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INCOMPLETE EXPONENTIAL SUMS AND INCOMPLETE
RESIDUE SYSTEMS FOR CONGRUENCES

L. J. MorpELL, Cambridge und Arizona University
(Received June 16, 1962)

An estimate for the sum (1) in terms of the sum (2) and an estimate for the
number of solutions of the system (3) in terms of the number of solutions
of the system (4) are established.

Let p be a prime, ¢ = (&4, ..., &,) be n integer variables and let f(&), f1(£), ..., fu(€)
be m + 1 polynomials in the ¢ with integer coefficients. Let I = (Iy,...,1,) be n
given integers with 0 < [, < p,...,0 < I, < p, say 0 < (I) < p. We consider here
two related problems.

The first is to find an estimate for the exponential sum
0)) Sp=Ye(f(¢éy, .., &), 0¢ <1y,...,0< 6, <1,
g

say 0 < (&) < (I), where e(x) = exp (2zix/p), in terms of the complete exponential
sum,

2 S, = ;e(f(xl, cewX)), 02 (x)<p.

The second problem is to find an estimate for the number of solutions N, ,, of the m
simultaneous congruences mod p

©) fi(©)=0,.../.(8) =0, 0=() <()

in terms of the number N,

n,m

(4) fix)=0,..,fu(x)=0, 0Z(x)<p.

Hereéfter, all variables and summations expressed in terms of latin characters take
the values 0, 1, ..., p — 1. The & variables &, etc., take the values O, 1, ..., I; — 1, etc.

of solutions of

Both of these problems are of some interest and importance in number theory.
Not much reference to them is found in books on number theory. Simple instances
are given in VINOGRADOV’S book on “Elementary number theory”, and also by L. K.
Hua [1]. Other results are found in scattered papers [2]. It may be useful to give an
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expository and unified account of these topics and to make the proofs a little more
obvious and to find some general results. '

A result for the first problem is well known when n = 1. We present the proof in
a slightly different form. This extends also at once to the case of general n, and the
same idea serves for the second problem.

Suppose then n = 1, £ = &, and so

Sy = ;e(f(é)), 0s¢é<l,
Clearly
©) pSy = Y e(f(x) + t(x — ).

x,t,&
For the sum in ¢ is zero unless x = £ when it gives a factor p.
Wenow sum for & The term with ¢ = 0 contributes I ) e(f(x)) = IS;. When t + 0,

on summing for &, we have Ye(—1&) = (1 — e(—1t))/(1 — e(—1)), so that
g
(6) pS; = 1S; +x Z,Oe(f(x) + tx) (1 — e(—tD)/(1 — e(—1)).

Suppose now that we have an estimate independent of ¢ given by

Q) [Te(f() + 1x)| S E.
Then |pS} — IS,| < EY (sinnt/p)~* < Eplog p, as is well known. Hence
t>0

S} =1Ip7'S, + @Elogp where |0 <1,
a well known result. :

We next consider the case of general n and so ¢ = (&, ...,&,), I = (I, .o L),
x = (x4, ..., %,) and &, < I, etc. We write

®) Sp = Z;,e(f ), Sp=Yelf(x))-
We suppose there exist estimates E”, E(V, ..., E™ independent of the #’s such that
© [Se(f(x) + t . x)| < EP,

n
where the ¢ part is a vector product, i.e. . x = Y, t;x;, and the r refers to the number
“

J
of ¢ which are not zero. Thus E{” = |S,|. In general, the estimates E\” can be replaced
by an estimate E, independent of the r, but sometimes it is more useful to retain
the E. Then the value of E” will depend upon which r of the t are not zero, and
the » summation will then include all the choices of the ¢ being zero.

We prove that
(10) Sa=1li ... Lp7"S, + O EM(log p)’ + R,, |07 < 1,
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where with the convention about the r summation no confusion will arise if we
write

n—1
(11) R, =Y OVl ... I,p "EQP(log p), 09| <1.
r=1

The proof is similar to that for n = 1. Thus

(12) pS, =Y e(f(x) + t.(x = &)).

&,t,x
Clearly the ¢t summation gives zero unless x = ¢ when we get p”S,. When all the ¢
are zero in (12), we have a contribution l41, ... ,S,. Suppose next r of the ¢t are not
zero. For convenience in writing, suppose these are f,, ..., t, and so t,4¢, ..., t, are
all zero. The ¢ summation gives a contribution

Lar lng‘e(f(x) +1.x%) lliee((—_ltxt)x) llzee((—“l;ts) )

This has modulus less than
Liy...l,y EP(sinmty/p...sinnt,/p)™ < I,y ... LE®p'(log p) .
t N

Summing this for r, and denoting by @” numbers such that |©{”| < 1, and noting
our convention about the r summation, we have the value of R, given in (11).

We come to the second problem. Denote by N, ,, the number of solutions of the
congruences

(13) (H=0, 0s©O< (=1,...,m),

and by N, ,, the number of solutions of the congruences

(14) filx)=0, 0s(x)<p (j=1..,m).

If we put u . f(x) = uyfi(x) + ... + u,fu(x), we have

(15) PN =u,t’Zx,§e(u JE) + . (x - 9), '

since the sum in f, u is zero unless x = &, f;(£) = 0 (j = 1, ..., m). We shall require
some estimates for exponential sums independent of the #, u. Suppose that

(16) [Ye(u.f(x) +t.x)| < EPD,

where the r refers to the number of ¢ which are not zero. Sometimes the estimate E”
can be replaced by an estimate E, independent of the r, but as is seen later, it may
be more useful to retain the E{”. We note as before that the value of E® will depend
upon the selection of r-of the ¢ which are not zero, and that the » summation includes
all selections.
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We prove that

(17 Now =1y . 1,p""N, o, + O,E(log p)" + R,,
where
n—1
(18) R, = Z eV, ... Lp" " "(log p) E®
r=1 |

with the convention for the r summation and the ® have moduli <1.

When all the ¢ are zero in (15), we have a contribution p™l, ... I,N, ,. Suppose
next r of the ¢ are not zero, say t,, ..., t,. Then just as in (12), we have a contribution
091, ... LE®p(log p), and so (17) and (18) follow.

The estimate (17) depends upon finding useful estimates for the E{". Crude estimates
for the x summation are easily found but then the u summation introduces a factor p.
More precise results can be found when a simple closed expression for the x sum-
mation can be found in terms of u. This occurs when m = 1 and f(x) is the general
quadratic polynomial in the x. For simplicity, we consider the two cases:

(19) fX)=ax+..+ax?+a, a;...a,%=0.

(20) f(x)=ax} + ...+ ax? + a1 X501 + oo+ ax, + a,
aa,...a,x£0.

In the first case, the general exponential sum (16) becomes, say,

(21) E =Y e(u(a,;x} + ... + a,x2 + a) + t;x1 + ... + 1,x,).

Suppose first that :1: the ¢ are zero. Then there is a contribution E" = pl; ... LN, 4,

where N, , is the number of solutions of the congruence

axi+...+axi+a=0.
Then
PN,y =Y e(u(asx} + ... + a,x; + a)) =

u,x

p—1
=p"+ Y eu(axi+ ...+ ax +a)=

u=1,x=0
p—1 n
= p" 4 MV <M) P2y <E> e(au),
P u=1\P

and so is easily evaluated. As the result is well known, it will suffice to quote it for
P+ 2. '
Suppose first n is even.

_1\/2
Ifa%0,N,, =p" ' — ((l)—al_‘ﬁ') 202
: p

, 1y
fa=0,N,,=p ' —(p—1) (_(MJA) PO
p
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Suppose next n is odd.

a0 N, =g+ ((_1)(n+1)/2 aay ... a,,) RO
p

Ifa=0,N,,=p" "

Suppose next that all the ¢ are not zero. Then the sum in (21) with u = 0 is zero
and so we may suppose herafter that u =+ 0.

The sums in the x are Gaussian sums and so we now have a contribution

n 2 2
(22) E = n(p=1)/2)? p? @19z -.- Gy Z’ ol el au — i - tn ,
P u \ D 4a,u 4a,u

where 1/4a,u = v’ with 4auu’ =1 etc.

We must now consider the sums
Kn =3 /E> e(cu + dfu)
= \p

where 1/u = u’ and uu’ = 1. When n is even, these are the well known Kloosterman
sums. If cd =0, K = —1 unless c =d =0 when Ky = p — 1. If cd % 0, we
have Weil’s estimate

K& =2p,
and this can also be used unless ¢ = d = 0.

When 7 is odd, Sali¢ ([4], p. 102) has proved that K!') can be expressed in finite
terms. For our purpose, it suffices to state that |K{)| < 2/p. Hence in (17), (18)
we can take E = O(p™*1/2),

We consider now the second case of the quadratic form given by (20). The exponen-
tial sum (16) becomes

(23) E =} e(g(x,u)),
where v | : e
24

g(x,u) = u(axd + ...+ ax? + Gy 1Xgpq F oo+ X, + @) + 15X F o F 1,
When all the t are zero, we have a contribution p” to E since

2 2 —_
a;xy + ...+ ax; + agy X4y + ..o+ ax, +a=0

has p"~! solutions.

Suppose next that all the ¢ are not zero. Then the contribution to E when u = 0
is zero and so we may suppose that u does not take the value zero. The sums in
X1, ..., X are Gaussian sums and so this gives

E = ,‘S((zr—l)/Z)2 ps/z (‘h_%) Z(
. b

x,u

ﬂ)sew(x, W),

p
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where
11 A

h(x, u) = xg41(@se 1% + 10 1) + ... + x,(au + t,) + au — . .
4a.u 4agu

The sums for X;+1, ..., X, are zero unless
agou +t=0,..,au+t=0.
This gives at most one value of u. Hence
(25) |E'| < pl2.prTs = prosi2
This can be used in (17) and (18) for all the E{.
The particular case when n = 2 was dealt [2] with in a slightly more general form.
We consider finally the case of m simultaneous congruences in n variables,
=0, 0@ <O, j=1..m.

We have already seen that the number N, ,, of solutions is given by

(26) ' N'/l,m = ll b lnp_nNn,m + @l(l")(log p)" E,('n) + Rn 9
where

n—1
27) R, =Y 0", y...1,p " ™(log p) EI

r=1

with the convention about the r summation. The number N, ,, is given by

(28) P"Nom = L e( L usf(x) -

xu s=1
The terms with all the u = 0 contribute p” to the sum and so we suppose herafter
that all the u are not = 0. In some instances, it may be desirable to consider the
various cases arising when some of the u are = 0. This is not so when all the f(x)
are quadratic forms such as .

(29) fi(x) = as,le + oo+ agx2 + ay.

I have given some results for such congruences. It may be useful, however, to give
a self contained resume with more detail for the case m = 2 when the results are
fairly simple. The summation (28) becomes

(30) S = uz;te(h(x, u)),
where
G Hx) = 3 (3 wan) 2+ Fua).
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Suppose first that the u are such that no x? has a coefficient = 0. The sums in the x
are Gauss’s sums and so there is a contribution S’ to (30) given by

n
(32) S = int(P—l)/Z)zpn/ZZ 1—[ (ulals + p + umams> e(u1a1 + .+ umam) .

u s=1

Suppose next that r of the x> have coefficients = 0. The summation in these x
gives p". Then on replacing r of the u in terms of the remaining n — r of the u, we
have a sum similar to that in (32). In general, it is not easy to find precise estimates
for (32) even when Weil’s results are used.

The special case m = 2, a; = a, = 0 is worthy of attention. Then (32) becomes

n
S = in((P—l)Z)z n/2 Z H (ulals + uzah)

p
The contribution to the series when u, = 0 is

Z(h><aumau>=0 if nis odd,
u \ P p
(p_1)<ﬁu___n> if n is even.
p

When u, % 0, we put u; = uu,. The contribution to S’ is

(= DIz <ﬂ>ﬂ <——“““ i ““) —0 ifnisodd,
p/s=i

u,uy P
=0((p — 1) p"*¥?) if niseven,

since the number of solutions of

" (ua + a,
ZEH( 1 2)
s=1 P

is p + O(\/ p) by Weil’s theorem.

We consider next the case in (31) when some of the x have a coefficient = 0. We
suppose for simplicity that this occurs for only one coefficient, and so the a must
satisfy the condition a, ,/a, ; # a, ,fa, , for all A & pu, 1 < 4, p < n. It suffices to
examine the case when x3 has a coefficient = 0. Then u;a,; + u,a,, = 0, and the
contribution to (31) takes the form

n
Uyays + Uzss
S” ('l 1((p—1)/2)? (n+1)/22H “171s | T2Tes)
u

s=2 - p
Put Uy =tazy, Uy = — ta,,. Then
n=1)((p—1)/2)2 t\" L [aja;, — aga,
§7 = D122 et 2 g (2 (32— =
T \p s=2 p
=0 if niseven, = O(p"*?’?) if nis odd.
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Then from (28) we have
P’N, 2 = p" + 0(p"" 7).
Hence N, , =

"~2 + O(p™~1/?) and this is contained in the result given in my
paper.

This work has been supported in part by the National Science Foundation,
Washington, D. C.
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Pe3ome

HEIIOJIHBIE IIOKA3ATEJIBHBIE CYMMBI U HEITIOJIHBIE
CUCTEMBI BBIUETOB JIJIS CPABHEHUI

JI. YI. MOPJEJI (L. J. Mordell), KemGpumi

TIycTh p — MPOCTOE UHUCIO, X1, «evy Xy £y +evy & — LETBIE TIEPEMEHHBIE, f, f1, ...
«ves fry — TIOJIMHOMBI C IEJBIMA Ko3bdunuentamu 4 Iy, ..., [, — emble yucaa Takue,

yto 0=, <p,...,0 = [, < p. Ionoxum e(x) = exp (2ni x/p). B pabote mpu-
BeCHA OIEHKA CYMMBI

Ye(f ¢y, ..n &) 0=2¢& <1y,..,02¢, <1,)
nOpu nNoMoIM CyMMBI
Ye(f(xg, .0 %) (0= x; <p,...,0 < x, <pP)
¥ OIICHKa Yucia peU.IeHI/Iﬁ CHCTEMBI CpaBHeHPIfI modp
filh s &) =0,y fullry o) =0 02 & <y, .., 058, <)
IIpH TIOMOIUIM YKCJIA PELICHAN CHCTEMBI CpaBHEHHHA
F1Gity s X) = 0, ey frXgs e X) =0 (0 < %, <P, 0 < x, <P)-

OcobenHO u3yyaeTcs Cnyyaif, koraa f; — KBaJpaTHYECKHE IOJMHOMEL
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