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KRONECKER INDEX IN ABSTRACT DYNAMICAL SYSTEMS, II

Jozer NAGY, Praha

(Received February 11, 1965)

In [6] there was defined the index of a point or of a simple loop in R2, and then
applied to the investigation of qualitative properties of critical points of dynamical
systems in R2. Now we will attempt to extend this definition to the case of a local
dynamical system defined in p-dimensional Euclidean space R”. In [6] it was shown
that the index of the boundary of a Jordan region in R?, under certain suppositions,
yields considerable information about the behaviour of the dynamical system within
this domain. Particularly interesting are the cases when this boundary is a closed
trajectory or transversal. Of course, these results are characteristic for the case p = 2
and it seems at a first sight that for p > 2 the use of indices would not lead to such
elegant results. However, it will be shown in the present paper that one may obtain,
for general p, several interesting results, which are generalisations of results of [6].
These include e.g. the theorem on the index of the boundary of an invariant domain
in R?, the theorem on the expression of the index of the boundary of a domain by
means of the sum of indices of enclosed critical points, etc. The main results of this
paper are contained in theorems 2.10, 2.12, 2.16, 2.17 and 2.18.

2.1. Let us recall some notions and notation. We use throughout the notation
introduced in [6]. The results of paper [6] will be referred to directly; e.g. theorem
1.17 is theorem 1.17 in [6]. We suppose as known the notions of an Euclidean
r-dimensional simplex (r-simplex), of a simplicial complex and its subdivision, of
a simplicial map, of a polyhedron and its triangulation, of an r-chain of the given
complex (over the group ., of integers) and of the corresponding elementary notions
of algebraic topology (see e.g. [2, I, §1]). As coefficient group we use only the
group 4, of integers; this assumption will not be repeated.

If IT is a triangulation of a polyhedron P, we denote by C(IT) the group of r-chains,
0, the boundary operator C/(IT) into C,_,(IT); Z,(IT) and B,(IT) denote the groups of
r-cycles and r-boundaries respectively; H,(IT) denotes the factor group Z,(IT)/B(IT)
(the r-th homology group of the triangulation IT). For a map f of a polyhedron P
into a polyhedron Py, simplicial with respect to the triangulations IT, IT, respectively,
we denote by fy, the homomorphism C,(II) » C/(IT;) induced by f. The cor-
responding induced homomorphism H,(IT) » H,(IT;) we denote by fs,-
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r-th homology group, for a continuous map
H,(P) — Hy(P;) induced by f. This twofold
1 not lead to a misunderstanding. We shall

For a polyhedron P let H,(P ) be it.s
f:P - P, let f,, be the homomorphism

use of the symbols f,, and H, possibly wil ‘ ;
write fy, fu, @ in place of fyr> fur O Whenever the particular value of r is not

essential.

2.2. A compact triangulable subset P of the space R? will be called an n-pseudo-
manifold (n < p) if at least one its triangulations has the following five properties:

(i) IT contains at least one n-simplex but no k-simplex for k > n;

(ii) for each two n-simplices 7, v of the complex IT there exists a sequence T =
= Ty, Ty, ..., Ts = T Of n-simplices of IT such that any two neighbouring n-simplices
of this sequence have an (n — 1)-side in common;

(iil) each (n — 1)-simplex of IT is a side of precisely two n-simplices of IT;

(iv) each m-simplex (m < n) of IT is a side of at least one n-simplex of IT;

(v) the pair (Int P, P), where Int P is a bounded component of R” — P, is
a triangulable pair [3].

It may be noted that the notion of a pseudomanifold used in this paper is not
equivalent with that used in [1] and [2], where the property (v) is not required.

The set Int P in (v) is determined uniquely, since according to the Jordan-Brouwer

Theorem [1, X, § 2, theorem IV], every (p — 1)-pseudomanifold P in R” has two
complementary domains, of each of which it is the complete frontier, i.e.

RP — P=IntPUExtP,

where Int P (the inner domain of P) and Ext P (the outer domain of P) are non-void
disjoint sets with common frontier P. By definition, the domain Int P is bounded,
Ext P unbounded.

An n-pseudomanifold will be called orientable if H,(P) is isomorphic to .£,. An
orientable n-pseudomanifold will be called oriented if one of the generators of H,(P)
is declared to be orienting. If Z is an orienting generator of H,,(P), than each cycle
{ € Z will be called an orienting cycle of P.

The simplest example of an n-pseudomanifold in R? (being at the same time an
n-manifold, i.e. each of its points has a neighbourhood homeomorphic to R,) is
the n-dimensional sphere S" for 0 < n < p. The groups Hy(S") and H,(S") are
isomorphic to £, H/(S") for 0 < i < nare trivial [3, I, theorem 16.6]. Hence, the
sphere S” is an orientable n-pseudomanifold.

According to [1, X, § 2] for every (p — 1)-pseudomanifold P the group H,_,(P)
is isomorphic to .#,, hence, every (p — 1)-pseudomanifold in RP is orientable.

According to [1, V, § 4.6, (15)] for every p-dimensional polyhedron Q in R? the

group H,(Q) is isomorphic to the direct sum Y. £, + 0,(Q), where m,(Q) and
n(Q)
6,(Q) denote n-th Betti number and n-th torsion group of Q respectively. Hence
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there follows that H,,_,(Int P) = 0 for every (p — 1)-pseudomanifold in R”. Indeed,
according to [1, XI, §3.12] @,_,(Int P) is trivial and from the Alexander Duality
Theorem [1, XI, § 4.1] there follows that 7,_,(Int P) = mo(Ext P) — 1 = 0.

Definition 2.1. Let P, Q be oriented n-pseudomanifolds, Y, Z orienting generators
of the groups H,(P), H,(Q) respectively, f: P — Q. The degree of the map f is
defined as the unique number deg (f) satisfying the relation f,.Y = deg (f) Z.

The following three propositions are almost trivial:

(@) deg (f) is an integer.

(B) If f1 = f, then deg (f) = deg (f,).

('y) On changing the orientation of precisely one of the n-pseudomanifolds P, Q,
the degree changes sign.

We shall also need to choose coherent orientations for all unit (p — 1)-spheres
in R?. Let S57* be the (p — 1)-sphere in R? with center 0 and radius 1. Choosing an
orienting generator of H,_(S§™"), we obtain the oriented sphere S5~ . Now define
the orienting generator of an arbitrary sphere S?~! with center a and radius 1 so
that deg(f) = 1 for the translation #: S2™' — SZ~'. By the oriented sphere SI™*
we mean throughout the sphere S?~* oriented in this manner.

~ 2.3. Now we shall introduce the concept of the order of a point with respect to
a map in RP.

Definition 2.2. Let S?™' be an oriented sphere with center in a, 7, : R? — {a} —
— SP7! the projection from the point a, P an oriented (p — 1)-pseudomanifold,
1: P — R? — {a}. The order, w(a, ), of a with respect to I is defined as the number
deg (m,l).

In the following lemmas several properties of the order w(a, I) will be given, which
we shall often use later.

Lemma 2.3. Let P be an oriented (p — 1)-pseudomanifold, 1, 1,1, : P - R? — {a}.
Then there hold the following propositions:
() if mply > ml, in ST, then w(a, 1) = w(a, 1,);
(ii) o(a, l)is an integer;
(i) on changing the orientation of P, the order v(a, I) changes its sign;
(iv) if a, a’ are points in the same component of RP — I(P), then w(a, ) = w(d’, I).
(The proof is immediate.)

Let K be an arbitrary component of the set R” — I(P). Proposition (iv) allows one
to define the order w(K, I) of the component K as the number w(a, I), where a is an
arbitrary point in K. In particular, if I(P) is a (p — 1)-pseudomanifold, then
o(Int I(P), I) and w(Ext I(P), I) are well-defined.
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Lemma 2.4. Let P be an oriented (p — 1)-pseudomanifold, aeIntP,i: P c
< R? — {a}. Then there hold the following propositions:

(i) o(Int P, i) = &p, where |ep| = 1;

(ii) w(Ext P,i) = 0; or more generally ;

(i) if 1:P—> RP — {0}, K the unbounded component of R? — I(P), then
o(K, 1) = 0.

(For the proof see [1], chap. XI, § 4, theorem 1I1.)

In the situation of lemma 2.1, if ¢, = 1, then we shall say that the (p — 1) pseudo-
manifold P is positively oriented; the corresponding orienting generator (or cycle)
will be called a positive orienting generator (cycle); in the opposite case the (p — 1)-
pseudomanifold will be called negatively oriented and we shall speak about a negative
orienting generator (cycle).

Lemma 2.5. Let P be an oriented (p — 1)-pseudomanifold, f RP ~ R?, g eR?,
Joi RO~ {a) % RP— (f(a)} : o) = f(x), 1: P~ R? — {a}, 1527 = R — {a]
Then o(f(a), fol) = o(f(a), foi) . w(a, 1) and |o(f(a), foi)| = 1. :

Proof. Let S, Sy, Z be orienting generators of H,_,(S?™!), H,_,(S%z3), H,-1(P)
respectively, and 7 : R? — {a} > SZ7', n, : R? — {f(a)} - S,”(_,,)l projections. From
the definition 2.1 there follow (in the (p — 1)-st homological groups)

(n)eZ = o(a, 1) S, (n1fol)x Z = o(f(a), fol) Sy, (m1foi)s S = w(f(a),foi) S;.

Define a homotopy h; :inl ~ I in R? — {a} as follows: h,(x) = (1 — A)inl(x) +
+ 2l(x). Clearly, n,foh; is then a homotopy ,foinl ~m,f,! in S%,;, and hence
(nyfoinl)s Z = (nyfol)s Z. Now, there is

o(f(a), fol) S = (i fol)x Z = (mi foinl) Z = (1 foi)s (nl)x Z =
= (n1foi)s (a, 1) S = o(a, I) (n,foi)s S = w(a, 1) . o(f(a), foi) Sy »
and thus finally
o(f(a), fol) = w(f(a), foi) . w(a, 1) .

For the proof of the relation |w(f(a), foi)| = 1 see [1], chap. XII, § 2, theorem VI.

The lemma 2.5 allows one to assign, to every homeomorphism f : R? & R?, the
number e; = w(f(0), foi); the homeomorphism f is said to be orientation preserving
if e, = 1, and orientation reversing if e, = —1.

Lemma 2.6. Let sym, : R? ~ R? be the symmetry of RP relative to the origin,
(i.e. the affine mapping given by the matrix (ay), a;; = —1, ay = 0 for j * k,
j,k=1,2,...,n); then ey, = (—1). More generally, if sym:R” ~ R? is
a symmetry of RP relative to a point x, and S an oriented sphere with center in x,,
i:S <R fo:S >R = {xo}:fo(x) =symi(x), then w(xq, fo) = (—=1)7. &
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Proof. Clearly ey, = det (a;) = (—1) and o(xo, fo) = &s. - Cgyme-

2.4. In this paragraph we shall introduce the notions of a local dynamical system
[4] and of vector fields associated with a local dynamical system, which will play
a very important role in the remaining part of the paper.

Definition 2.7. A local dynamical system on a topological space P is a partial
mapping T out of P x R! into P which satisfies the following five conditions:

(1) the domain of T is open;

(2) Tis continuous;

(3) to each x e P there exist a,, B, with —o0 < B, <0 < a, < +00 and such
that xT0 is defined iff 8, < 0 < a,, where xT0 denotes the value of the mapping T at
the point (x, 8) e P x R', if this is defined;

(4) xT0 = x obtains for all x € P;

(5) (x70,)T0, = xT(6, + 6,) holds if both xT6; and also the left or right side of
this relation are defined.

A local dynamical system with P x R! as domain will be termed a global
dynamical system.

For R =« P, 4 = R! denote XTA = {xT0:xeX, O A, xT0 defined}. Let T be
a local dynamical system in P. A point x € P is said to be a critical point of the local
dynamical system T if xT6 = x holds for all 8 such that xT6 is defined. If there
exists a least 0, > O such that xT6, = x holds, then the set xTR! will be called
a periodic trajectory with the primitive period 6,. Every number k6, with k an
integer will be called a period of the periodic trajectory xTR!. If xT0 % x holds for
all 0 € R! such that xT0 is defined, then the set xTR! will be called a (non-periodic)
trajectory.

A set X < P is termed a +invariant (or —invariant, invariant) set of the local
dynamical system T if XT¢0, +o) < X, (or XT(—o0,0) = X, XTR' = X
respectively).

Now consider a local dynamical system T on R?, and let K = R?, 0 < g€ R,
J:K - (0, ¢) any continuous mapping such that xT9(x) is defined for all x e K.
A vector field of the local dynamical system T on K is the mapping W:K — R?
defined by

(1) W(x) = xTY(x) — x .

The mapping W is continuous. Clearly, W vanishes at a point x, if either x, is
a critical point of the local dynamical system T, or x,, is on a periodic trajectory with
the period (x,), or 9(x,) = 0[5, VI, § 1].

If 3, ~ 3,, then, obviously, the corresponding vector fields are also homotopic.
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Lemma 2.8. Let T be a local dynamical system in R?, F = R? compact non-poiq

and containing no critical point of T. Then there exists an A, 0 < A€ R!, such
that

(i) xTO is defined for every (x, 0) € R” x (0, A);
(ii) for every mapping 9 : F — (0, A), the mapping W defined by (1) is a vector
field of the local dynamical system T, continuous and vanishing nowhere on F.

Proof. Let xe F. There exists an o, > 0 such that xT0 is defined for every
0 € <0, ocx). The domain of T is open; hence there exists a neighbourhood G, of x
and an a, e R' such that 0 < a, < &, and yT0 is defined for every (y, 6) e G, x
x <0, a,) = H,. The set H, is open in R? x <0, + o). Clearly, the system {H) oor
is an open cover of F x {0}; then there is a finite cover {Hx;}}—=; = {H },r. Now
assertion (i) holds for every 4 with 0 < A < min {a,,, a,,, ..., a,,}.

The proof of (ii) is the same as that of lemma 1.5 in [6].

Let now T, F, A be as in lemma 2.8. Then for every two mappings 9., 3, : F —
— (0, A) there exists a homotopy 9,:9, ~ 9; (e.g 9,(x) = (1 — 1) 9(x) +
+ 294(x)) such that, for every 1 €I, the mapping W, defined as in (1) is a vector
field of the system T, continuous and vanishing nowhere on F. Every vector field W
on F defined by (1) with 9:F — (0, 4) defines a mapping W,:F — RP —
— {0} : Wy(x) = W(x). Every such mapping W, will be termed a small vector field
of the local dynamical system T on F.

2.5. From lemma 2.8 it follows that, for every (p — 1)-pseudomanifold P in RP
containing no critical points of the local dynamical system T, there exist small vector
fields on P. If W,, W, are two small vector fields on P, then 0 ¢ W,(P) U W,(P), and
according to lemmas 2.8 and 2.2 (i), there holds (0, W;) = w(0, W,). Now we can
set up the following definition.

Definition 2.9. Let T be a local dynamical system in R”, P an oriented (p — 1)-
pseudomanifold in R? containing no critical points of T, W a small vector field on P.
The Kronecker index ind; P of P relative to T is defined as &p . (0, W).

Immediately from the definition it follows that ind; P is an integer not depending
on the orientation of P; thus in this definition the assumption on the orientation of P
can be weakened to orientability only.

Theorem 2.10. Let P be a (p — 1)-pseudomanifold in RP, T a local dynamical
system in RP without critical points in Int P. Then ind{ P = 0.

Proof. Let Q =IntP, i: P  Q, Z an orienting generator of H,_;(P), S an
orienting generator of H,_,(S§™"). Itis easily shown that H,_,(Q) = 0. Hence it
follows that i,Z is the zero element of H,_,(Q). According to lemma 2.8 there exists
a small vector field Won Q, hence for nW: Q — sg"l there holds

)] (xW)e Z = 0.
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Clearly, Wi is a small vector field on P, and from (2) and the definition 2.1 one obtains
0 = (nWi)y Z = (0, Wi) S; it follows that w(0, Wi) =0 and thus ind; P = ¢ .
- (0, Wi) = 0.

Corollary 2.11. If ind; P # 0, then Int P contains at least one critical point of the
local dynamical system T.

Theorem 2.12. Let T be a local dynamical system on R?, S a (p — 1)-sphere
containing no critical point of T. Then

(i) ind; S = 1ifIntS is —invariant,

(ii) ind; S = (—1)? if Int S is + invariant.

Proof. Denote by x, and r the center and the radius of thesphere S, i : S = R? —
— {Xo}- )

Ad (1) From the assumptions it follows that there exists an 4 > 0 such that
|xT0 — xo| = r and xTA + x for all (x, 0) € S x <0, A). Define mappings Wy, W, :
:S - R? — {0} and a homotopy W, : W, ~ W, as follows:

Wo(x) = x — xo, Wi(x)=xT4 — x,
Wy(x) = xT(A4) — xo — Ax — x,) -

Obviously, W, is continuous and vanishes nowhere on S, since |xT(24) — xo| =
=7 > Ax — xo|for 0 £ A < 1, Wy(x) = xTA — x + 0. Thus

(3) (0, Wo) = w(0, W) = o(xo, i) = &5,

and hence ind; S = &5. (0, W;) = &5. &5 = 1.

Ad (ii): From the assumptions it follows that Int S is also +invariant, so that
there exists an A4 > 0 such that |[xT0 — x| £ r for every (x,0)eS x <0, 4).
Define mappings W,, W; : S - R? — {0} and a homotopy W, : W, ~ W, as follows:
Wy(x) = xo — x, Wy(x) = xTA — x, Wy(x) = AxTA — x¢) + (Xo — x). Obviously,
W; is continuous and vanishes nowhere on S, since /lleA - xl <r= lxo - x| for
0=<1<1, Wy(x) = xT4 — x + 0. According to lemmas 2.3 and 2.6

4) (0, W) = (0, W) = w(x, fo) = &5 - (—=1)7, (f, from 2.6),
and hence .
ind; S = e5. 5. (—1)7 = (=1)°.

The theorem 2.12 is thus proved.

From (3) and (4) it may be noted that ind; S in the theorem is expressed by
topological invariants (w(x,, i) and w(x,, sym) respectively, see lemma 2.6). The
assumption about S in the theorem may now be weakened thus: S is an arbitrary
(p — 1)-manifold in R?, homeomorphic to a (p — 1)-sphere.
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Corollary 2.13. Let R” be odd-dimensional, let a (p — 1)-manifold S be homeo-
morphic to a (p — 1)-sphere. Then IntS is not an invariant set of any local
dynamical system without critical points on S.

Proof. Let Int S be the invariant set of a local dynamical system T. Then Int S is
also —invariant. From the proposition 2.12 (i) there follows ind; S = 1, from (ii)
there follows ind; S = —1; this is a contradiction.

Corollary 2.14. If the (p — 1)-sphere S satisfies the assumptions of the theorem
2.12, then Int S contains at least one critical point of the local dynamical system T.

For proof see corollary 2.11.

2.6. Definition 2.9 generalises the definition of the index of a simple loop [6,
def. 1.6], and also allows one to generalise in the same manner the notion of the index
of a critical point. We shall prove that this generalised index of a critical point is also
a topological invariant.

Definition 2.15. Let T be a local dynamical system, x € R? not an accumulation point
of critical points of T, S an oriented (p — 1)-sphere with center x and small enough
to have Int S — {x} contain no critical points of T. The Kronecker index ind; x of
the point x relative to T is defined as the number ind; S.

It is easily shown that ind; x does not depend on the choice of S.

By a generalisation of theorem 1.17 we now obtain an important result which also
enables us to replace a (p — 1)-sphere S in definition 2.15 by an arbitrary (p — 1)-
pseudomanifold.

Theorem 2.16. Let the inner domain of a (p — 1)-pseudomanifold P contain only
a finite number x,, X,, ..., X, of critical points of a local dynamical system T, and
let there be none on P. Then

n
ind; P =Y ind; x;.
i=1

Proof. For j = 1,2,...,n let S; be a (p — 1)-sphere with center in x;, such
that S, N S; =0 holds for 1 £k <j<n Denote Q=IntP— {IntS,,

ip:PcQ, i;:S;= Q. Let Zy, Zy, ..., Z, be positive orienting genéraltors of
H, y(P),H,_{(S), ... H,_4(S,), Zi = (i;)x Z, for I = 0,1, ..., n.

Let n: R? — {0} » S2~! be the projection, S an orienting generator of S5~ 1.
Then it is easily shown that

(8) Zy-YZ;=0.
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Let Wbe a small vector field on Q. Then from (8) there follows (n W) (Z5 — z Z) =

= 0; substituting Z = (i), ZJ, one obtains (nW), (io)s Zo = Z (W) (i 1)* Z 5 or,

equlvalently, (0, Wiy) S = 2 (0, Wi;) S; hence there follows (0, Wiy) =
jZI (0, Wij). According to the assumption, P, Sy, ..., S, are positively oriented,

ie. &p =&, = ... = g5 = 1, so that
ind; P = ¢p. (0, Wiy) = Zas (0, Wij;) = ZdexJ

The theorem 2.16 is proved.

From theorem 2.16 it follows immediately that if x, € R? is not an accumulation
point of critical points of T and Py, P, are (p — 1)-pseudomanifolds such that
xo€Int P, nInt P,, Int P, U Int P, — {x,} contains no critical point of T, then
ind; P; = ind; P, = ind; x,. Hence the sphere S in definition 2.15 may be replaced
by an arbitrary (p — 1)-pseudomanifold P having the properties described in this
definition.

From the definition of local dynamical systems one has directly the following
proposition: If T is a local dynamical system in R?, f: RP x~ R?, then the relation
f(xT10) = f(x)T, 0 defines a local dynamical system T, in RP. Naturally there arises
the question as to the relation between ind; x and indy, f(x). The answer is the
following theorem on the topological invariance of the index of a point.

Theorem 2.17. Let x, € R? not be an accumulation point of critical points
of a local dynamical system T in RP, f:RP ~ RP. Then indyx, = indy, f(xo)-.

Proof. Let S be as in definition 2.15. Let # € R! be such that the mapping
W, : S - R? — {0} given by the relation Wy(x) = xT0 — x is a small vector field
on S. Let fo : S — R? — {0} be given by the relation fo(x) = xT6. The proof of the
theorem will be divided into two parts.

I. Let fo(S) = Ext S. .

Define a mapping W, : S — R? — {0} and a homotopy W, : W, ~ W, in R? — {0}
by the relations (also see fig. 1) Wy(x) = fo(x) — X0, Wi(x) = fo(x) — x + A(x — x,).
W, is continuous, and vanishes nowhere on S, as W,(x) = fo(x) — xo + (1 — 4).
(xo = x), (L= 2)|x = xo| = (1 = A)r <7 <|fo(x) — Xo|- Thus according to
lemma 2.3, (0, W,) = (0, W;). From the definition of the mapping W, it follows
easily that w(xo, fo) = (0, W;), so that

(6) ‘U(O’ Wo) = w(xo,fo) s

and hence indy xo = &5 . @(Xg, fo). From lemma 2.5 one obtains & = e, . &s,

a(f(%o), ffo) = €5 - (%0, fo) and thus indr, f(Xo) = scs) - O(f(x0)s ffo) = &5 - € -

. e; . (xo, fo) = indy x,. The topological invariance of the index in case I is proved.
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IL Let fo(S) ¢ ExtS.

First we shall prove one proposition which will make it possible to carry over the
proof of case I to the present case.

Proposition. There exist f, : S —»R? — {0}, fi(S) = Ext S and a homotopy
h; :fo ~ fy such that hy(x) # x for every Ael.

frx)

Fig. 1. Fig. 2.

Proof of proposition. Define f; and h;, as follows (see fig. 2):

hiy(x) = x + (|fo(x) — x| + /I.2r)—@;x—.
|fo(x) — x|

From the relation |fy(x) — x| = [fo(x) — x| + 2r > 2r there follows f,(S) = Ext S,
and from the relation |h,(x) — x| = |fo(x) — x| + 4.2r > 0 for 1 e[ there follows
h,(x) % x for every Ael.

The proposition is proved.

Returning to the proof of the theorem, we shall show that the mapping f; from the
proposition has the properties of the mapping f, from case I. The relation f(S) =
< Ext S is evident. Defining the mapping W :S — R? — {0} and the homotopy
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Il

w, - Wo = Wg by Wy(x) = filx) — x, Wy(x) = hy(x) — x, we obtain (0, W‘f)
— (0, W). Furthermore, from f,(S) = Ext S there follows (see (6)) (0, We)
< (%o, f1), hence

(7) (0, W) = (0, W) = w(xo, f1) -

This shows that f; has the property of f, from (6). Now we may apply the first part
of the proof which concludes the proof of theorem 2.16.

Now we shall give two results which may be useful for the calculation of the
index.

Corollary 2.12. Let the inner domain of a (p — 1)-pseud0rﬁanifold P contain
only a finite number of critical points of a local dynamical system T, and let there
be none on P; let f : RP &~ RP. Then ind; P = indy, f(P).

Proof. If x4, x,, ..., X, are all the critical points of T in Int P, then f(x,), f(x,), ...,
..., f(x,) are all the critical points of T, in Intf(P). From theorems 2.16 and 2.17

there follows ind; P = ) ind; x; = Y. indq, f(x;) = ind, f(P).
j=1 j=1

Theorem 2.19. Let the inner domain of a (p - 1)-pseudomanifold P contain only
a finite number of critical points of a local dynamical system T and let there be
none on P. Let Wy be a small vector field on P and let f : P — R? be such that the
mapping W, : P — R? — {0} defined by W,(x) = f(x) — x satisfies on P the rela-
tion |Wy(x) — Wy(x)| < [Wy(x)|. Then ind; P = &p . (0, W,).

Proof. We shall prove that W, and W, are homotopic in R? — {0}. Define
a homotopy W, : W, ~ W; in RP — {0} by W,(x) = (1 — ) Wy(x) + 4 Wy(x).
W, is evidently continuous. We shall prove that it vanishes nowhere on R? — {0}.
Suppose that there exists a point (4o, Xo) € €0, 1> x P such that W, (x,) = 0. Then
(1 = Zo) Wo(xo) + Ao Wy(xo) = 0, hence Wo(xo) = Ao(Wo(xo) — Wi(x,)), and thus
[Wo(xo)| < |Wo(xo) — Wi(xo)|; this contradicts the assumption of the theorem.
Thus W, is indeed a homotopy W, ~ W, in R? — {0}, and then the theorem follows
immediately.

2.7. In this last paragraph we make one remark concernin g the réle of the unicity
of trajectories assumption in our investigation. If T is a local dynamical system, then
the relation xT0 = yT0 implies x = y. It may be noted that we have not exploited
this property of T in our treatment. Thus it is very natural to generalise, in a certain
sense, our results to the category of the so-called local semi-dynamical systems on'R?
[4]. Let us recall the definition of a local semi-dynamical system (R™ denotes the
set of all non-negative reals).
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Definition 2.20. A local semi-dynamical system on a topological space P is a partial
mapping T out of P x R* into P which satisfies the following five conditions:

(1) the domain of T is open;

(2) T is continuous;

(3) to each x eP there exists an o, with 0 < o, < +co0 and such that xT0 is
defined iff 0 < 0 < o,; here xT0 denotes, whenever defined, the value of the mapping T
at the point (x, 0) e P x R*;

(4) xT0 = x obtains for all x e P;

(5) (x10,)T0, = xT(0, + 0,) holds iff the left or right side of this relation is
defined.

A local semi-dynamical system with P x R* as domain will be termed a global
semi-dynamical system.

It is clear that for a local semi-dynamical system -unicity need not hold, i.e. from
the relation xT6 = yT0 there need not follow x = y.

The main apparatus in the present paper were small vector fields of local dynamical
systems T on compact sets in R?. In the definition of these fields only the values of
0 € <0, s), for some ¢ > 0, were used. Hence it is clear that one can define the notion
of a small vector field and also the notions of the Kronecker index of a (p — 1)-
pseudomanifold or of a point in R? in the same manner also for a local semi-dynamical
system. It is easily verified that all the results holding for local dynamical systems also
hold for local semi-dynamical systems.

Note. I have been advised that reference [2] of [6] will not be published as
a separate paper, but will appear as part of chap. VI, section 3 in [5].
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Pesrome

VHIEKC KPOHEKKEPA B ABCTPAKTHBIX NTMHAMUWYECKHNX
CUCTEMAX, II

MOCE® HAJlb, (Jozef Nagy),IIpara

B paboTe onpenenseTcs 40KaAbHaAA OUHAMUYECKAA cucmema T B p-MEPHOM €BKJIMJIO-
BoM TnpocTpanctse R? (ompenmesienne 2.7). TlotoM ompeneistercs (onmpeneneHue 2.9
u 2.15) unoexc Kpouexxepa ind; P (p — 1)-mepHoro ncesgomuoroobpasus P < R?,
HE COJIEPXKAILETr0 KPUTHIECKUX TOYEK JUHAMUYECKOM CHCTeMBI T, B uHOekc Kponexkkepa
ind; x Toykm x € RP OTHOCHTENBHO JOKANbHON MUHAMHYECKOW CHCTeMBI T. Jloka-
3biBaeTcs (teopema 2.17), yto undekc ind; x monoso2uuecky uneapuanmen.

Hanbueiiimme BaxHbIe pe3yJbTAaThl 9TOH pPabOTBI coAepXKAaTCS B CJICHYFOIIHX
TeopeMax:

Teopema 2.10. Ecau P — (p — 1)-mepHoe ncesdomnozoobpasue ¢ RP u Int P (3a-
MbiKaHue 6Hympenneli obaacmu P) He codepcum KpumuyecKux moyex AOKAAbHOUL
ounamuuecxoii cucmemor T, mo ind; P = 0.

Caencreue 2.11. Ecau ind; P + 0, mo Int P codepacum no kpaiineii mepe 00HY
KpUMU4eckyo mouKky cucmemst T.

Teopema 2.12. ITycme (p — 1)-mepnas cepa S 6 R? ne codepycum xpumuueckux
mouex A0KAAbHOL OuHamuydeckoii cucmemet T. Toz20a

(i) ind; S = 1, ecau Int S asasemea —unsapuanmmuoii obaacmoio,

(i1) ind; S = (—1)?, ecau Int S ss1aemca +unsapuanmmoii 06.1acmeto.

Caencreue 2.14. Ecau S — (p — 1)-mepnas cdepa uz meopemer 2.12., mo Int S
codepucum no Kpaiineil mepe 00Hy KpUmudecKkyio mouky cucmemot T.

Teopema 2.16. ITycmv (p — 1)-meproe ncesdommnozoobpasue 8 RP ne codepucum
KPUMUYecKux moyex A0KaAbHOU Ounamudeckoi cucmemsl T u nycms Int P codepacum
TMOABKO KOHEUHOE YUCAO KPUMUYECKUX MOUEK Xy, X,, ..., X, cucmemsl T. Tozoa umeem
Mecmo coomHouenue

indy P =) ind; x; .
j=1
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