
can be realized by x € L, — xe,; € Ly. The inverse mapping is y € Ly — yeg, € L,.

d) 9apLy = Gopp RiGap = Gy
C) Gaﬁgyé = Gaé’ guﬂGyzi = Gu&'

f) G,4G,s = Gy (Note that e,ge,; € G,5 but — in general — e, ge,; = e,5 need not
hold. Of course, we have e, ze,, = e,, and e ge,; = €,5.)

g) Any two groups G,z and G,; are topologically isomorphic. The corresponding
mapping can be realized by *)

(5) a,5€ G5 = e,pa,5e,; € Gy .
‘The inverse mapping is given by
(6) Aup € Gop = €,50,50,5 € G5

Denote by p; the normalized Haar measure on the group G, and extend the defini-
tion of p;, to all Borel subsets E of S by putting uu(E) = ug(E N Gy). If p is an
idempotent € M(S) and C(u) = P, then by Theorem 1,1 we have necessarily

s r

n= Z Z talty With positive numbers 1, satisfying Y. Y ¢, = 1.
i=1k=1 i=1 k=1

4) To prove that (5) is a homomorphism let be a,; — e,ga,5e,5, b,5 = €,5b,4e,5. Then (since
€,58,5 = €,pand €5 is aleft unit of b;€ R,) we have (e,pa,5€,p) (e ﬂbweyﬂ) = e,pa,5(e,5¢,pb,5) €, =
= aﬂayab;,aeyﬂ Hence a 6[;75 — e ﬂ(ay,,byé) e To prove that it is an isomorphism suppose that

€upysCyp = pbyaeyﬂ Multiplying by e. .6 to the right and by e. ,p to the left we have eyﬂe,ﬂay,,.'
rﬂerﬁ = ﬂeaﬂbweyﬁew and successively e},,,ay‘,e s = €ypbyse,s, eype.sa,s= e,gesb;, ea.=
yo0y5 hence ays = by
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To prove the converse of Theorem 1,1 we first prove the following

Lemma 1,2. Under the suppositions and notations introduced above we have:
a) gultyy = Padji = Wi for any point mass gy, 9,

b) pakj = i

c) If ve M(S) and C(v) < P, then puop; = pi-

Proof. a) We first prove that e;u;, = u;. In fact (since ey is a left unit for every
z € G;;) we have:

j 1) deasa) (9 = f P j F(72) dea(y) - dnafz) = J Feu?) dp(z) =

P il

- j 1) dual) = f 1) dia2)
Git P
This implies the required formula. Analogously we prove ey = p, and pye; =
= Upejr = - ’
Now we have

Julj = gulej;) = (gikejl) Hji -

The measure ge¢;, is the point mass at the point g,e;, = g;; € G;;. Therefore
Jiklj = g;'t#jz = (glileil) nj = gliz(euﬂjx) = gl -

Since p;; is the Haar measure on G;; and g}, € G, we have

1

J 1) 3 (<) = j j 159 440) ) = j Sai) ) =

il i

- J I ),

hence gi,p;; = pi, and finally gu;; = py;, which proves the first relation. The second
statement can be proved analogously.

b) By a) we have pypu; = (Hueun) (ejhujl) = palewe;) ji- Denoting eyej = g,
(point mass at a point € G;;) we further have puyp; = pu(gukt;) = pata- Again
by a) and noting that y;, is an idempotent € M(S) we finally have pypu;, = pyle,p) =
= (ua€u) i = Ralty = py, Which proves our assertion.

c) Write first pyvpj = paenve;ly = UyoM;, where g is a measure with the support
C(o) = C(eyvej)) = ewPe; = Gy PGj = Gy. Since ge;; = e;0 = @, we further have

HikQlj = (ﬂikeix) Q(eit#jz) = U@y -
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Now (since in what follows z . t € G;, and p;, is invariant on G ;) we have for f € o(5)

Lf(x) d(muepa) (x) = ”L“f( yzt) dpa(y) do(z) dua(t) =

- j f [ j 0 duu(n] doz) duu(t) = f S0 d).

whence py Vi = HuQly = i
Lemma 1,2 is completely proved.

Remark. The relation between the translates of a subset of a group-component
into the various G, is clarified by the following result which is a consequence of the
isomorphisms (5) and (6). By Lemma 1,1 we have eyp e = (enit;) e = Hu€ji =
= pyu. Therefore, for any f € w(P),

[ FO) da) = | () duax) = f j F(2t) dea(y) dus (2) - det) =

Gir
= J f(eikzejk) d,“jA(Z) .
G
If E is a Borel subset of G;, we have therefore

Iuik(E) = ﬂj[{z € Gjl | eikzejk EE} .
Now eyzej, € E implies ej(eyzey) e, € e Eej;, hence eyze; € eyEe; and (since
z € G;)) z € ej,Ee;,. This implies the remarkable result:
(7 talE) = pjenEe;) -

Note also that the p;’s are completely given by means of a fixed p;;, say fis,
and the idempotents € P, since we have p,(E) = py(e;xEe;y) for any Borel subset
E < Gy, or alternatively uy = ejpliy1€q;.

" Write now u = p? € M(S) with C(u) = P in the form p =} thik#ik with
s r i=1 k=

Z Yty =1, t, > 0. We have

i=1k=1
(Y Ytana) (Y X L) = Z Y tuktir s
i=1 k=1 ji=11=1 i=11=1
and with respect to Lemma 1,2b

YYD bt i = X ltiz/lu',

i kJl i

®) 2 X bty = tu-
Jj=1

k=1
Put Y t, = &, Y t;; = n,. Then (8) implies t;; = S
k=1 =1
101



Let conversely H1 = 21 Iglfi’hﬂu be an element € M(S), where &, , are positive

numbers satisfying 2 & =k21m ='1. We then have
i=1 =

ll
”M"’

g iMiliy Z Z EiMtje = Z;Z;fiﬂlfﬂkﬂik =
=(2Zm)

fmmk = U .

G
-
Tl
-
=

Mu
MUA
nM.,

We have proved:

Theorem 1,2. Let S be compact and P such a closed simple subsemigroup of S
that contains a finite number of idempotents. Let be P = \) U G its decomposition
i=1 k=1
into the union of groups. Let p; denote the normalized Haar measure on Gy,.
Then every idempotent & € M(S) with C(g) = P is of the form

(9) &= ';1 Z fi’?k#ik s

s

where £, n, are positive nhumbers satisfying Z ¢ = Z N =

r
Conversely, if &, n, are positive numbers satisfying Z ¢ = Z e = 1, then
s r =1
z z EMltir is an idempotent € MY(S) whose support is exactly P.
i=1 k=1

Remark. If we admit in (9) some &, 1, to be zero the formula (9) gives again an
idempotent € M(S) but the corresponding support is a proper (simple and closed)
subsemigroup of P. Of course there can exist also other simple (closed) subsemi-
groups of P, the group-components of which are isomorphic with proper subgroups
of G.

We now proceed to the determination of primitive idempotents and the
kernel (= minimal two-sided ideal) of IN(S). If S is finite the problem has been
treated in detail in [7], so that we can be concise by only quoting the results that
can be proved in the same manner as in [7].

The kernel of S will be denoted by N and the kernel of IM(S) by N.

An idempotent 7 of a semigroup T is said to be primitive if there does not exist
an idempotent u € T, p & = such that nu = un = p holds. Those and only those
idempotents of a compact semigroup T which are contained in the kernel K of T are
primitive idempotents of T. (See [7], Lemma 3,1.)

The following two lemmas can be proved analogously as Theorems 3,1 and 3,2
in the paper [7].
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Lemma 1,3. Let S be a compact semigroup with the kernel N. Suppose that N
contains a finite number of idempotents. Let P be a closed subsemigroup of N
containing at least one maximal group of N.%) Then every idempotent the support
of which is equal to P is a primitive idempotent € IM(S).

Lemma 1,4. Let S be compact with the kernel N containing a finite number of
idempotents. If © is a primitive idempotent € M(S), then C(n) = N.

Lemma 1,5. Let the suppositions of Lemma 1,4 be satisfied. If © isa primitive
idempotent € M(S), then C(r) is a union of some maximal groups contained in N.

Proof. Let N = U R; = U L, be the decomposition of N into its minimal right
i=1 k=1 o 0

and left ideals respectively. Denote C(n) = P’ and let P’ = U R} = J L, be the
i=1 k=1

decomposition of P’ into the union of minimal right and left ideals of P’ respectively.

By Lemma 1,1 of the paper [6] to every L; there is a L;, 1 < j < r such that L; =

= P’ n L;. Analogously for minimal right ideals R}. Without loss of generality let

be L;=P nL; (i=1,2,...,0) and R; =R, n P’ (i =1,2,...,0). Consider the

I 0 .
semigroup P = (U R;) n (U L,). Denoting G, = R,L, and Gj, = R;L, we have
i=1 k=1

a Qo g e
P=U UGy P=U U Gy, and 7 can be written in the form

i=1 k=1 i=1 k=1

M=

o ] . o
T= Y &M 0<&=1,0<ny =1, YE&E=Yn=1),
iS1 k=1 i=1

k=1

I

where ), is the normalized Haar measure on the group Gj,.
Suppose now for an indirect proof that the group-components of P’ are not maxi-
mal groups of N, i.e. G}, = G, and Gj, # G;. To prove that n is not a primitive

idempotent € M(S) it is sufficient to find an idempotent v such that = % v and nv =
4 Q

= v = v. Construct the idempotent v = Y, Y &y, where py is the normalized
i=1 k=1

Haar measure on G,. Then v = 7 since C(v) + C(m).
We first prove that puj; = p;. We have

.uikﬂ_lil = (#ikeik) #;’l = #ik(eik.u}l) = Ualy = ﬂik(eihu:‘l) = (ﬂikeit) Wit = Mg - Mip -
Further, for f € w(P),

[sawuio@ =] [ 0980 800 =

- f [ j 09 dui,(y)] duiz)

5) P is then automatically a closed simple subsemigroup all group-components of which are
maximal groups of N. (See [6].) .
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Since z € G;; and My is invariant on Gy, the bracket is equal to [, s, f(¥) duy(y)-
so that

"

[ sy =[] [ mmam]=] a0,
P JzeG'i yeGiy yeP

whence p;; . pj; = [ty and finally p,u}, = py;. Analogously we prove uiu; = py.
Now

=Z Eiinkuikz Zé,»nlu}z=(25j)(2m)2 Zéi’h#u:"-
i=1 k=1 j=11=1 j=1 k=1 i=11=1

Analogously nv = v. This proves Lemma 1,5.
Summarily we have

Theorem 1,3. Let S be a compact semigroup the kernel N of which contains
a finite number of idempotents. An idempotent n € M(S) is primitive if and only
if C(n) is a union of some maximal subgroups of N.

The next two theorems clarify the structure of N.

Theorem 1,4. Let S be a compact semigroup the kernel of which contains
a finite number of idempotents. Then the kernel N of M(S) is identical with the
set of primitive idempotents € M(S). ‘

Proof. Let be n = n? € N. Since it is known that the maximal group ®(n) = N
containing 7 as its unit element is given by the formula &(z) = a0 it is sufficient to
show that for any v € o we have nvn = 7.

Note first: Since ve N and N is a union of groups, there is a 7’ € N such that
ve B(n), hence va' = v. This 1mp11es C(v) C(v)C(n') = C(») N = N.

Write N = U U Gyandrn = z Z & Mty With non-negative &;, n, satisfying the

i=1 k=1 i=1 k=
usual conditions. Then

S r S r
TV = Z Z EiMlbhire - V - 21 lzléjrllﬂjl .
=11=

i=1 k=1

Now by Lemma 1,2 ¢) pyvu;; = p;y. Hence
TR = (Zm)(Z@)Z ZCi’h#it =,
k=1 j=1 i=11=1

which proves our theorem.

By means of Theorem 1,4 and an analogous argument as used in [7] (Theorem 3,6)
We can now prove:

Theorem 1,5. Let S be a compact semigroup containing s minimal right ideals
and r minimal left ideals respectively. Let T be the set of all (s + r)-tuples.of
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non-negative real numbers (&, ..., &, Ny, ....n,) satisfying & + ...+ &
=0y + ... + 1, = 1. Define in T a multiplication o by

(€1 &6 M) O (L, o 8 s o)) = (oo &6 M5 )
Then T is isomorphic with the kernel N of the semigroup IMM(S).

2. THE MAXIMAL GROUPS OF M(S)

In this section we shall identily the maximal groups € IMM(S). To this end it is
useful to make first some remarks concerning the location of simple subsemigroups
of S.

The principal ideal generated by x (i.e. the set x U Sx U xS U SxS) will be denoted
by J(x). By an F,-class we shall denote the set F, = {y|yeS, J(y) = J(x)}.
Clearly S can be written as a union of disjoint F-classes: S = UF,.

If H is a simple subsemigroup of S it is easy to see that all elements € H generate
the same principal ideal which we shall denote by J(H). Hence a simple subsemigroup
cannot meet two different F-classes.

Let now be H a simple subsemigroup of S and Fy the F-class containing H,
J(H) the two-sided ideal as above. It is known that the set Ky = J(H) — Fy is
a two-sided ideal of J(H). The difference semigroup J(H)/Kj is a simple semigroup
with zero. The elements of this semigroup are the elements € J(H) — K, = Fy
together with an adjoint zero element Oy and the product in Fo = Fy U {Oy} is
defined in an obvious manner.

Suppose now that S is compact and H is closed. Then, since H contains an idem-
potent which is contained in Fy, we have F3 + Oy, hence F} = F,. Moreover
(if S is compact) F, is known to be completely simple with zero. (See R. J. KocH-
A.D. WALLACE [5].)

We can now use Lemma 2,2 of the paper [6] by which under our hypotheses
there exists a unique greatest simple subsemigroup H, of F, contained in Fj and
having exactly the same idempotents as H.°)

Returning to the semigroup S we have:

Lemma 2,1. Let S be a compact semigroup and H a closed simple subsemigroup
of S. Then there exists a unique greatest subsemigroup H, > H having the same
idempotents as H.

) The precise formulation of this Lemma is as follows: If S is a completely simple semigroup
with zero 0 satisfying s? #+ 0 and T a simple subsemigroup of § containing an idempotent but
not containing the zero element, then there exists a unique greatest simple subsemigroup 7y © T°
of S having (exactly) the same idempotents as T. The semigroup T, is completely simple and it
can be written in the form 7; = [{U R,} N {%} Lg}] — {0} with suitably chosen minimal right

. o

and left ideals R,, L, of S respectively.
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In the sequel \fve shall consequently use the following notations. ¢ will be an idem-
potent e M(S) with C(e) = H. Further H = U R; = U Lj is'the decomposition of H

aeAy PeAz
into the union of its minimal right and left ideals respectively and H = U U G,
aeAy Bedz

[G;p =R Lﬂ] is the group decomposition of H. H, will denote the largest simple
subsemigroup of S having the same idempotents as H and H; = U R, = U L; =

ae Ay Bed:

= UUG,[G,; = R,L,] the corresponding decompositions of H;. Without loss of
ap

generality we may suppose that R, = R, n H (xe A,), Ly = Ly n H(f € 4,), so
that G,; < G,;. (See [6], Lemma 1,1.)

In [6] it has been proved also that H, admits a decomposition mod (H, H) into
a union of pairwise disjoint classes

(10) H=HuU HaH U HbH U ...

with suitably chosen a, b,...€ H;. In particuiar HaH = H if and only if ae H.
Moreover HaH n G,; = G,;aG,, for any a € H;. (See [6], Theorem 3,2.) Hence if
T,y = HaH 0 Gy, then HaH = U U T, = UUG“,,aGa,,

aecdy BeAs
The following simple lemma will be used in computatlons

Lemma 2,2. If a is any element € Hy, then GoaG 5 = G,5aG;.

Proof. Suppose that a e G,, = H;. Then e,ae,, = a. Hence G paG); =
= (Gype,,) ale,,Gs) = G,,aG,;. Since this is clearly independent of  and y we may
take f = 0 and y = a, so that G,4aG,; = G,aG,,.

If P is a compact semigroup and a € P, then a is said to belong to the idem-
potent e if e is the (unique) idempotent contained in the closure of the sequence
{a, a?, a3,...}. An element a is called m-regular if it is contained in some subgroup
of P.

In the next two theorems we do not suppose that C(¢) contains only a finite number
of idempotents. The first of them can be proved by the same argument as Theorem 5,1
in the paper [7]. We omit the proof of it.

Theorem 2,1. Let S be a compact semigroup and ¢ an idempotent € IN(S) with
C(e) = H. Let H, denote the largest subsemigroup of S having the same idempotents
as H. If v is an m-regular element belonging to ¢, then C(v) = HaH with a suitably
chosen element a € H;.

Theorem 2,2. Let the suppositions of Theorem 2,1 be satisfied. Denote H =
=U UGy H = U U G, Then T,z = HaH 0 G,y is exactly one two-sided

acAy e acAy feAz
oy ’ .
class of the decomposition of the group G,; modulo the group G (ie. T,y =

= Goyap = a,yGrp with a suitably chosen a,p € Gyp).

Proof. If v is m-regular, then there exists an m-regular v € M(S) belonging to &
such that w(©® = y®y = ¢. Denote C(v*’) = HbH and T,y = G/3;bG}s < G,,. Since
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C(V) = UU o = UUG,ﬁaGaﬂ’ C(V(O)) =U UT, vy = UUG;abG;ay the relation
y€d1 deAd; y o

C(v) C(v‘o’) =H xmphes
UUUUGa’(ﬂaGaﬂG bGys = UUGer

a p v
By Lemma 2,2 we have
G.4aG,,G5bGys = (GopaGyy) bGs = (Go5aGry) bGys =
= (Ga,nia) (Ga,uibG;é) = G,;aG5bG; .
Therefore
UUG,5aGsbGhs = UUGys
a 0 a o
Now since
G.(aGysb) Gy < GsH1Gys < RH Ly = R,Ly = G5 5
we have Gl;aGL;bGl; = Gl and (GL5aGly) (GisbGls) = Glyy i T TS = Gl
Analogously v(@y = ¢ implies T3 T,s = G_s.
The expresion T,; = G.;aG,, shows that we can write
T,s = a;Gos U a,Gl5 U ... (ay, ay,...€G)
and analogously
T = Glsby U Glyby U ... (by, by, ...€G,y).

a

i

We prove that T,; contains a unique left class of the decomposition of G,; modulo G,,.
Suppose that a,G.; + a,G.s. The relation T3 T,; = G.; implies G,sb,a,G,s <
< G5 Gisbya,Gls = Gis. But then g,; = bya, eG;‘,, by, = gusa; ', ie. Gisby =
= G;aguaal_l = Ga’zéal—l and G5b1a,Gos = G;,;af a,G,; = G5 implies aila, =
=g eGl, a, = a,9Y and a,G; = a,9.9G.; = a,G.; which is a contradiction.

Hence, T,; = a,G,;, and analogously T,; = G,,d,, with a,, @, € G,5. Now a,G,s =
= G,,d, implies a; = §,,a; With g5 € G,,. Therefore a,G,; = Gop(G.5)"" a1 = Gopay
{and also G,za,G,; = a,G,3 = G,ga,). This proves our Theorem.

Remark 1. It is necessary to remark that though for a m-regular v T,y = G5 N
N C(v) is a two-sided class of G,; mod G it is in general not true that C(v) = HaH
is a two-sided clas of the decomposition (10), i.c. HaH = Ha = aH. (See [7],
Example 5,1.)

Remark 2. We prove the following assertion: If for one couple, say (o, B),
Ty = Gup 0 HaH = G,paGy = Gylepae,s) Gup = GopanyGy is a two-sided class
of the decomposition G,s(mod G,) the same holds for every other couple (0, @),
ge Ay, 0€,. '
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By supposition a,,G,; = G;4a,4. This implies G;,a,5Gope,, = G;,Grpa,4e,,. The
left hand side can be written in the following form:

G oypGoy = Grpeupae G, = GopaGy, = G,,aG,, .
For the right hand side we have
’
G;ﬁaﬂﬁed‘e = G;B(edﬂaalleag) = Ga[léag )

where &,, = €,4005€,, € GopGopG,, € G Therefore Gy pé,, = Gopleels,) = Grploor
Finally we have G,,aG,, = G,,¢,,.

The relation a,;G,; = G,pa,, implies also e,,0,5Go;Gry = €,,GepaapGo,, Which can
be transformed by an analogous argument into the relation G,,aG,, = 1,,Gp»
Where 7,, = €,,aqpes, € Gyp-

Now G_,aG,, = 1,,G,, = G,,¢,, implies that #,, = §,,¢,, With g,, € G,,. Hence
N5oGop = G;L,(g;alnw) = G, s This says that T,, is a two-sided class in the
decomposition of G,, modulo G, which completes the proof of our assertion.

(Of course, since e,,ae,, €1,,G.,, We can write e,ae,, = Noedop aNd 7,,Gly =
= e,gae,,gé;alG;g = ¢,,aG,,. Hence T,, = e,,aG,,, and analogously T,, = G,,ae,,.)

For the rest of this section we shall again make the restriction as to the finiteness
of the number of idempotents in H (and a fortiori in H;). We shall therefore write

s r

H=U UGﬁk,H1=U UGik-

i=1 k=1 i=1 k=1
Lemma 2,3. If a is a point mass at any element € H, and p, the normalized Haar
measure on Gy, then pyapy, = pyap;.

Proof. Suppose that aeG,, = H,, then pujauj, = (uie,,) ale, i) = Hi,ap,.
Since the last element is clearly independent of k and j we can take k = land j = i
so that pjap), = pyap;.

We shall now identify the m-regular measures v with C(v) = HaH that belong to

s r

the idempotent ¢ = Y. > &y It will turn out that there exists exactly one such
i=1 k=1
measure.

Since v is m-regular, we have v = eve and C(v) = HaH. This implies
(11) V= Z;ZZCiﬂkéjmﬂgkvﬂ}z .
i J 1

Our next (and main) goal is to show that vy}, = pyau;.

Denote ¢ = eyve;;, then e;0 = ¢e; = ¢ and
C(o) = eyHaHej = exdlU UG,la[U UGy,lie; =
a=1 p=1 y=16=1 .

= [%}G:Ii] a[UG;l] = G,,aGj .
y
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{The last relation follows by Lemma 2,2.) Further
ll'ikv.“;'t = (#;keik) v(ejl.“_lil) = #;kQ#;'z = u;k(e“ge,-,) #}1 =
= (:u:'keil) 0(311#}1) = Wyl
and
) Cuqery) = G, Co) Gy = Gj,aG, .
We have
T, = G,,aG}, = Gjeyae;) Gy = Gi,a,G
with a;, = e;ae; € G;. Now since v is m-regular, we also have (by Theorem 2,2)
T, = Ga; = a;,G}, (and this is very essential in the following).
Put ¢ = uj,0. Then ga;;* = pjea;* is a measure with the support
C(aai_ll) = G}, (o) ag' = Gi(GiauGh) ai_ll = Gy(a,Gy) ag' =
= G;I(G;lail)ai_ll = Gje; = Gj.
Now it is known (and easy to prove) that every measure with the support G}, is
annihilated by uj,, hence, in particular, uj{ca;;') = p};. This implies successively

ﬂtl(utlgg(l ) = ﬂ:l’ :u'zlgvxl - ﬂ;lazl? #.zQ = urlaxh and F.tQ#.t - “dall.u:l Thcrefore
we finally have

llikvﬂjl = WoMy = MyAuty = Kuapy .
Returning to (11) we get
r S S r S r
= (Z ’1k) ( Z fj) 2 Z Empnany = Z Z Empiam;; .
k=1 i=1 i=11=1 i=11=1

We have proved:

Theorem 2,3. Let S be a compact semigroup and & = Z Z EMeli an idempotent

i=1 k=1 )

€ M(S) with C(¢) = H containing a finite number of idempotents If v is a m-regular

element € M(S) belonging to ¢ with C(v) = HaH, then v = Z Z EMTins Where

le - I‘tlkal'llk . Tkt
Note that v is uniquely determined by C(v) and e.
Conversely:
Theorem 2,4. Let ¢ = Z Z Emlye be an idempotent € M(S) with C(a)
s i=1 k=1
= U U G, containing a finite number of idempotents € S. Let H, = U U G be
1 k=1 i=1 k=1

n Theorem 2,1. Let HaH be a class of the decomposition
H, =Hvu HaH v HbH v ...

such that HaH n G is exactly one two-sided class of Gy modulo G. Denote

s r

Tix = Upaiy. Then v =73 % Emay is a m-regular element € M(S) belonging
i=1 k=1
10 & with C(v) = HaH.
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Proof. It is sufficient to prove that 1) ve = ev = v, 2) there is a v, with vy, =
= vV = & 3) vo&¢ = &Vy = V,. For then v is contained in the cyclic group generated
by v and v,.

1) Since
”;kt}l = #;k(u}la#}l) = N:’laﬂ}l = uLap

&y = Z;éi']kﬂ’ik Z;fﬂﬂ}l = (Zé,) (;'h) leéiﬂl(#?taﬂ;z) =V,

and analogously ve = v.

we have

2) The element a € H, is contained in a group, say G,; = Hy. Denote by a the
element € G, such that aa@ = @a = e,; and construct the measure vy = ) ) &z,
i=11=1

with 7;, = pj,auj,. We then have
s r s r
(12) Z kz; Zl IZ:léiﬂkéjr’lﬂ;ka”:'kﬂ}laﬂ}l .
i=1k=1j= =
Now
K@My = ppaphaps, = wilaepiied) Wy = palapg,a) w -
The measure ¢ = apu,,a is an idempotent since 0> = ap,pd ap,d = a(lgeupliyg) @ =
= apga. Further C(¢) = aC(u,y) a = aG,za. Now by supposition (and this is
essential) aG,; = Ga so that C(¢) = Gaad = Gype,y = G,5. But the unique
idempotent measure with the support G, is the normalized Haar measure on G,
i.€. flzg. Therefore apy,a = pp.
The relation pi(ap,a) pj = pytopi = py and (12) imply (by the usual argu-
ment) v, = & Analogously vov = &.

3) Since (by Lemma 2,3) uj,auj, piy = pjapy, = pjdny, we have

S r s r
= Z Z z Z 6jrltfi’1kﬂ}ta#}z Pix = ZZ&jﬂkﬂ}k‘_‘H}k = Vo,
j=11=1i=1k=1 Tk i

and analogously evy = v,. This proves Theorem 2,4.

Theorems 2,1-2,4 give a clear insight into the group &(¢) of all m- regular elements.
€ M(S) belonging to the idempotent & (at least in the case when C(g) contains a finite
number of idempotents).

With the same notations as above write again

H,=H9VHaHUVHbHuU... .
Take an arbitrary fixed group, say G,;, and consider the double coset decomposition
(13) Gy, = G}, Y G};aG; v G bG, U ... . )
The totality of all classes in (13) which are two-sided constitutes the normalizer G{%”

of G, in Gy;.
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Let fi1, H2 be two m-regular elements (belonging to the same ¢) with C(i;) = HaH,
C(u,) = HbH. Consider the correspondence

Uy > HaH n Gy, = G1;aGy;, M, > HbH n Gy; = G1,bGy, .

Theorem 2,3 and 2,4 imply that this correspondence is a one-to-one. Since the
product gy, is a m-regular measure (belonging to ¢) and C(u;u,) = HaHHbH,
there is necessarily a ¢ such that HaHbH = HcH. Hence in our correspondence we
have
! Mipy = HeH 0 Gy = Gi4eGyy -

To prove that our correspondence is an (algebraic) isomorphism it is sufficient to
show that Gj;aGj; G};bG}; = G{;cG};. This is an immediate consequence of
HaHbH = HcH. Multiplying this relation to both sides by Gy, taking account
of G1;H = G}, UUG,; = UG}z and HG}; = UG, we have

a p B 3

(L/IJG’w) a(U&}G;a) (UUG;g) b(UG;,) = (96115) C(UGél) .

v g e -1 a
By Lemma 2,2 the right hand side is clearly euqal to Gi,cG},. The left hé.nd side can
be simplified (again by Lemma 2,2) as follows:

(LJJG'uaGia) (UG,,bGyy) = G1,a(UG3;5 UG, bGYy = G1,aG1,bGY, .
4 ] c

This proves our assertion.

We have proved:
s r
Theorem 2,5. Let ¢ be an idempotent € M(S) with C(e) = H = ) U G}, containing
s r i=1k=1
a finite number of idempotents, and Hy =) U G, the greatest simple subsemi-
i=1 k=1

group containing the same idempotents as H. Denote by G\%) the normalizer of G,
in Gyy. Then the group ®&(¢) of all m-regular elements belonging to ¢ (i.e. the maxi-
mal group € M(S) belonging to €) is algebraically isomorphic to the factor group
G?/G1-

3. TWO LIMIT THEOREMS

Recall first that in accordance with our earlier considerations we shall use the
following notation. If {uy, pt5, i3, ...} is a sequence of elements € M(S) we shall say
that p, converges to u € M(S) if [fdu, — [f du for every f e w(S).

Let u belong to the idempotent ¢. It is known and easy to prove that lim u" exists

n= oo

if and only if ey = pe = e. An alternative answer to this question (in the case treated
above) is given by the following theorem:

Theorem 3,1. Let pe M(S) belong to & and suppose that H = C(g) contains
a finite number of idempotents. Then lim p* exists if and only if H C(WH = H.

n= oo
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Proof. a) If lim " exists, we have ¢y = ¢, hence H C(W) = Hand H C(WH = H.

n=oo
s

b) Write (in our usual notations) & = Y, Z Emliy H = U U G}, and consider

i=1k=1 i=1 k=1

the measure ¢ = eue. Since H C(u) H = H, we have C(¢) = H and
0 = &0 = Y 3 3 ¥ Emd Mot -
Tk g1

Further (by Lemma 1,2 ¢) pjouj; = uj;, hence ¢ = e. This implies eue = ¢, (en)* =
= gp and since eu is an idempotent and at the same time an element belonging to &
we have ey = &. Analogously ue = ¢. This proves our theorem.

Before proving a second limit theorem in which no finiteness assumption as to the
number of idempotents is required we shall prove Lemma 3,1 formulated below.

If R is a subset of M(S) we shall call the closure of |J C(u) the support of R and
we shall denote it by C(R). Hed

If R is a subsemigroup of IM(S), then C(ER) is a (closed) subsemigroup of S.
Moreover it can be easily seen that C(R) = C(R) (see I. Glicksberg [1]).

LetP, = {u, p? 1, ...} be the cyclic subsemigroup generated by x, &, the maximal
group contained in SD” If p belongs to &, we have of course e §, < % and C(g) =
=H < C(6,) = C¥,) = C(P,).”) If H, is the largest simple subsemlgroup con-
taining the same idempotents as H, we have (by Theorem 2,1) C(¢) = H, for every
¢ € 8. Therefore C(®,) = H,. Now it is easy to prove that the closure of a simple
semigroup is itself simple. Consider the relation C(®,) = H,. Since H, is a compact
simple semigroup and C(®,) a closed subsemigroup, we may use a result of [6]
(Theorem 1,1) which implies: C(®,) is a closed simple subsemigroup of §
(contained in H,).

We next show that C(,) is exactly the minimal two-sided ideal of C(¥,). Denote
for brevity C(¥,) = P, C(®,) = K and let be J the minimal two-sided ideal of P.
Denote Py = C(u) U C(u*) U .... This is a subsemigroup of P which is dense in P.

Let be x € Py, i.e. x € C(u") for some | > 0. We have C(e) x C(e) = C(e) C(1') C(e) =
= C(ep'e), and since eu'e € @, we have C(e) x C(e) = K. Therefore PxP n K + 0
for every x € Py. Now since PxyP < PxP n PyP (for any x, y € P,) it follows from the
compactness of K that[ () PxP] n K # 0. Now it can be proved (in the same manner

xePo

as in I. Glicksberg [1], 1,11, for the abelian case) that () PxP is the minimal two-sided

xePo

ideal J of P (i.e. it is equal to () PxP). Hence J n K = 0. Since K is a simple sub-
xeP
semigroup of P we have necessarily K = J (for if a € K n J, the relation KaK = K

implies K = KJK < J).
Let be again xe P, and x € C(u’) for an integer | > 0. Let further v be any

7 C(‘})”) is the closure of C(u) U C(,uz) ] C(,u3) U ..., i.e. the closure of the algebraic subss-
migroup of S generated by C(u).
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element € &,. Then x C(v) = C(¢") C(v) - C(uv) = C(®,) = K. Hence x Y C(¥) =
ve®,
< K. Since K is closed x |J C(v) = K and by continuity of the multiplication

ve®,

xC(@))—xU Cvex U C(» =K,
ve®, ve®,
ie. xK < K for any x € Py. This implies yK < K for any y € P and analogously
Ky < K. Therefore K is a two-sided ideal of P. Since K < J, and J is minimal, we
have K = J.

We have proved:

Lemma 3,1. Let S be a compact semigroup, pue M(S) and P, = {u, p, 13, ...}.
If , is the maximal group (= minimal idel) contained in D,, and J is the minimal
two-sided ideal of C(,), then C(®,) = J.

Theorem 3,2. Let S be a compact semigroup and p € M(S). Denote o, = (1/n) Y, y*.
k=1

Then lim o, exists and it is equal to an idempotent ¢ € M(S). If P is the closed

subsemigroup generated by C(n) and J the minimal two-sided ideal of P, then
C(o) = J.

Proof. If §, is the closed convex hull of the subsemigroup ¥, = {u, p?, 1, ...}
then C(§,) = C(P,) = P

Let o be any cluster point of the sequence {s,}. Clearly o € §,. Since uo, — 0, =
= I/n(u"*! — p) it is easily seen that uc = o. Since this implies ¢ = po = p’s =
= ..., we also have ¢ = (tyu + 1,u% + t3° + ...) o for any t; = 0 with }'t;, = 1.

i
Consequently (with respect to the continuity) ¢ = Ao for every A € §,. This means
that ), (an abelian subsemigroup of 9(S)) contains ¢ as its zero element. But any
semigroup contains at most one zero element. Therefore there is a unique cluster
point of {¢,} and lim g, = o follows by compactness. Moreover ¢ is an idempotent

(and a trivial minimal two-sided ideal of Hw)-
Now if A€ §,, then 08, = H,0 = ¢ implies C(a) C()) C(2) C(6) = C(o) and
Clo) U C(A) = U C(l) C(o) = C(o). Further
AeQu

o) - €)Y €)= €0 U ) = (o) P

and analogously C(¢) = P C(c). This says that C(o) is a two-sided ideal of P. Since
J C(0) = J n C(s), J n C(o) + 9, and since C(o) is a simple subsemigroup, we
have C(¢) < J. Finally with respect to the minimality of J we have C(6) = J. This
completes the proof of our theorem.®)

8) After this paper has been finished for publication prof. E. HEwITT has drawn my attention

to the fact that a part of Theorem 3,2 is proved in a recent paper of M. ROSENBLATT [12]. Our
proof differs essentially from that of [12].
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Pe3rome

TIOJTIYT'PYIIITIA MEP HA BUKOMITAKTHBIX
HEKOMMYTATHBHBIX IIOJYI'PVIITIAX

IITE®AH IIBAPLI (Stefan Schwari), Bparucnasa

Ilycth S — GukommakTHas xaycaopdosa mosryrpynna. Ilox Mepoit p Mbl 6ynem
NOJpa3yMeBaHTh ¢-aAUTUBHYIO HEOTPHUATEJbHYIO PErYJIAPHYI MHOXECTBEHHYIO
(yHKLHMIO, Onpe/ie/leHHy 0 Ha GOPEJIEBCKMX MHOXECTBaxX U3 S Takylo, uro u(S) =
0603HaunM cuMBOIOM Y (S) MHOXECTBO BCEX Mep NOJIYTPYIIHL S.

Hycte (S) — Ganaxoso NPOCTPaHCTBO HENPePhIBHBIX ACHCTBUTENBHBIX (yHK-
muait f(x), onpenenennbix Ha S. UssectHo, uro (S) MoxHo morpysute B w(S)*
(conpsixenroe mpocrpancTBo K w(S)) u ecnu 3amatk B o(S)* ciabyro Tomosoruio,
TO S.U?(S) obOpa3yer GuxkoMmakTHOE xaycaopdoBo mpocTpaHcTBo. Eciu ompeaeiuTh
NpoU3BeJieHue Mep (i, vV ¢ omolgkio ypasHenus (1), M(S) npespawaercst B GuKoM-
NaKTHYIO TOIOJIOIWYECKyro mouyrpymmy. Llens pa60TLI-u3yqune CTpoemm no-
ayrpymmst M(S). :
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1. Ilycte ¢ = g% € ED?(S) — VIEMIIOTEHTHasl Mepa, HOCHTEJIEM . KOTOPOH SBJIsAETAS
"MHOX€ECTBO C(s)’ < S. C(g) — mpocrast 3aMKHyTas HOJYTPYNNa M, CJEA0BATENBHO,
BU/IA C(a) = UU Gy, rtme G,; — u3omopdHbie MexAy cobor OuKOMIaKTHbIE

« B

rpynnbsl.  [IpeamoyiokuM  4TO C(s) HMEEM KOHEYHOE WYHCJIO WAEMIIOTEHTOB
na=1,...,s, f=1,...,r (I/I3Becmo, 4TO S, F — YUCJIO MUHMMAJIbHBIX NPaBBIX,
COOTBECTBEHHO JIEBBIX, naealios u3 C(e).)

B Teopemax 1,1 u 1,2 nokxa3ansl CIIC/YIOLUME YTBEPIKACHHA. I/I,ueMHOTeHT & UHIY-
LUPYET Ha KaxJI0H M3 Ipyni Ga,, WHBapUaHTHYIO Mepy Eciu p,; — HOpManu3upo-

BaHHas Mepa Xaapa Ha G, TO & VIMEEM BLJ & = Z Z Qnﬂuw, r,ue Car Mg —

JIOKUTC JIbHBIE YHCJIA, YIOBJIETBOPSIOIIME coomomenns{M Z &, = Z np = 1. Kax-
F=1

a=1
nast ¥3 Mep Takoro Buia-uaeMnoTentT € IM(S), U BesAkas 3aMKHYTast IPOCTAsL MO/~
MoNyrpynna u3 S, MMEIOIAsl KO eUHOE YKCIO HAEMIOTEHTOB-HOCHTENb HEKOTOPOR
raemmoTeHTHON Mepsl u3 I(S). (Ecin HOCKTenb He SABJSACTCS TPYNNOM, TO YKCIO
TakKuX Mep GeCKOHEYHO.)

B Teopemax 1,3-—1,5 XapaKTepu3yloTCs NPUMHUTUBHEBIC WIEMNTOTEHTHI MOJy-
rpynmst 9(S) u naetcst crpoenue sapa ncyrpymmst Ji(S).

2. B pasnmene 2 m3yuatorcs mMakcumanmble moarpymet G(e) = M(S), umeeromue ¢
B Ka4eCTBE €MHMYHOIO 3JIEMEKTA.

IlycTb C(s) = H v H, — pauboJsbiiasi mpocras mojyrpynna u3 S, uMeromas Te
XKe uaeMnoTeHTs! kak H. PaccMoTpum pasnoxenwe H, = HU HaH U HbH U ...
(a, b, ... € H,). Takoe pasiokeHue B JU3BIOHKTHBIE cJlaracMble CylecTByeT. O60-
snaunm H = U Giy, Hy = UU Gy Eco p € €(g), To umeer mecto C(u) = HaH

| a p a p Y

(rme a — yno6uo BLIGpanusiii snement € H,). lanee, C() N G,3 — ABYCTOPOHHHMI
KJIACC CMEXHOCTH Pa3IoXeHus rpymbl G,z MOIYIO Gip.
Eciu H wmeer koHeuHoe umciio uaemnoTentoB, u€ G(e) u C(u) = HaH, 10 pt
s r
onpesieSieho ofHO3HAUHO. MMenHo, eciy & = 3 Y Efiphtag (np — HOPMRIH3MPO-
a=1 f=1
BaHHaA Mepa Xaapa Ha Gig), TO IMEET MECTO

s r
= z z 5z’75ﬂ;aaﬂ;p .
a=1 f=1

Knacc HbH ects HocuTeNb HekoTOpoit Mepsl € €(g) Torna u ToJIbKO TOrja, eciu
HbH N G,; nexut B HopMam»xzaTope G TpymmBL G, B rpymue G,;. Kpome Toro,
G(e) x Gy | Goy -
3. B paspene 3 JOKa3bIBAETCS CJENYIOIIAs TeopeMa:
Mycts p e M(S). O6o3kauum o, = 1/n(u + p? +... + ). Torna lim o, cyure-
R e

n=
CTByeT M paBHsieTCs HekoTopomy wuaemmorenty o € I(S). Ecnu P-3aMKnyTas
no;monyrpynna u3 S, mopoxaennas C(u), J-MPIHHMaJIbHLIH nByCTopOHHm«I nuean
u3 P, o C(0) = . e LA
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