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Czechoslovak Mathematical Journal, 18 (93) 1968, Praha 

ON SINGULAR MATRICES 

JIN BAI KIM, Morgatown 
(Received November 11, 1966) 

1. PENROSE [7] discussed a generalized inverse for matrices, and he estabhshed the 
following theorem. 

Theorem A. For any matrix A, the four equations AXA — A, XAX = X, (ЛХ)* = 
AX, and (XAY= XA have a unique solution X, where Л* denotes the conjugate 
transpose of A. 

This unique solution X is called the generahzed inverse of A. If we remove the 
third and fourth equations in Theorem A above, a solution X (of the equations 
XAX = X and AXA = A) is not in general unique. 

Then the natural question is: 

Problem. What is the cardinal number of the set of all solutions X of the equations 
AXA = A and XAX = X for a matrix A in the set M„[F) of all n by n matrices 
over a field Fl 

The purpose of this note is to prove (Theorem 1) that if Л G MJ^F) then the cardinal 
number of the set of all solutions X of the equations AXA = A and XAX = X is 
e q u a l t o |/^Р(гапкоГЛ)(и-(гапкоГА)) 

This result leads to a new definition in the class of regular semigroups (see Defini
tion 2) and gives new examples of regular semigroups with zero (see Theorem 2). 

2. Let F be a field. M„{F) denotes the set of all n by n matrices over the field F 
with binary operation, the usual matrix multiplication. By Theorem A, Mn{F) is 
a regular semigroup. We define V{A) = {X E MJ^F) : AXA = A and XAX = X} 
which will be called an inverse set of A in M^{F). Q{A) denotes the rank of a matrix A 
in M„(F), and \Т\ denotes the cardinal number of a set T. 

Lemma I. Let A e M„{F) and let X e V{Ay Then Q{Ä) = Q{X), 

Proof. From AXA = A and XAX = X, Q{A) = Q{AXA) й д{Х) - Q{XAX) й 
^ Q{A) by Theorem 1.4 of [6, p. 83]; hence Q{A) = ^(X). 
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Lemma 2. The cardinal number of an inverse set V{A) of a matrix A in Mj,[F) is 
invariant under elementary row or column operation on A, that is, \V{A)\ = 
= |К(ЕУ4)] == |7(/1Я)|, where E and H are elementary matrices (see Definition of 
elementary matrices on page 91 in [6]). 

Proof. Let A E M^[F) and let E be an elementary matrix in M,,{F). Let X e V{A) 
and let £~ ^ be the inverse matrix of the non-singular matrix E. Then EA = E{AXA) = 
= EA{XE-^) EA and XE'^ = {XAX) E " ' = ХЕ'^ЕА) XE~^\ hence V{A) E'' ^ 
^ V{EA) and |F(^) | й \K^A)\. Similarly, we obtain V{EA) E a V{A) and \V{EA)\ S 
^ |F(^) | . Thus \V{A)\ = \V{EA)\. Analogously, we have \V{A)\ = \V{AH)\, where Я 
is an elementary matrix. This proves Lemma 2. 

We need the following well known theorem. 

Theorem B. Every m by n matrix A is equivalent to a matrix С = (c ĵ) where 
Сц = 1, i = 1,2,..., Q{A), and c^j = 0, otherwise. The matrix С is called the canon
ical form of A (see Theorem 3.4 on page 106 in [6]). 

For 1 ^ /<: ̂  n let Q = ((i,j) where d^ = 1 for i = 1, 2, ..., /c and d^j = 0, 
otherwise. 

According to Lemma 2 and Theorem B, to solve the problem we need only consider 
Q , к = 1, 2, ..., n. 

The main lemma follows. 

Lemma 3. Let к and n be positive integers with к ^ n. Let F^ be a Galois field 
with q elements. If Q e M^F,), then \V{C,)\ = (^^к«-^) ^ ^2(,(c.))(n-.(c.))^ 

Proof. Let к < n. Let X be an element of the inverse set L ( Q ) . Then Cj^XC,, = Cf, 
and X Q X = X. By direct calculation, it is not hard to see that X = (x,j) takes the 
form: 

1 if i=j and / = 1, 2, ...,/c ; 
0 if i^j and {i, j} с {1, 2, ...,/c} ; 
Xij if / = 1,2,... , к and j = /c + 1, /c + 2, ..., n ; 
Xij if z = /c + 1, /c + 2, ..., П and j = 1, 2, ..., /c ; 

к 
Y^it^tj if {iJ} c= {/c + 1, /c + 2, ..., n} , 

where Xij above are arbitrary in F^. Thus we are able to choose 2k{n — k) entries of X 
arbitrary so that the cardinal number of the set F ( Q ) is equal to q^^^"~'^\ If /c = n, 
then V{C„) = { C j , and | F ( C „ ) | = 1. This proves Lemma 3. 

Theorem 1. If Ae М^^Е), then the cardinal number of the inverse set V[A) is 
equal to \F\^^(^^^^-^(^)), 

Proof follows from Lemmas 2, 3 and Theorem B. 
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3. APPLICATIONS AND A QUESTION 

Definition 1. A semigroup S with О is said to be hom.ogeneous n regular if |F(a)| = n 
for every a e S\0 [4]. 

Let n and к be two positive integers with к ^ n. We define S„j^[F) = {X e M„[F) : 
: Q{X) S к}, and let S„,„_ i(F) = S„{F). 

We have corollaries and Theorem 2. 

Corollary 1. S2{Fq) is a homogeneous q^ regular semigroup with 0, where F^ is 
a finite field with q elements. 

^3{Fq) is a homogeneous q"^ regular semigroup with 0. 
5„ i(F^) is a homogeneous ^^^"~^^ regular semigroup with 0. 

Corollary 2. / / F is a field of characteristic 0 then S„{F) is a homogeneous схз 
regular semigroup with 0. 

We have a new definition in the class of regular semigroups with 0. 

Definition 2. Let S be a regular semigroup with 0. S is called a [5, ^] regular semi
group with 0 if s g 1 (̂̂ )1 = ^ f̂ ï" every a e S\0, where s and t are positive integers 
with s < t. 

Theorem 2. Let F^ be a Galois field with q elements. Then S„[Fq) is a {_g^^"~^\ 
^2[n/2](«-[n/2])j y^gi^iQY semigroup with 0, where 

Г h~\ — ['̂ /̂  -̂̂  ^ ^^ ^^^^ ' 
\{n — l)/2 if n is odd . 

In S2{Fq), there are two non-zero idempotents e = 
1 0 0 
0 0 0 
0 0 0 

and / = 
1 0 0 
0 1 0 
0 0 0 

with ef = fe = e and e Ф f. Hence / is hot a primitive idempotent of the homogene
ous q"^ regular semigroup S3(F^). This example shows that the condition "every 
idempotent of S is primitive" is not necessary for a regular semigroup S with 0 to be 
homogeneous n regular (see Theorems 1, 3, 7 and 8 in [4]). 

Hence we raise the following question: 

Question. What are necessary and sufficient conditions for a regular semigroup S 
with 0 to be homogeneous n regular! 

The author wishes to express his gratitude to Professor P. H. DOYLE of Michigan 
State University for his suggestions. 
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