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Let us consider a vector space ¥ of dimension n over the field T (of real or complex
numbers) and let V* be its dual. Further let (v, ..., v,) be a basis of Vand (v, ..., v")
its dual basis in V*. For every integer / = 1 and v € V we introduce the mapping

5,:S'W* —» Si-Lp*

S'V* has the basis consisting of the elements of the form v’* o ... o v/%, where (jy, ...
..., j1) takes values in the set Z(I) of all I-tuples of integers such that 1 < j; < ...
... £ j; £ n. Itis clearly sufficient to define d, only for the elements of this basis. We
set 1
S (v oo v) = Y Ko, Y 0P oo B oo 0
k=1

It is easy to show that d, does not depend on the choice of basis in V.

Lemma 1. For any v, v' € V there is 6,0, = 0,.0,.

Proofis easy.

Lemma 2. Let fe S'V*, 5, , f = ... = 6, f = 0. Then f e S'V;* = S'V*, where V}

T

is the subspace spanned by the vectors v*, ..., v".

Proof. f can be expressed in the form f= Y  a; ;(v"'c...o0"). It
UtseresJ1)EE(D)

follows from the condition 6, f = 0 that if one of the indices jy, ..., j, equals n then
a;,..;, = 0and thus fe S'V* . The remainder of the proof is easy.

Let W be a vector space of dimension m over T. For I = 1 and v € V we introduce
a mapping W® S'V* -» W® S'~1V* that we shall also denote by §,. Let (wy, ...
..., W,) be a basis of W. W® S'~1y* has the basis consisting of the elements w;, ®
® (V' o..ot!), 1 S k < m, (jy,....J1) € E(1). It is sufficient to define §, for these
elements. We set

Eu(wk ® (Ujl ©...0 Uj')) = W ® (50(01.l Qeea O ij))
We can again easily find out that §, does not depend on the choice of bases. -
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Now let g* = W ® S*V* be a subspace and let pg* = W @ Sk+1y* be its prolonga-
tion defined by

pgk — (gk ® V*) A (W@ Sk+1V*)

(see [1]). For any subset M = V we denote gk = {f e g* d,f = 0 for all ve M}.
Obviously if VS < V denotes the subspace spanned by v,,,..., 7, then gy, =

— g* k
= Gppsr O oee NV Gy,

Lemma 3. Let V' < V be a subspace. There is p(g'fw) = (ng)v'-

Proof. Let us take such basis (vy, ..., v,) of V that V" = V" for some 1 < r < n.
It can be easily seen that p(gy,<) = p(gk , ) n... 0 p(gs,) and therefore it is sufficient
to prove for all 1 < i < n the equality p(gt) = (pg*)s.- So that not to complicate the
notation we shall do the proof for i =:n.

a) Let fe(pg"),, = [(¢* ® V*) n(W® S**1V*],,. As feg* ® V* there is f =
=fi®v' + ... + f, ® v", where fi, ..., f, € g*. But because of J,,f = 0 owing to
lemma 2 there must be fe W@ S**'V*  ie. fu=0; f1,..ofuici€d* 0 (W®
® S*V,*,). Therefore we have f=f, ®v' + ... +f,-1 ® oY, where f,, ...
eesfu_1€ gt and thus fe p(gk ).

b) Let fe p(gh) = (95, ® V*) n (W ® S¥*'V*). f can again be expressed in the
form f = f; @ v' + ... + f, ® v", Where f, ..., f, € .. But as gi. < W® SV*
and fe W® S*1V*, it is obviously f, = 0. Thus §,.f = 0, i.e. f € (pg"),, and this
finishes the proof.

Let now g* be a subspace of W ® S*V*. Let us set as usual pg* = (¢* ® V*) n
A (W ® S**1V*) and moreover p,g* = (¢* ® V*) n (W ® S**'V*). We have

Lemma 4. There is p,g* = pg~.

Proof. Obviously p;g* = pg* and therefore it remains to prove the converse
inclusion. We have again f = f; ® v* + ... + f, ® v", where f;, ..., f, € g*. Regard-
ing the inclusion g* =« W ® S¥V;* and the fact that fe W® S**1V*, it is clear that
fos1 = ... =f, = 0 and therefore f € p,g~.

Further let us suppose that g =« W ® S*V'* is an involutive subspace (see [1]).
Let V' < V be a subspace, dim V' = r. We shall seek for a regular basis of ¥ such
that its first » vectors lie in V’. Let (v’l’, ceos v;:) be a basis of V such that the vectors
vy, ..., v) span V’. The set of all regular bases of an involutive subspace is dense in
the Stiefel manifold of all bases (see [2], § 6, p. 31). Therefore we can find a regular
basis (v}, ..., v;) of Vsuch that (v], ..., v}, U4 1, ..., v}) is a basis of V. For the sake of
simplicity we shall denote this last basis by (vy, ..., v,).

For any m Z k let g" = W® S™V* be the subspace defined by g™ = p™ *g*.
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As (v}, ..., vy) is a regular basis, the following mappings

50" . gm+ 1 — gm

. mt+1 m
6":--—1 . g"n~1c - gVn—lc

. m m
60r+1 GV T GVesae

are surjective for all m = k. According to lemma 2 there is gy . = W® SV .
Moreover with respect to the fixed basis (vy, ..., v,), ¥,* is canonically isomorphic
with the dual of ¥, (V, is spanned by vy, ..., v,). Finally according to lemma 4 it
makes no difference if we prolong g'{,rc as a subspace of W ® S*V* or as a subspace
of W® V*. According to the well-known prolongation theorem there exists ko, = k
such that p* (g} ) is involutive. In other words there exists a regular basis (7, ...
..., B,) of V, for p*7¥(g} ), i.e. such basis that the following mappings

%, p""(gv,e) - 7"(9v.°)
R O A (A (D)

95, :(PMH(glf'rc))wz ..... o) “’(Pm(g,f'rc))wz,...,m

are surjective for all m = ko, — k. Here {5, ..., ,} denotes the subspace of ¥,
spanned by the vectors ¥;, ..., ,. But according to lemma 3 it follows from the last

assertion, that the following mappings
o, gy > gy

. m+1 m
55:—1 CGv._ie Gy, ye

Y . .m;}-l .m
05, Gvie = Gvie

are surjective for all m > ko. And from this fact it follows immediately that (7, ...
wees Dpy Vpy 15 -+, D) is @ regular basis for g*°. Thus we have proved the following

Theorem. Let g* ¢ W ® S*V* be an involutive subspace. Let V' < V be a subspace
of dimension r. Then there exist ko 2 k and a basis (vy, ..., v,) of V such that

a) (vy, ..., v,) is a regular basis for g = W @ S*V*,
b) vy, ..., 0, €V
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