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Чехословацкий математический журнал, т. 14 (89) 1964, Прага 

INCOMPLETE EXPONENTIAL SUMS AND INCOMPLETE 
RESIDUE SYSTEMS FOR CONGRUENCES 

L. J. MoRDELL, Cambridge und Arizona University 

(Received June 16, 1962) 

An estimate for the sum (1) in terms of the sum (2) and an estimate for the 
number of solutions of the system (3) in terms of the number of solutions 
of the system (4) are established. 

Let p be a prime, ^ = (f i,. . . , Q be n integer variables and let/(f),Л(f),.. . , /Д0 
be m + 1 polynomials in the ^ with integer coefficients. Let / = (/i,..., /„) be n 
given integers with 0 ^ /̂  < p, ..., 0 ^ /„ < p, say 0 ^ (/) < p. We consider here 
two related problems. 

The first is to find an estimate for the exponential sum 

(1) S'^ = Y.emu ..., Q) , 0 ^ fi < / „ . . . , 0 й L<ln, 

say 0 ^ ((̂ ) < (/), where e{x) = exp (Inix/p), in terms of the complete exponential 
sum, 

(2) ^„ = Z</(^i , . . . ,^n)) , Ой(х)<р. 
X 

The second problem is to find an estimate for the number of solutions N'„^^ of the m 
simultaneous congruences mod p 

(3) uo^o,...,uo^o, ой{0<(1) 
in terms of the number N„^^ of solutions of 

(4) A ( x ) s O , . . . , / „ ( x ) s O , 0 ^ ( x ) < > . 

Hereafter, all variables and summations expressed in terms of latin characters take 
the values 0, 1,...,/?— 1. The £, variables ^i etc., take the values 0, 1, ..., li — 1, etc. 

Both of these problems are of some interest and importance in number theory. 
Not much reference to them is found in books on number theory. Simple instances 
are given in VINOGRADOV'S book on "Elementary number theory", and also by L. K. 
HuA [1]. Other results are found in scattered papers [2]. It may be useful to give an 
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expository and unified account of these topics and to make the proofs a little more 
obvious and to find some general results. 

A result for the first problem is well known when и = 1. We present the proof in 
a slightly different form. This extends also at once to the case of general n, and the 
same idea serves for the second problem. 

Suppose then n = 1, <J = (̂ i, and so 

Clearly 

(5) pS[=Ye(fix) + t(x-i))^ 

For the sum in t is zero unless x = ä, when it gives a factor p. 

We now sum for {. The term with t = 0 contributes / Yje(f(x)) = IS^, When t Ф 0, 
X 

on summing for {, we have Y,e{-t^) = (1 — e( — tï))l(l — e( —г)), so that 

(6) pS[ = IS, + E e{f(x) + tx){l - ei-tmi - e(-t)) . 
x,t>0 

Suppose now that we have an estimate independent of t given by 
(7) Ee(/(x) + tx)\ й E . 

X 

Then \pS[ - /5i| g £ Z (sin ntlp)~^ S Ep log p, as is well known. Hence 

S[ = Ip'^S, + 6>£logp where |(9| < 1 , 

a well known result. 

We next consider the case of general n and so ^ = (( î, ..., ^„), I = (l,,..., /„), 
X = (xi,.. . , x„) and ^1 < li, etc. We write 

(8) S; = Xe(/(0), S„ = Ie(/(x)). 

We suppose there exist estimates E^„°\ £*̂ ^ £*"̂  independent of the f's such that 

(9) \Ze(fix) + t.x)\uE':\ 
X 

n 

where the t part is a vector product, i.e. t .x = Y, h^p ^^^ ^̂ ^̂  '̂  refers to the number 
j = i 

of t which are not zero. Thus E^^^ = l^^l. In general, the estimates E^^^ can be replaced 
by an estimate £„ independent of the r, but sometimes it is more useful to retain 
the E^^^, Then the value of E^^^ will depend upon which r of the t are not zero, and 
the r summation will then include all the choices of the t being zero. 

We prove that 

(10) S; = /i ... l„p-"S„ + ef'Et\\og pf + к , |0^">| < 1. 
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where with the convention about the r summation no confusion will arise if we 
write 

И - 1 

(11) R„ = Y. 0'Л^ 1 • • • lnf-"Ei'\log РУ , |0Гi < 1 . 
r = l 

The proof is similar to that for n = 1. Thus 

(12) p"s; = x</W + ^-(^-0) . 
4,t,x 

Clearly the t summation gives zero unless x = ^ when we get p'^S'„. When all the t 
are zero in (12), we have a contribution IJ2 ••• h^n- Suppose next r of the t are not 
zero. For convenience in writing, suppose these are t^, .,.,t^ and so f,.+ i,. . . , n̂ are 
all zero. The { summation gives a contribution 

l - e ( - ^ ) l-e{-tr) 

This has modulus less than 

/,+ 1 ... l„l^El;-\smntJp...smKtJp)-' < U, ... /„£< V(Iog p / • 
t 

Summing this for r, and denoting by 0̂**̂  numbers such that \0l[^\ < 1, and noting 
our convention about the r summation, we have the value of R„ given in (11), 

We come to the second problem. Denote by iV̂ ^̂  the number of solutions of the 
congruences 

(13) m)^0, 0^(i)<(l) 0- = l , . . . ,m) , 

and by ЛГ„ „J the number of solutions of the congruences 

(14) fj{x)^0, OS(x)<p (; = l , . . . ,m) . 

If we put M .f(x) = uJi{x) + ... + u^f„(x), we have 

(15) р"^'"К.ш = I е(м .fix) +t.{x-0), 
U,t,X,^ 

since the sum in t, и is zero unless x = ^,fj(0 = ^ (j = Ь •••? ^)- We shall require 
some estimates for exponential sums independent of the I, u. Suppose that 

(16) E e ( « . / ( x ) + t . x ) | g £ W , 
X,U 

where the r refers to the number of t which are not zero. Sometimes the estimate EI[^ 
can be replaced by an estimate E„ independent of the r, but as is seen later, it may 
be more useful to retain the E^J^. We note as before that the value of E^J;^ will depend 
upon the selection of r of the t which are not zero, and that the r summation includes 
all selections. 
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We prove that 

(17) iV;,„ = /i ... l„p-"N„^„ + 0„£l">(log РУ + R„ , 
where 
(18) R„ = "t'0':'Ui...i„/-"--{\ogprEi:' 

r = l 

with the convention for the r summation and the 0 have moduli < 1. 
When all the t are zero in (15), we have a contribution p"^li . . . ln^n,m- Suppose 

next r of the t are not zero, say t^,..., t^.. Then just as in (12), we have a contribution 
в^Л+1 . • • /„£i 'y(log p)\ and so (17) and (18) follow. 

The estimate (17) depends upon finding useful estimates for the £^''\ Crude estimates 
for the X summation are easily found but then the и summation introduces a factor p. 
More precise results can be found when a simple closed expression for the x sum
mation can be found in terms of u. This occurs when m = 1 and / (x ) is the general 
quadratic polynomial in the x. For simplicity, we consider the two cases: 

(19) / (x ) = «iXi + .. . + fl„x^ + a , а 1 . . . а „ ф О . 

(20) / (x) = a^x\ + . . . + a,xl + a,+iX,+ i + . . . + а л + ^ , 

«1^2 . .. fl„ Ф 0 . 

In the first case, the general exponential sum (16) becomes, say, 

(21) £̂  = Z e{u{a^xl + ... + a^xl + a) + t^x^ + . . . + ^„x„) • 
x,u 

Suppose first that all the t are zero. Then there is a contribution E' = pl^ ,., l„N„^i, 
where iV„ д is the number of solutions of the congruence 

Then 
a^xl 4- . . . + a„xl -{- a = 0, 

Р^пл = E e{u(aixl + . . . + a„x^ + a)) = 
u,x 

p-1 

= p" + YJ K^(ÛI^I + ... + ci„xl + a)) = 
u=l,x = 0 

= p" + i«((p-i)/2)^ /ai---a„\ ^ „ / 2 ^ f-\e(au) , 

and so is easily evaluated. As the result is well known, it will suffice to quote it for 
РФ 2. 

Suppose first n is even. 

If a Ф 0, JV„,i = / - 1 - Д-1)"^ '«1- - -ДЛ y„-2)/2 _ 

If a=0,N„,, = p"-^ - (p - 1)/^-^)"' ' "' - ^Л p' 
,("-2)/2 
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Suppose next n is odd. 

If a ф О, ]У„д = p^-' + (i-^y^'^'^^'^^i-'-^n \ pin-1)12 

If a ^ 0, 7У„д = p»-^ 

Suppose next that all the t are not zero. Then the sum in (21) with м = 0 is zero 
and so we may suppose herafter that м Ф 0. 

The sums in the x are Gaussian sums and so we now have a contribution 

el au ^ (22) £ ' = i«((P- l)/2)^ рП/2 /^^1^2 • • • ^ n \ ^ , fl^ 
\ p J и \pj \ Ла^и 4a„u 

where XjAa^u = w' with Aa^uu' = 1 etc. 
We must now consider the sums 

K':} = Z ' (-)"e{cu + diu) 

where 1/м == и and мм' = 1. When n is even, these are the well known Kloosterman 
sums. If cd = 0, î "̂] = - 1 unless с = d = 0 when K^"} = p - 1. If cd ф 0, we 
have Weil's estimate 

and this can also be used unless с = d = 0. 
When n is odd. Salie ([4], p. 102) has proved that K^|j can be expressed in finite 

terms. For our purpose, it suffices to state that \K^c]d\ < 2 ̂ p . Hence in (17), (18) 
we can take Ê ^̂  = 0(p("+1>/2). 

We consider now the second case of the quadratic form given by (20). The exponen
tial sum (16) becomes 
(23) E = Y.e{g{x,u)), 

x,u 

where 
(24) 

g(x,u) = u(a^xl + ... + a,x^ + a,+ ̂ x,+ i + ... + a„x„ + a) + t^x^ + ... + t„x„. 
When all the t are zero, we have a contribution p" to E since 

a^xl + ... + аУ, + a,+ ix,+ i + ... + a„x„ + a = 0 
has p""^ solutions. 

Suppose next that all the t are not zero. Then the contribution to E when м = 0 
is zero and so we may suppose that и does not take the value zero. The sums in 
Xi,..., x, are Gaussian sums and so this gives 

E' = f((P-i)/2)^ psl2 / o j ^ ^ ^ A ^ (-Уе{Кх, и)) , 
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where 

h{x, и) = x,+ i(a,+ iU + t^+^) + ... + xXa„u + t„) + au ... ^ . 
4a lU 4a sU 

The sums for Xj+i» • • •» n̂ are zero unless 

cis+iu + t,+ i =0,,..,a„u + t„ = 0. 

This gives at most one value of u. Hence 

(25) |£'| S f'^ • P"~' = f"'^ . 

This can be used in (17) and (18) for all the E^;\ 

The particular case when n = 2 was dealt [2] with in a slightly more general form. 

We consider finally the case of m simultaneous congruences in n variables, 

/ X O ^ O , O ^ ( O < ( 0 . J = l , . . . ,m . 

We have already seen that the number N^^m of solutions is given by 

(26) К,„ = Zi ... /„p-"iV„.„ + 0i"'(log pf £<"' + R„, 

where 

(27) K„ = X 0 i 4 + i - ' „ / - " - ' " ( l o g 7 ' ) ' £ r 
r = l 

with the convention about the r summation. The number iV„ „, is given by 

m 

(28) p'"N„,„ = Y.e{l^uJlx)). 
x,u s = l 

The terms with all the м = 0 contribute j?" to the sum and so we suppose herafter 
that all the и are not = 0. In some instances, it may be desirable to consider the 
various cases arising when some of the и are = 0. This is not so when all the f{x) 
are quadratic forms such as 

(29) fix) = а,дх? + ... + a,^,xl + a,. 

I have given some results for such congruences. It may be useful, however, to give 
a self contained resume with more detail for the case m = 2 when the results are 
fairly simple. The summation (28) becomes 

(30) S = X<K^,«) ) , 
u,x 

where 
n m m 

(31) h(x, u) = К I (и,а,;) xl + X u,a,) . 
S = l ( = 1 t = l 

•240 



Suppose first that the и are such that no x^' has a coefficient = 0. The sums in the x 
are Gauss's sums and so there is a contribution S' to (30) given by 

(32 ) S ' = ^ а р - 1 ) / 2 ) у / 2 ^ 1 ^ fu,a,,+ . . . + ^m^ms\ ^^^^ 

u 5 = 1 V P J 
1 + .. . + W^O 

Suppose next that r of the x^ have coefficients = 0. The summation in these x 
gives p\ Then on replacing r of the и in terms of the remaining n — r of the i/, we 
have a sum similar to that in (32). In general, it is not easy to find precise estimates 
for (32) even when Weil's results are used. 

The special case m = 2, a^ =: a2 = 0 is worthy of attention. Then (32) becomes 

5 ' ^ fniip-1)2)^ рП/2 у ГТ f^l^ls + U2(^2s\ ^ 
и s=l\ p J 

The contribution to the series when 1/2 = 0 is 

' / < \ / ^ 1 1 - . . ^ mc- = 0 if n is odd , 
P 

== (p _ 1) j " ^ll"'^ln\ .f ^ jg g^^^ 

When U2 Ф 0, we put u^ = UU2. The contribution to 5 ' is 

U,U2\pJs=l\ p J 

since the number of solutions of 

^2 ^ ГТ / M ^ I S + ^2Д 
s = i V P / 

is p + 0{^p) by Weil's theorem. 
We consider next the case in (31) when some of the x^ have a coefficient = 0. We 

suppose for simplicity that this occurs for only one coefficient, and so the a must 
satisfy the condition а1,я/а2,я Ф ^i,J^2,ß fc>r all Я =j= /x, 1 ^ A, /i g п. It suffices to 
examine the case when xl has a coefficient = 0. Then Wia^ + W2a2i — 0, and the 
contribution to (31) takes the form 

5'^ ^ . («-l)((p-l) /2)yn+l)/2 у Л f^i'^ls + ^2^25\ ^ 
« s = 2 V ^P / 

Put Wi = ^^21? W2 = "" ^^11- Then 

^// ^ . («-l)((p-l) /2)y«+l)/2 ^ / i V ' ^ I ^ /^21^1s - ^ l l g 2 5 \ ^ 

= 0 if fi is even, = 0(p^"'^^^^^) if « is odd. 
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Then from (28) we have 
P X , 2 = P" + o(p("+^>/^). 

Hence N„^2 = P"~^ + 0(p "̂~^^^ )̂ and this is contained in the result given in my 
paper. 

This work has been supported in part by the National Science Foundation, 
Washington, D. C. 
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Резюме 

НЕПОЛНЫЕ ПОКАЗАТЕЛЬНЫЕ СУММЫ И НЕПОЛНЫЕ 
СИСТЕМЫ ВЫЧЕТОВ ДЛЯ СРАВНЕНИЙ 

Л. Й. МОРДЕЛ (L. J. Mordell), Кембридж 

Пусть р — простое число, х^,..., х„, (^i,..., (̂ „ ~ целые переменные, / , / i , . . . 
•••5/m ~ полиномы с цслыми коэффициснтами и 11, ...,/„ — целые числа такие, 
что О ^ /i <;?,.. . , О g /„ </7. Положим е{х) — Qxp(2nixjp), В работе при
ведена оценка суммы 

при помощи суммы 

X</(xi , . . . , х„)) (О ^ xi < /7,..., о ^ х„ < /?) 

и оценка числа решений системы сравнений mod р 

Л(^1,..., Q s О, ...,/j^i,..., О s о (О ^ 1̂ < h,..., OuL< о 
при помощи числа решений системы сравнений 

/i(xi,...,x„) = О, . . . , / Jx i , ...,х„) = 0 (О ^ Xi </?,. . . , О SXn <Р)-

Особенно изучается случай, когда fj — квадратические полиномы. 
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