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Yexoc10BaNKHii MaTeMATRYECKHIT sKypHaT T. 16 (91) 1966, IMpara

ON HOMOMORPHISMS OF COMMUTATIVE INVERSE SEMIGROUPSY)

RonaLD O. FuLp, Atlanta

(Received January 19, 1965)

If S and T are semigroups, Hom (S, T) denotes the semigroup of all homomor-
phisms from S into T with respect to pointwise multiplication. The product of «
and B in Hom (S, T) will always be denoted by « . B, and function composition will
be denoted by juxtaposition. A semigroup S is said to be an inverse semigroup if for
each x € S there is a unique x~! € S such that xx " !x = x"!xx~! = x. For each
inverse semigroup S, Eg denotes the maximal idempotent subsemigroup of S. If
e € Eg, then S, denotes the maximal subgroup of S containing e.

The main result of this paper is the determination of Hom (S, T) in terms of the
groups Hom (S,, Tf) (eeEsand fe ET) for commutative inverse semigroups S and
T. In particular, we determine the character semigroup of a commutative inverse
semigroup S in terms of the character groups of the groups S, (e € Eg). The latter
result was obtained for finite S by SCHWARZ [2] and by WARNE and WiLLIAMS [3]
for inverse S whose idempotents satisfy the minimal condition.

Henceforth, S and T denote commutative inverse semigroups. Let o denote the
homomorphism from S onto Eg defined by x — x~!x. Similarly, define B from T
onto Er. For each 1 in Hom (Eg, Ey), let G, denote the set of all ¢ in Hom (S, T)
such that the diagram .

@

S T
o ﬁ
J A !

Eg ~E,

is commutative.

) The author is indebted to Professor PAuL D. HiLL for his direction and advice in the
preparation of this paper.
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Lemma 1. For each A in Hom (Eg, Er), G, is a subgroup of Hom (S, T). Further-
more, Hom (S, T) is the union of the collection of groups G, over the semilattice
Hom (E;, Ey).

Proof. Suppose A€ Hom (Eg, Er). If @, and ¢, are in G,, then B(¢; . @,) =
= (Bo1) - (Bo,) = (A) . (Aa) = Az and ¢, . ¢, € G, The homomorphism a is
in G, and is an identity for G,. If ¢ € G,, then the group inverse of ¢ is the homomor-
phism defined by x — ¢(x)™*. Thus G, is a group for each 4 in Hom (Es, E;). Since
the collection of groups {G,} partitions Hom (S, T) regularly, the lemma follows.

If e € Eg and f'€ Ey, let 7, and 7, be the translations of S and T defined by x — xe
and ¢ — xf, respectively. For each A in Hom (Eg, Ey), define H, to be the subgroup
of IT Hom (S,, Ty,) consisting of those members ¢ = {o,} of IT Hom (S,, Ty))

ecEs ecEs

such that the diagram

2.
S, — 7Ty,

Tas)

\ 0r
Sf ——_—_'—*Tl(f)

is commutative for all e, f € Eg such that f < e (f < eif and only if ef = f).

Lemma 2. For each A in Hom (Eg, Ey), H; is isomorphic to G,.

Proof. Define a function F from G, into H; by F(¢) = {g,} where ¢, = ¢ ] S,.
It is easy to verify that F is an isomorphism into H,. We show that it is onto. Suppose
that {g,} is in H,. Let ¢ denote the function from S into T defined by ¢(x) = g (x)
ifxeS, Nowif xeS,and y € S; for e, f € Eg, then

<P(XY) = Qef(xy) = Qef(xef ) Qef(yef )=
= Mef) 0.(x) Mef) e (y) = edx) e/(») = o(x) o(y).

Thus ¢ is in Hom (S, T). Moreover, () (x) = A(e) = (Be,) (x) = (Bo) (x) if
x € S,, s0 ¢ € G,. Hence F(¢) = {0 | S.} = {0.} and F is onto.

Let @ denote the set of all ordered pairs (e, f) of Eg such that f < e. Define a rela-
tion < on O by (e, f) Z(¢,f’) if and only if ¢’ < e and f < f'. The relation < is
a partial order on 0 (but, in general, is not a direction). For 1 in Hom (Es, Er) and
o =< B in 0, define a function @5(2) in the following way. If « = (e.f), B=(e.f),
and ¥ is in Hom (S.., Ty(s), then ©&(2) () = () Y2, | S.. The function @(2) is
a homomorphism from Hom (S.., Ty(;») into Hom (S,, T;(;,). We abbreviate ¢ 2)
to ¢ since it is always clear from the context which 1 is associated with a given ¢F.
Note that if @ < f <y in 0 then ¢fg} = ¢ and % is the identity on its domain.
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Theorem 1. If A is in Hom (Eg, Er), then

(1) G, = invlim [{Hom (S, Ty(p)} (e, f) € 0; {9%}]

and

(2) Hom (S, T)= v invlim [{Hom (S,, Ty,)} (e, f) € 0; {0%}]
2eHom (Es,ET)
Proof. Let the group on the right hand side of 1) be denoted by L,. By Lemma 1
and Lemma 2, it suffices to show that H, =~ L, for each A in Hom (ES, ET). Let

F denote the function from H, into IT Hom (S,, T} ;) defined by the condition:
(e,f)e0

if ¢ = {0} € H,, then F(o) = 6 = {0,},.o Where 0, = 1,0, for each a = (e, f)

in @. Note that 6, = ¢, if ee€ Eg, and, therefore, F is one-one. It is immediate

that F is a homomorphism. Now we show that F maps into L,. Suppose ¢ € H,,

0 = F(e), and o X 8 where o = (e, f) € 0 and B = (¢, f') € 0. Then

P%0p) = (TapTacrr@eer) | Se =
= (Tap2s Ty Ter) l Se = TunTagQe = b,
and feL,. In order to show that F is onto L;, suppose that § € L,. Define ¢ =

= {0} eers Where g, = 0, for all e € Es. We show that ¢ € H, and that F(o) = 6.
Suppose f < e in Eg, o = (e, ), B = (f,f), and y = (e, f). Then y < «, y < B, and

Tan@ o= Taple = @3(0.) = 0, = ¢5(05) = 7, | Se = o515 l S..
From the above equations, one has that ¢ € H,. It follows from similar calculations

that F(Q) = 0, which completes the proof of the theorem.

A character of S is a homomorphism y from S into the multiplicative semigroup
C of complex numbers such that x(1) & 0 if 1 is an identity of S. We let S* denote
the semigroup of characters of S with respect to pointwise multiplication. If S is
a group, then S* is the usual character group of S.

If Ae E¥, the set of e e Eg such that Afe) 4 0 forms a directed set with respect
to the order = on Eg. For each pair (e, f) of elements from this directed set such
that f < e, define 7/ to be the adjoint of the translation from S, into S, that is,
nl(¢) = (¢15) | S, for each ¢ in S}. It follows that [{S}},)+o; {r}] is an inverse
system of groups.

Theorem 2. S* =~ v invlim [({S}},e)+0; {nl}] provided that the inverse limit
AcEg*

of a void collection of groups is defined to be the zero group.

Proof. If in Theorem 1 we let T = C, we have only to show that
L; = invlim [{Hom (S,, Ty5))}e.pye0s {95}]
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is isomorphic to invlim [{S;} e «0; {nf}] for each 4 in E¥ such that 4 is not
identically zero. The function F from L, onto invlim [{S}},y+0; {n/}] defined
by F({0,}) = {¢.} where ¢, = 0, for each e € Egwith A(e) * 0 is an isomorphism.
The details of the proof that F is an isomorphism are similar to those in the proof
of Theorem 1.

The following corollary of Theorem 2 is essentially Theorem 5.63 in [1].

Corollary. If Eg satisfies the minimal condition, then S* =~ U Sk, where e())
is the minimal e such that J(e) =% 0. AeEs

Proof. Since the set {ee Es|A(e) & 0} has a minimal element e(2),

invlim [{S¥},)+0; {n0}] = S

More precisely, the map {¢.} = 0.(;is an isomorphism from invlim [{S¥} ;) +0; {n1}]
onto S,;.
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Pesrome
TOMOMOP®U3MBI KOMMYTATUBHBIX MHBEPCHBIX ITOJIVI'PVIIII

POHAJIB/] O. ®VJIII Ronald O. Fulp), Atnanta

Ilycte S, T — xOoMMyTaTUBHbBIC HHBEPCHBIC MONyrpymmsl, Eg, E; — moamoiy-
rpynnsl uaemnoTentos. Ecmu e € Eg, fe Ey, To mycts S,, S; — MaKCHMaJbHEIE
TPYNITBI, IPUHAIEKAIIUE HIEMIIOTEHTaM e, f.

Lenpto cratby sBiseTcss W3yvenme crpoennss Hom (S, T) ¢ HOMOIIBIO TPy
Hom (S,, Sj).

Kax cirecTBHE HOJIyYaIOTCSI HEKOTOPbIE Pe3yJIbTAaThI, KacalolMecs XapaKTepoB
HMHBEPCHBIX TOJIYTPYyIII.
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