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MAXIMAL IDEALS IN THE DIRECT PRODUCT 
OF TWO SEMIGROUPS 

ROBERT PLEMMONS, Knoxville (Tennessee, USA) 

(Received February 28, 1966) 

Let S X T denote the direct product of semigroups S and T. Several papers [3], 
W ' [^]' [^]' W ^^^^ bQQTi written to investigate the forms of various types of ideals 
in iS X T, in terms of similar ideals in the factor semigroups S and T. Particular 
emphasis has been placed on determining necessary and sufficient conditions on the 
form of an ideal in order that it be of a special type, such as minimal, 0-minimal, 
prime or semi-prime. This note is concerned with maximal ideals in S x T. All 
ideals in this paper are two-sided. 

A proper ideal of a semigroup is called a maximal ideal provided that it is not 
properly contained in any other proper ideal of that semigroup. The problem of 
determining the form of maximal ideals in iS x Tis solved in Theorem 1. It is shown 
that the form of a maximal ideal is quite similar to that of a prime ideal, as determined 
in [5]. Theorem 2 gives necessary and sufficient conditions on a proper ideal / of 
S X T, with the property that [S x ту ф /, in order that / be a maximal ideal. 
These results are easily generaUzed to the case of the direct product of any number 
of semigroups. 

The proofs of the theorems make use of a specific characterization of a maximal 
ideal, which can also be obtained using corollary 2.38 of [1]. 

1. Characterization of a maximal ideal. Let a be an element of some arbitrary 
semigroup S, Let J(a) denote the principal ideal generated by a and let J^ denote 
the set of elements in S that generate the same principal ideal as that generated by a. 
Notice that S is simple (has no proper ideal) if and only if J^ = S for some a e S, 
where a e SaS. 

Suppose that S has a maximal ideal M. Let Ä — S\M denote the complement of M 
in S and let a e A, If S^ ^ M then A = {a} where a^ e M, and if 5^ ф M then 
A = J^ where a e SaS. This yields the following lemma, which characterizes 
a maximal ideal in a semigroup S. 
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Lemma 1. Let I be a proper ideal of S, let A = S\I and let a e A. Then I is 
a maximal ideal if and only if either A is the set {a} where a^ el, or else A ~ J^ 
where a G SaS. 

2, Main results. Let S and T denote arbitrary semigroups. Notice that if (a, b) is 
an element of S x Tand is contained in (S x T)(a, b){S x T), then/^^^^ = J^^ x Ĵ , 
where a e SaS and b e TbT. This fact is used in the proof of the following theorem. 

Theorem 1. Assume that S x Thas a maximal ideal M. If{S x T)^ ^ M then M 
has the form M = (S x B) KJ [C x T), where В and С are non-empty subsets of T 
and S respectively, at least one of which is a maximal ideal. If (S x Г)^ ф M 
then M has the form M = (S x / ) u (J x T) where either J is the empty set, in 
which case S is a simple semigroup, or else J is a maximal ideal of S; and where 
either I is the empty set, in which case Tis simple, or else I is a maximal ideal of T. 

Proof. Let Л - (S X T)\M and let {a, b) e A. 

If {S X Tf ^ M then A = {{a, b)} where {a, bf e M by Lemma L Let Л = 
= T\{b} and let С = S\{a}, Then 

M = {S X T)\A = {S X T)\{{a, b)} = {S x T\{b}) u {S\{a} x Г) = 

= {S X B)u{C X T) 

At least one of В and С must be an ideal for otherwise [a, b) could be expressed as 
a product of elements in S x T, contradicting the assumption that [S x ту ^ M. 
Thus at least one of В and С is a maximal ideal. 

Now assume that {S x Tf ф M. Then by Lemma 1, {a, b)e{S x T) {a, b) {S x T) 
and A = J(a,by Thus A = J^ x Jj^ where a e SaS and b e TbT. Let / = T\Jb and 
J - 5\ J«. Then 

M = {S X r ) \ ( /« X ^ ) = {S X T\J,) u {S\J^ X T) = {S X l)u{J X T) 

If J is the empty set then /« = S and iS is a simple semigroup. Suppose that J is 
non-empty. It will be shown that J is an ideal of S. Let xe J and s e S. Then if xs 
were in J^, this would imply that SxsS = J{xs) = J{a) ~ SaS so that a e SxsS £ SxS. 
This would mean that 

{a, b) e SxS x TbT = {S x T) {x, b) {S x T), 

contradicting the assumption that M is an ideal of iS x Г, since {x, b) e M. Thus 
SX e J and dually xs e J for all x e J and s e S. Thus J is an ideal of S. Since S\J = J^ 
where a e SaS, / is a maximal ideal by Lemma I. Similarly if/ is empty, Tis simple 
if / is non-empty, then it must be a maximal ideal. 
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From this theorem it is evident that if 5 x Thas a maximal ideal M, then at least 
one of iS and Tmust also have a maximal ideal. Also, M can be expressed in the form 
M = P I ( M ) X P2{M) (where Pi{M) is the projection of M onto its ith components) 
if and only if one of S and Tis simple. 

The converse of Theorem 1 is not generally true. Examples can be constructed of 
semigroups S and Г with maximal ideals J and / respectively, so that M = (S x /) u 
u (J X r ) is not a maximal ideal of S x T. However, the next two lemmas show 
that the converse is true in the case where (S x ту ф M, They can readily be 
obtained by applying Lemma 1. 

Lemma 2. Let S and The semigroups such that S has a maximal ideal M, and T 
has more then one element. Then if S^' Я M, M x T is not a maximal ideal of 
S X T, and if S^ ^ M, M X T is a maximal ideal if and only if T is a simple 
semigroup. 

Lemma 3. Let S and T be semigroups with maximal ideals J and I respectively, 
and let M = (S X /) u (J x T). Then 

(1) ifS^^J and T^ ^I then M is a maximal ideal of S x Twhere {S x ту S 
ç M, and 

(2) / / S^ ^ J and T^' Ф I then M is a maximal ideal if and only if T\I consists 
of exactly one element, and 

(3) if S^ ^ J and T^ Ф I then M is a maximal ideal where (S x ту ф M. 

The following theorem is a combination of parts of Theorem 1 and the preceding 
lemmas. It gives both necessary and sufficient conditions in order that a proper 
ideal M of 5 x Tbe a maximal ideal in case (S x ту ф M. 

Theorem 2. Let S and T be semigroups such that S x T has a proper ideal M 
where (S x ТУ ф M. Then M is a maximal ideal if and only if it has the form 
M = (S X /) u (J X T) where either J is the emply set, in which case S is simple, 

or else J is a maximal ideal of S; and where either I is the empty set, in which 
case Tis simple, or else I is a maximal ideal of T 
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