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Let us consider, for n = 1, 2, ..., 00, the classical statistical decision problem with
a finite parameter probability space (X, &, p), an abstract sample space

(127 = ©(Y, %),
i=1
a set of probability measures

V(L | x) =®v(.|x), xeX,
i=1

on %", a decision space (X A ), and a weight function w. We shall assume without
loss of generality that Z contains all subsets of X and that pu(x) > 0 for every x € X.
If we define a probability measure w" on & ® %" by

"(E) = g;{,u(x) V({y":(x,)")€E}), EeZ®@D"

and if we denote by @" the marginal measure induced by " on #”, then the average
information I, in a sample y" € Y” concerning the parameter x can be defined as

follows (cf. [2], [3], [4]):

(1) 1, = flogfdco" >0,

where f is the Radon-Nikodym density of the joint probability measure @" with
respect to the product measure u ® &" (note that " < u ® @" holds). According
to Theorem 11 in [2],I,, n = 1, 2, ..., is a non-decreasing sequence and lim I,, = I ...

It has recently become clear that there is a relation between the Bayes risk r, of the
problem we have considered and I,. For example the results of the data reduction
theory, developed by Perez [3], yield in our case

(2 0<r,—r,< \/(ZWOrH(Iw -1,)
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where w,, is a constant defined by w < w,. That is why the evaluation of I, plays an
important role in the statistical decision theory.

This paper deals with the rate of convergence of I, to I, and with the value of I ,,.

In the sequel we shall use a distance measure 4 of two probability measures, say
11 12, defined on a measurable space (Y, %):

A("Ip 772) = %I’h - "lzl (Y)

where |111 - 112| denotes the total variation of the signed measure 17; — #,. It is clear
that 4 is a metric taking values between 0 and 1, and, in view of the Jordan decomposi-
tion theorem, there is F, € % such that

(3) A(”Iu 712) = ’71(F0) - 'lz(Fo) = i‘:; {’11(F) - ﬂz(F)} .

Let us point out that A(1, 7,) is a measure of divergence of 7, and 115, 4(ny, ) = 0
if and only if n; = n,, 4(n,, n,) = 1 if and only if n, L n,.
If we denote by H(y) the entropy of (X, Z, u) i.c.

Hip) = = 3 u(x)log u(x)
then the results of the paper may be summarized as follows.

Theorem. If

@) in % i‘;A(vi(. %), v [)) > 0

n=1,2,...

for every x',x" € X, x' + x", then there exist numbers A > 0 and 0 < A < 1 such
that

(5 0=1I,—1I,<Ax,
where
© I, = H(W).

The inequality
Q) 0=1, < H(p

allways holds.

Remark. If v(. | x), x € X, are mutually different for every i = 1, 2, ... and if there
is a disjoint decomposition {1,2, ...} = N; U N, U ... U N, such that

(Yo @5 vA(- [ %)) = (¥ @5 vi(- [ %))

@
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foreveryi,jeN,,m = 1,2,..., kand x € X, then condition (4) is satisfied. Therefore
the Theorem contains as a special case the results of RENYI [4] assuming that the
sequence of samples is a stationary finite-state process.

Assertions (5) and (6) are based on the following property of independent processes:

Lemma 1. If
®) inf 1 Y A | %), vi(. |x") =« >0 forsome x',x",
n=1,2,... B i=1

then there is a number 0 < B < exp (—af4) such that A('(.|x"), v'(. | x")) >
> 1 - 4p"

Proof. If & = 1, then v'(. | x") L v'(. | x”) for every n and Lemma 1 holds for
every f > 0. In the case « < 1 we proceed in the following manner. In view of (3),
there is F; € %, such that

vi(Fi| %) = vi(Fi | x") = A(vi(. | ¥), vi(. | x")) forevery i=1,2,...

so that, in view of (8),

) LS wF )2 L S wE ) 42, n=1,2 ..
ni=1 n 1

Define on (Y, #") a sequence of measurable functions fy, f5, ..., f, by

F0" = (07, i=1,2...,n,

where ()"); denotes the i-th coordinate of the n-vector y” and y is the characteristic
function. It can be seen that, for every measure v'(. | x) on @", f; are independent
random variables, 0 < f; < 1, with expectations v/(F; | x) and with variances bounded
from above by 1. Therefore, using the inequality § 18.1. A in [1], Chapter V, we
obtain forevery0 <t < tandn=1,2,...

(10) Vi(Y" — E,(x,7)| x) < 2exp (—n1),

where

Bx) = %‘i;(fi(yﬂ) e ) 5 -

Let us put E,(x") = E”(x', 1), E(x") = E,(x", ) for t = }a. As 0 < a < 1, the con-
dition 0 < 7 < } is satisfied and using (10), we obtain

V(E(x) | x') > 1 = 2", v(Y" = E,(x")]| x") < 28"
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for B = exp (—4u). Since in view of (9), E,(x’) and E,(x") are disjoint, we have
VI(E,(x") | x') = V(ELx') | x") > 1 — 4p",

which, according to (3), completes the proof.

On the base of Lemma 1 we can immediately prove (6). Namely, Lemma 1 implies
that the measures v*(. I x), x € X are mutually singular and, consequently, there is

a disjoint decomposition Y*® = () G, where G, e %>, v°(G,|x) =1 for every
xeX
x € X. Define  ® #*-measurable function f by

f(x,y°) = %6 (y®) forevery (x,y")eXQ® Y™.

()

It is easily proved that for every Ee & ® #*

[rawoom =5 A ® %) = $u(x) v* (B, G | ) = 07(B)

xeX ,u(x) {x}R(ExnGx)

where
E.={y*:(x,y*)eE};

hence f is the Radon-Nikodym density of w*® with respect to u ® @® and we can
write

xeX

L=y J log f dw® = ¥ 0*({x} ® G,) log —— .
(@G xeX ulx

The desired result follows from the equality o®({x} ® G,) = pu(x).
The proof of (5) is based on the following

Lemma 2. If Y;, Y, ... are finite sets and if (4) holds, then there exist A > 0
and 0 < A < 1 such that (5) is valid.

Proof. We may clearly suppose that %; contains all subsets of ¥;, i = 1,2, ... In
the sequel we shall use the following convention: By writing a, < ©(n) for a sequence
a,=0,n=1,2,..., we shall always mean that there is 4 > 0 and 0 < 1 < 1 such
that a, < AA", foreveryn = 1,2, ...

A routine verification (using (6) and the expression

Y| )
T ) 0¥

for the Radon-Nikodym density dw"/d(u ® @") provided Y" is finite) gives

(11) I, —I,=Hp) —1,=7Y Y y(xy),

yneYn xeX

Gy =
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where

¥ ulx) (| x)
(12) IP(X, Y = y(x) vi(y" ! x) log | ¥

u(x) v'(y" | x)

The left inequality in (5) follows from (11) and (12). Further, in view of Lemma 1
and (3), there exist sequences E,(x) € #" such that

(13) V(E(x) | x") < O(n)

(14) V(Y" — E(x')|x) < ©(n) forevery x,x'eX, x+x'.

I

0.

k
In view of the fact that a{” < @(n) for i = 1,2,..., k implies ). al’ < O(n), it
remains to prove that, for every x, x* € X, =t

(15) Y, Y(x.y") < 6(n),

y"eEn(x*)

(16) Y Wxy) < O(n).

yne¥n— U Ea(x*)
x*eX

To prove (16) we use the following easily verified inequality:
(17) (x, »") = X ulx) vl | x).
x'¥x
In view of (14), (17), and in view of the inclusion
Y" — U E(x*) = Y" — E(x),
x*eX

(16) is valid.

To prove (15) under x = x* we use (17) obtaining

3 vl ) S S ) V(ER) )
and then apply (13).

Suppose now that x # x*. Since log (1 + z) < \/z holds for every real z > 0,
the following inequality holds

W, ) = 00 v [9) VLY #6e) v ] ¥)]
(cf. (12)) and hence, using Schwarz’s inequality, we can write
DS ENCRGID NN GE E
< V) V(ELx*) | %)] < O(n)

(cf. (13)) and the proof of the Lemma is complete.
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To prove (5) we proceed in the following manner. According to (3) and (4), there
exist F(x', x")e %, i = 1,2, ... such that

S e

inf Y (vlF:| x') — v{F:| x")) > 0 forevery x' = x".
n=1,2,.. N i=1
If we denote by % the o-algebra generated by the class of all F (x,x"), x',x"eX
then @, #3, ... are finite sets and (4) holds for

A [, v [x) = sup {v(F | ) = v(F [ )}

If we putin Lemma 2: Y; = &, ¥, = ¥¥ where %, = ¥ is a disjoint decomposition
of Y, such that the c-algebra generated by itself is #¥, then we obtain positive
numbers 4 and A < 1 such that 0 < I* — I* < A}, where I*, n = 1,2, ..., o0, is
the information obtained by replacing #; by #¥, i = 1,2, ... Since in view of
¥f < ¥, wehavel; <1, n=1,2,...(cf.[2]), and since we have, according to (6),
I} = I, the right inequality in (5) holds for the given A and A. To prove the left
inequality we refer again to [2].

It remains to prove (7). Using the notation employed above we have, according to
(11) and (12), H(w) =IF, n=1,2,..., for every sequence #},i=1,2,... of
finite sub-o-algebras of #’s. Hence, by Theorem 13 in [2], the following inequality
holds H(p)21,, n=1,2,...; considering the limit for n - co we obtain
the desired result (7) and the proof of the Theorem is complete.

Let us end the paper by the evaluation of the Bayes risk r, in the statistical decision
problem we have considered under the assumption that (4) holds. An easy verification
(using Lemma 1) gives r,, = 0. Using (2) we obtain 0 < r, < 2wy(I,, — I,) so that,
in view of the Theorem, there exists 4 > 0 and 0 < A < 1 such that

(20) 0<r, < Al.
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Pesrome

CKOPOCTBh CXOAUMOCTU MH®OPMAIINUU B BBHIBOPKE
OTHOCHUTEJIbHO ITAPAMETPA

WUIOP BAMIA (Igor Vajda), Ilpara

B paGoTte paccMmarpbiBaeTcs cpennast wHpopmamus I, comepxaimasics B BHIGOpKe
VY250 y)€® Y,n=1,2,...,00 (xae Y;, i = 1,2, ... abcTpakTHbIE IPOCTPAH-
i=1

CTB4) OTHOCHTEJIBHO IIAPAMETPa X NPUHAMAIONIETO 3HAYEHHS M3 KOHEYHOTO MHO-
xecTBa X. ITokasbIBaeTCs, 4TO BCerja MMeeT MecTo HepaseHcTBo (7), kae H(p)
00603HaYaeT IHTPOIMIO IAapaMETPOBOrO IPOCTpaHcTBA X TIPU PpacCIpEAesIeHUN
BepositHocTed p. Ecnmu cydaiiHasi mocimeqoBaTeNbHOCTD 'y, Vs, - .. HE3ABUCUMA I
KaXIOro 3HAYCHWS apaMeTpa X W eCJIU BBINOJHAETCs yciiosue (4), TO Ui HEKOTO-
poix A u A umeet mecto (5), ke A > 010 < A < 1. 3TOT pesyJIbTaT IPECTaBIAET
coboil 06o6umieHre paHee MOJyYeHHOTO pesynbrara Penn [4], mpexmmosararomiero
KOHEYHOCTh IPOCTPAaHCTB Y;, i = 1,2, ... H CTAIlMOHAPHOCTH IOCIEN0BATEIbHOCTH
Yis Y2, ... OIS KaXI0TO 3HAYEHUS NapaMeTpa X.
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