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HEeNRrY P. DECELL, JR. and C. LAMAR WIGINTON, Houston
(Received Juny 9, 1967)

Introduction. This paper gives a characterization of the maximal subgroups of the
multiplicitive semigroup, %,, of all complex n x n matrices. In what follows 4* and
R(A) will, respectively, denote the conjugate transpose of 4 and the range space of 4
foreach A€ ¥,.

Other developments of the structure of semigroups and, in particular, the structure
of certain maximal subgroups of %, can be found in [1], [2], [5], and [6]. The follow-
ing theorem, due to PENROSE [4], will play a vital role in characterizing the maximal
groups of ¥,. :

Theorem 1. For every complex matrix A, the four equations

(1) . AXA =4
) XAX = X
(3) (Ax)* = 4Xx
©) (XA)* = X4

have a unique solution X, denoted X = A* and called the generalized inverse of A.
Moreover, AA* and A*A are, respectively, the orthogonal projection operators
on R(A) and R(A*) = R(4*).

Main Results. It is well known that each idempotent matrix in %, is contained in
a unique maximal subgroup of ¢,. We will first characterize the maximal subrgroup
of ¢, containing a hermitian idempotent E € ¢, from which we will proceed to
characterize the maximal subgroups of ¢, containing non-hermitian idempotents.
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Theorem 2. If E> = E = E* e ¥, then

i) #(E) = {Ae¥,: AE = EA and R(A) = R(E)} is the maximal subgroup
of 9, containing E.

ii) Inversion in .#(E) is generalized matrix inversion.

Proof. Let H(E) denote the maximal subgroup of &, containing E’=E=E*ec %,
We will show that #(E) is a subgroup of ¥, containing H(E) so that #(E) = H(E).

To this end, let A€ H(E) Clearly, AE = EA and if A4 denotes the inverse of A
in H(E) then R(E) = R(44) = R(4) = R(EA) = R(E) so that R(4) = R(E) and
H(E) = #(E). Now if A, Be #(E) then EAB = AEB = ABE and, moreover,
since R(4) = R(B) = R(E) and hermitian idempotents are the orthogonal projection
operators on their range spaces [3], we may conclude from Theorem 1. that 44*
= BB* = E. From this and the fact that 4 commutes with E, it follows that

R(E) = R(A) = R(AE) = R(ABB*) = R(4B) = R(4)

so that R(E) = R(4) = R(AB) and hence that #(E) is closed under matrix multi-
plication.

We will now show that each element 4 € #/(E) has an inverse in #(E) and that
this inverse is the generalized inverse of A. First a lemma.

Lemma. If E> = E = E*€ 9, and A€ #(E) then (AE)* = EA* and (EA)* =
= A*E. ,

Proof of the Lemma. We need only show that EA* and A*E, respectively, satisfy
the four equations of Theorem 1. defining (4E)* and (EA)*. Indeed,
(AE) EA*(AE) = AA* AE = AE,
EA+(AE) EAY = EAYAAY = EAY
[EA*(AE)]* = E*(A*A)* E* = EA*(AE),
[(4E) EA*]* =[A4A*]* = AA* = (AE)EA*
and similarly (EA)* = A*E, Q.E.D.

If Ae #(E) then AE = EA = (AA™) A = A so that E is an identity for #(E).
Moreover, the lemma implies that EA* = A*E = A" so that R(4*) = R(4") =
= R(EA*) = R(E) = R(A4). However, since the respective ranks of 4 and 4* are
equal, R(A*) cannot be a proper subspace of R(A). It follows that R(4*) = R(4*) =
= R(4) = R(E).

The fact that R(4*) = R(4*) = R(4) = R(E), together with Theorem 1., implies

that E = A4™ = A" A. This completes the proof that #(E) is a group containing
H(E). The theorem follows using the maximality of H(E).
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We note that * defines an involution on %, and that in the course of the proof it
was shown that #(E) = H(E) is self involutory i.e., A € #(E) implies 4* € #(E).

The following corollary characterizes the maximal groups containing non-hermitian
idempotents.

Corollary. G is a maximal subgroup of 9, if and only if G = P #(E) P™" for
some E* = E = E*e 4, and some nonsingular P € 9,.

Proof. Let G be a maximal subgroup of ¥, with identity F> = F. Let E* = E =
= E* denote the orthogonal projection on R(F). Since F and E are idempotent and
have the same range, F is similar to E and there exists a nonsingular P € ¢, such
that F = PEP™!. Moreover, P #(E) P~! is the isomorphic image of a group and
hence is itself a group containing F. Theorem 1. implies the maximality of #(E)
which, in turn, implies that maximality of P #(E) P~'. It follows that G =
= P #(E) P~

The converse is obvious.

We note, in the corollary, that the group inverse of B = PAP ' e P #(E) P! is
PA*P~! and, moreover, that if P is orthogonal then P #(E) P~* = #(E).

Finally, we note that the theorem and corollary account for all maximal subgroups
of 4,. In fact, if we define an equivalence relation 4 ~ B if and only if R(4) = R(B),
we see that each subspace of the n-dimensional complex Euclidean space gives rise
to an equivalence class, namely, all of the elements of ¥, equivalent to the orthogonal
projection on that subspace. Indeed, these subspaces exhaust the equivalence classes.
In [7], a brief discussion concerning the ., #, and #-classes of ¥, is given with
reference to the generalized inverse.
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