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REMARKS ON THE KERNEL OF A MATRIX SEMIGROUP

W. EpwiN CLARK, Pasadena, Californja

(Received August 3, 1964)

The intersection of all the (two-sided) ideals of a semigroup S is, if not empty, an
ideal K of S contained in every ideal of S. K is a simple subsemigroup of S, called
the kernel of S ([1], p. 67). In 1928, SusCHKEWITSCH [9] showed that every finite
semigroup has a kernel and determined the structure thereof. Ever since then, the
questions of the existence and structure of the kernel of a semigroup have been in the
forefront of the development of the theory of semigroups.

The purpose of the present paper is to investigate these questions for a semigroup
of matrices of finite degree over a field.

If S is a matrix semigroup, we shall let m(S) denote the set of elements of S of
minimal rank. Since the rank of the product of two matrices does not exceed that of
either factor, m(S) is clearly an ideal of S. If S contains a kernel K, then clearly
K = m(S). We shall show that if S is pseudo-invertible, i.e., some power of every
element of S lies in a subsgroup of S, then m(S) is a minimal ideal. It follows then
from a theorem of MUNN [7] that m(S) is completely simple in the sense of Rees
(see [1] §2.7). Moreover, if S is any matrix semigroup having a completely simple
kernel K, then we must have K = m(S).

An example is given in § 2 of a matrix semigroup S having a kernel K (necessarily
not completely simple) such that K % m(S). This example also answers negatively
a question raised by CLIFFORD and PRESTON [1, p. 70], namely: if K is the kernel of
a semigroup S, is every left ideal of K also a left ideal of S?

The question of the structure of the kernel is tantamount to that of the structure
of a simple semigroup. Consequently, for us this question takes the form: what is the
structure of a simple semigroup of matrices (of finite degree)? As we shall see the
possibilities are rather limited.

First we note, from considerations of rank, that any idempotent element of a simple
matrix semigroup K is primitive relative to K; hence if K contains an idempotent, it
is completely simple (by definition). This excludes, for example, a wide class of non-
completely simple (inverse) semigroups studied by Clifford [2]. In particular, for an
example like that in § 2, K cannot contain an idempotent.
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We prove that a simple matrix semigroup K is always contained in a completely
simple semigroup S of matrices of the same degree as those of K. It follows easily
from this, that if K contains a minimal left (or right) ideal, then it must be completely
simple. This excludes those simple semigroups containing minimal left (but not
minimal right) ideals, studied by MARIANNE TEIsSER [11], R. Croisor [3], and T.
Sartd and S. Hort [8].

The author wishes to express his deep gratitude to Professor A. H. Clifford
for his encouragement and generous help in the preparation of this paper. The
proof of Theorem 2.2 (via Lemma 2.1) was suggested by Professor Clifford and
is a considerable improvement over the original proof.

Preliminaries. By M, we shall denote the multiplicative semigroup of the algebra
of all matrices of degree n over an arbitrary field. We shall also regard M, as the
semigroup of all linear transformations on an n-dimensional vector space. The
product ab of two elements of M, will be their composition, first a and then b. By
the rank g(a) of a is meant the dimension of the range of a.

If S < M, is a subsemigroup, we let m(S) = {x € S : ¢(x) = min ¢(y)}. If e is an

yesS

idempotent of S, we shall let H(e) = H(e, S) denote the maximal subgroup of S
containing e.

Throughout this paper we shall assume a knowledge of the results and notation
of [1, chapters, 1, 2 and 3] concerning completely o-simple semigroups.

1. We state first without proof the following fundamental lemma due to Suschke-
witsch; a proof of which may be found in [6, p. 273].

1.1. Lemma. If a € M, then a lies in a subgroup of M, if and only if o(a) = o(a?).

Moreover, some power of every element of M, has this property.

1.2. We shall say that a semigroup S is pseudo-invertible if some power of every
element of S lies in a subgroup of S. (The notion of pseudo-invertibility is due to
DRrAzIN [4], and the above characterization is that of Munn [7].) Thus the last
sentence of 1.1 states that M, is pseudo-invertible.

1.3. Let J; (i = 0, 1, 2, ..., n) denote the elements of rank not exceeding i in M,.
It is well known (see e.g. [5], p. 162) that these are the only ideals of M,. From
[1,§2.6] one readily deduces that the Rees factor semigroup J;/J;_( (i = 1,2, ..., n)
are o-simple. Clearly each factor is pseudo-invertible since M,, is. Thus by a result of
Munn (see [1] p. 82 or [7], Theorem 2) each factor J;/J,_, is completely o-simple.

1.4. Lemma. If e, f and g are idempotents in M, such that

(i) ole) = o(f) = elg)
(ii) ef € H(g, M,)

then {g, f} is a left zero semigroup and {g, e} is a right zero semigroup.
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Proof. By 1.3 it suffices to prove that if e, f and g are idempotents in a completely
o-simple semigroup S such that ef € H(g, S) then the conclusions of the lemma hold.
Now applying the Rees representation theorem for completely o-simple semigroups
[1, chapter 3] one may verify in a straightforward manner that {g, f } and {g, e} are,
respectively, left and right zero subsemigroups of S.

1.5. Theorem. If S is a pseudo-invertible semigroup of matrices, then m(S) is
a completely simple minimal ideal of S.

Proof. Let K = m(S). We first establish that K is a union of groups. Let x € K,
then g(x) = ¢(x?); hence by 1.1 x lies in a subgroup of M,, say H(e, M,) for some
idempotent e in M,. Since S is pseudo-invertible, some power of x, say x%, lies in
a subgroup H(f, S) of S, where f = f? € S. Since x*€ H(e, M,) n H(f, S), it is well
known [1, p. 22] that we must have f = e and H(f, S) < H(e, M,). Hence exe = x,
and if y is the inverse of x?in H(e, S) then y* = x4~ !y isaleft inverse and y” = yx?~*
is a right inverse for x, both of which are in S. It follows that y’ = y” and that
x € H(e, S). Since H(e, S) meets K and K is an ideal, H(e, S) < K. Therefore K is
a union of groups.

Now let I be any ideal of S. We wish to show that K < I. Let x be in K. x lies in
some subgroup H(e, S) of K. It is clear that I n K is an ideal and is a union of groups
since K is. Let f be an idempotent in I n K. Let H(g, S) be the subgroup of I n K
which contains fe. Since e, f, and g are in K we have g(e) = o(f) = o(g). It now
follows from 1.4 that {e, g} is a left zero semigroup. In particular e = eg. Since
g €1, e must be also. Therefore x = ex €I, implying K < I. Now by a theorem of
Munn (Theorem 2.55, p. 82 of [1]) it follows that since K is simple and pseudo-
invertible, K is completely simple, g.e.d.

1.6. Corollary. If S is a finite semigroup of matrices, then m(S) is the kernel of S.

1.7. Theorem. If S is a semigroup of matrices with a completely simple kernel K,
then K = m(S).

Proof. Since m(S) is an ideal, we need only show that m(S) = K. Let x € m(S).
Then ¢(x) = o(x?) and by 1.1 x € H(e, M, for some e = e* € M,,. Let y be an element
of K. Then xyx € K and xyx = exyxe € eKe. Since K = m(S) we know that g(e) =
= o(xyx). These facts imply that e and xyx have the same range and null space;
hence by [1, 6(b), p. 57] e and xyx are in the same #-class of M,. Since this #'-class
contains an idempotent, it is a group [1, p. 59]. Now since K is a union of groups
and xyx € K we must have e e K. Whence x = exe K, q.e.d.

1.8. Corollary. If S is a compact semigroup of real or complex matrices, then m(S)
is the kernel of S. ; .

Proof. This follows from the well-known fact that a compact topological semigroup
always has a completely simple kernel (sce e.g. [12]).
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2. Example. Define a product on Euclidean 4-space as follows:
(a,b,¢,d)(x, y,z,w) = (a + bx + cw, by, bz, d).

This semigroup may be faithfully represented as a semigroup of real matrices by
letting (x, y, z, w) correspond to

100
X yz
wO0O

Associativity is then automatic. We now take K to be the subsemigroup consisting
of all (x, y, z, w) with
x>0,y>0,z=20 and w=0.

Lete = (0,1,0,0) and set S = K {J {e}. It is routine to verify that S is a semigroup
and that K is the kernel of S. Clearly m(S) = S and hence m(S) * K.

To see that S settles the question of Clifford and Preston mentioned in the introduc-
tion, let L be the principal left ideal of K generated by any element p = (a, b, c, d)
of K with d > 0. One may easily show that ep ¢ Land hence Lis not a left ideal of S.

The following lemma is straightforward and we therefore omit its proof.

2.1. Lemma. Let Q be a completely o-simple semigroup, and let S be a subsemi-
group of Q\{O} such that every # -class of Q meeting S is a group. Then the union T
of all #-classes of Q meeting S is a completely simple semigroup contained in Q\{0}.

We observe that if S is a simple subsemigroup of M,, then m(S) = S since m(S) is
an ideal of S. Hence ¢(x) = ¢(x?) for all x in S, and by 1.1, x lies in a subgroup
H(x, M,) of M,

2.2. Theorem. If S is a simple subsemigroup of M,, then
T = U{H(x, M,) : x€ S}

is a completely simple subsemigroup of M,,.

" Proof. As remarked above m(S) = S, and therefore every element of S has the
same rank, say k. In the notation of 1.3, let Q = J,/J,_,. Identifying the elements
of T with those of Q which correspond under the quotient mapping, one easily sees
that T'is the union of all #-classes of Q meeting S. The theorem now follows from
the lemma of 2.1. -

2.3. Corollary. If S is a simple semigroup of matrices, the following are equivalent:

(i) S is completely simple.

(ii) S contains a minimal left (right) ideal.
(ili) a € Sa U aS for some a in S.
(iv) S contains an idempotent.
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Proof. Clearly (i) = (ii) = (iii). To show that (iii) = (iv), we first note that by 2.2
we may assume that S is contained in a completely simple semigroup of matrices.
Using the Rees representation it is easily seen that a = ba in a completely simple
semigroup implies that b?> = b. Similarly a = ba implies b> = b. In either case S
contains an idempotent. Now any idempotent in S must be primitive since every
element of S has the same rank; so clearly (iv) implies (i).

Remark. ScHWARz [10, p. 229] shows that if S is a simple subsemigroup of
a completely o-simple semigroup T then P, = S n H,;, where H, is an #'-class
" of T, is also simple and contains an idempotent if and only if S does. If S is completely
simple then P,; are isomorphic. Is this true if S is simple but not completely simple?
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Pe3omMme
3AMETKH O AAPE MATPUYHBLIX ITOJIYI'PVIIII

B. E. KJIAPK, (W. E. Clark) IMacagena, Kanudopuus

IIycte S — momyrpynna MaTpul] KoHe4Horo mopsaka. Ilycte m(S)-MHO)KeCTBO
BCEX JIEMEHTOB € S, HMCIOLX MUHUMAJIbHBIA paHr. Eciu S comepXxut MUHAMAIIb-
HBIA BycTOpoHHMUI upean K (Tak HasbiBaeMmoe s11po S), To K = m(S). Ha npumepe
nokasaHo, 4to K HeoGs3aTensHo paBHo m(S).

HasoseM S niceBHO-UHBEP3HON MOJIYTPYIIIOH, €CIIH JJISI BCSKOTO a € S CYILECTBYET
HATypaJbHOE YUCIO n = n(a) Tak, 4TO @" CONEPHKHUTCA B HEKOTOPOH IOATpYIIE,
gexaneir B S. B paGote mokas3wlBaeTcs, YTO JUJISl TICEBIO-MHBEP3HOM MOJIYTPYIIITBI
Matpul S umeer mecro m(S) = K u K-Bnonse npocrast noxyrpynna. Hao6opor,
ecnu S-m00asi MOJYrpymna MaTpHlL, IS KOoTopoit siapo K BIOJIHE mpocToe, TO
K = m(S).

IuTHpOBaHbIA OpUMEp JaeT OTPULATEIbHBIH OTBET HA OIMH OTKPBITHIA BOIPOC
¥3 Teopuu IOJyrpynn. A UMeHHo, JokasbiBaeTcs: Ecnu K-gapo moiyrpynm S, TO
JieBbIA uaealt u3 K He siBnsieTcss He0OXOIMMO JIEBBIM HIeajieM U3 S.
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