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Чехословацкий математический журнал т. 16 (91) 1966, Прага 

ON HOMOMORPHISMS OF COMMUTATIVE INVERSE SEMIGROUPS^) 

RONALD O. FULP, Atlanta 

(Received January 19, 1965) 

If S and T are semigroups, Нот (S, Т) denotes the semigroup of all homomor-
phisms from S into T with respect to pointwise multiplication. The product of a 
and ß in Нот (S, T) will always be denoted by oc. ß, and function composition will 
be denoted by juxtaposition. A semigroup S is said to be an inverse semigroup if for 
each x e S there is a unique x~^ e S such that xx~^x = x~^xx~^ = x. For each 
inverse semigroup S, Es denotes the maximal idempotent subsemigroup of S. If 
e e Es, then S^ denotes the maximal subgroup of S containing e. 

The main result of this paper is the determination of Нот (S, Т) in terms of the 
groups Horn (5g, Tf) (e e Es and / e Ej) for commutative inverse semigroups S and 
T. In particular, we determine the character semigroup of a commutative inverse 
semigroup S in terms of the character groups of the groups S^ (e e Es). The latter 
result was obtained for finite S by SCHWARZ [2] and by WARNE and WILLIAMS [3] 
for inverse S whose idempotents satisfy the minimal condition. 

Henceforth, S and T denote commutative inverse semigroups. Let a denote the 
homomorphism from S onto Es defined by x -^ x~^x. Similarly, define ß from T 
onto Ej^. For each À in Нот (Es, Ej), let Ĝ  denote the set of all (p in Нот (S, Т) 
such that the diagram 

IS commutative. 

^) The author is indebted to Professor PAUL D . HILL for his direction and advice in the 
preparation of this paper. 
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Lemma 1. For each X in Н о т (Eg, Ет\ G^ is a subgroup of Rom {S, T), Further-
more. Н о т (5, T) is the union of the collection of groups G^ over the semilattice 
Н о т [Es, Ej). 

Proof. Suppose Я e Н о т (£5, ^ r ) . If q)^ and (̂ 2 are in G ,̂ then ß{(Pi . (p^ = 
= (ß(Pi) ' [ß^Pi) = i"^^) • (^^) = "^oc and <Pi . (p2^ ^я- The homomorphism l a is 
in G^ and is an identity for G .̂ ïf (p e G ,̂ then the group inverse of <p is the homomor­
phism defined by x -> (p(x)~^. Thus G^ is a group for each Л in Н о т (Es, Ej^). Since 
the collection of groups {G^} partitions Н о т (S, T) regularly, the lemma follows. 

If ее Es a n d / e £ j , let t^ and TJ be the translations of S and T defined by x -> xe 
and с -> x/, respectively. For each Я in Н о т [Es, Ej), define H^ to be the subgroup 
of П Н о т (Sg, Тя(̂ )) consisting of those members Q = {̂  J of П Н о т (S^, T^ ,̂)) 

such that the diagram 

is commutative for all e^fe Eg such that / ^ e ( / g e if a.nd only if ef = f). 

Lemma 2. For each X in Н о т {Es, Ej), H л ^^ isomorphic to G^. 

Proof. Define a function F from G^into H^ by Е{(р) = {Q^} where o^ = (p\ S^. 
It is easy to verify that F is an isomorphism into H;^. We show that it is onto. Suppose 
that {Q^} is in H;^. Let cp denote the function from S into T defined by (p{x) = QJ^X) 
if X e Sg. Now if X e 5g and y e Sf for e,fe Es, then 

фу) = Qefi^y) = ^e/(-^^/) Qefiyef) = 

= Kef) Q^x) X{ef) Qf{y) = ^,(x) Qf{y) = (p[x) ф) . 

Thus cp is in Н о т (S, Т). Moreover, (Яа) (x) = X{e) = (jÖ^̂ ) (x) = {ß(p) (x) if 
X e 5g, so <)9 e G .̂ Hence F[(p) == {ф | S^} = [Q^] and F is onto. 

Let Ф denote the set of all ordered pairs [e, f) of Es such that f й e. Define a rela­
tion ^ on (P by (e , / ) ^ (^ ' , /0 if and only if e' ^ e and / ^ / ' . The relation ^ is 
a partial order on (!) (but, in general, is not a direction). For Я in Н о т (Es, Ej) and 
oc^ ß in (9, define a function с)̂ (Я) in the following way. If a = (e,f), ß = {e',f'), 
and lAis in Н о т (S,., T^y-.)), then ф (̂Я) (i/r) = (т^^) фт^) \ S,. The function (p^^(X} is 
a homomorphism from Horn (5,, , 7;(̂ ,>>) into Н о т (S„ Гд^^). We abbreviate ф (̂Я) 
to ^f since it is always clear from the context which Я is associated with a given (pf. 
Note that if a^ß ^y in CO then <?)f ф^ =. <pV ^nd ç^ is the identity on its domain. 
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Theorem 1. / / A is in Нот (E^, Ej), then 

(1) G^^invlim[{Hom(S„T^^)}(e, /)e(P;{/J] 

and 

(2) H o m ( S , T ) s u invlim[{Hom(S„r^(^)}(e,/)6 6?;{<?)f}] 
ЯбНот (Es . i^ r ) 

Proof. Let the group on the right hand side of 1) be denoted by L .̂ By Lemma 1 
and Lemma 2, it suffices to show that H^ ^ L;̂  for each À in Нот (Es, Ej). Let 
F denote the function from Я^ into П Нот {S^, T^f^) defined by the condition: 

(e,f)ee) 

if Q = {^J еЯд, then F(Q) = 9 = {Öĵ ^̂ , where 0̂  = '^unQe for each a = (ej) 
in Ф, Note that 0(e,e) = ^̂  if ^ ̂  ^s. and, therefore, F is one-one. It is immediate 
that F is a homomorphism. Now we show that F maps into L;̂ . Suppose Q E ЯД, 
в = F{Q), ша a^ß where ос = (eJ) e (!) and jÖ = {e\f) e (9. Then 

and Q e L .̂ In order to show that F is onto L ,̂ suppose that Ö e L .̂ Define ^ = 
= {Q]eeEs where ^̂  = ö(g,g) for all e e E .̂ We show that ^ G Яд and that F{Q) = 0. 
Suppose / ^ e in E ,̂ a = (e, e), ^ = (/ , / ) , and у = {e,f). Then у ^ oc, у -^ ß, and 

From the above equations, one has that Q e Нд. It follows from similar calculations 
that F(Q) = 0, which completes the proof of the theorem. 

Acharacter o fS i sa homomorphism x from iS into the multiplicative semigroup 
С of complex numbers such that x(l) 4= 0 if 1 is an identity of S. We let S* denote 
the semigroup of characters of S with respect to point wise multiplication. If S is 
a group, then S* is the usual character group of S, 

If Я G E*, the set of e e E^ such that À{e) .#= 0 forms a directed set with respect 
to the order ^ on E .̂ For each pair (e, f) of elements from this directed set such 
that / ^ e, define n{ to be the adjoint of the translation from S^ into Sf, that is, 
n{{(p) = {(pTf) I S^ for each cp in S*. It follows that \_{S'^}xie)^ol {'^i}'\ is an inverse 
system of groups. 

Theorem 2. S* ^ u invlim [({5*}д(̂ )фо? {^e}] provided that the inverse limit 
ÄeEs^ 

of a void collection of groups is defined to be the zero group. 

Proof. If in Theorem 1 we let Г = C, we have only to show that 

Ед = invlim [{Нот (S„ Тд(̂ ))}(̂ ,̂ )̂ ;̂ {ç)f}] 
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is isomorphic to invlim [{5*};^(^)ФО; {7Г{}] for each Я in £* such that X is not 
identically zero. The function F from L^ onto invlim \{ßf]x{e)^^\ We\\ <̂ efined 
by F({ö„}) = {Q^ where Q^ = 0̂ ,̂̂ )̂ for each eeE^ with Я(е) ф 0 is an isomorphism. 
The details of the proof that F is an isomorphism are similar to those in the proof 
of Theorem 1. 

The following corollary of Theorem 2 is essentially Theorem 5.63 in [1]. 

Corollary. / / E5 satisfies the minimal condition, then S* ^ u S*̂ ;̂ ) where e{X) 
is the minimal e such that l[e) Ф 0. ^^^^ 

Proof. Since the set {ееЕ^\А{е) Ф 0} has a minimal element е(Я), 

invlim [{5*}я(е)Фо;{^{}] = <̂ * 
eUr 

More precisely, the map {̂  J -> ^̂ (я) is an isomorphism from invlim [{-5*}я(е)фо; {'^i}~\ 
onto S,(*. 
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Резюме 

ГОМОМОРФИЗМЫ КОММУТАТИВНЫХ ИНВЕРСНЫХ ПОЛУГРУПП 

РОНАЛЬД о . ФУЛП Ronald О. Fulp), Атланта 

Пусть S, Т — коммутативные инверсные полугруппы, Es, Ej — подполу­
группы идемпотентов. Если ое Eg, fe Е^, то пусть S^, Sf — максимальные 
группы, принадлежащие идемпотентам е, / . 

Целью статьи является изз^ение строения Нот (5, Т) с помощью групп 
Нот (5^, Sj), 

Как следствие получаются некоторые результаты, касающиеся характеров 
инверсных полугрупп. 
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