
Czechoslovak Mathematical Journal

Ladislav Bican
On splitting mixed abelian groups

Czechoslovak Mathematical Journal, Vol. 20 (1970), No. 1, 74–80

Persistent URL: http://dml.cz/dmlcz/100944

Terms of use:
© Institute of Mathematics AS CR, 1970

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/100944
http://dml.cz


Czechoslovak Mathematical Journal, 20 (95) 1970, Praha 

ON SPLITTING MIXED ABELIAN GROUPS 

LADISLAV BICAN, Praha 

(Received December 13, 1968) 

The purpose of this note is to prove tv^o theorems generalizing theorems Al, A2 
from [6]. After that, theorems 13— 15 from [2] are generahzed by using these theo
rems and some theorems from [7]. 

By the v^ord ' 'group" we shall always mean an additively written abehan group. 
A group G is said to be split if its maximal torsion part is a direct summand of G. 
If Я is a subgroup of a torsion free group G then {Я}^ means the pure closure of Я 
in G, i.e. the intersection of all pure subgroups of G containing Я. f denotes the type 
containing the characteristic т, T(G) denotes the set of the types of all direct sum-
mands J^ of a completely decomposable group G = ^^ J,. In the other cases we 
adopt the notation used in [1]. *̂ ^ 

Let us note that a torsion free group Ä is called a K-group if, for every torsion 
group P, any group G sphts whenever G is an extension of the group H = Ä + P 
by a bounded group (see Prochazka's paper [3]). In [4] there was proved that any 
torsion free group of finite rank is a K-group. Finally, let Л be a K-group and P an 
arbitrary torsion group. It is easy to see that if Я is a subgroup of G = Л + P such 
that GJH is bounded, then Я sphts. 

Définition 1. Let Я be a subgroup of a group G (mixed in general). We say that Я 
is fully regular in G if the factor-group 

(1) Sl{S n Я ; T} 

is finite for every subgroups T я S pure in G such that S/Tis a torsion free group of 
finite rank. 

Lemma 1. Let H be a subgroup of a mixed group G such that GJH is a torsion 
group and P is the maximal torsion part of both groups G and H. Let P ^ Hi Я 
Ç H2 be pure subgroups of H such that Я2/Я1 is of finite rank. Let G^ and G2 
denote the subgroup of G such that G^jP = {Я^/Р}^/^, G2/P = {HZIP}^^^ respectif 
vely. Then G^ ^ G2 and G2/G1 is of finite rank. 
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Proof. Let g e G^ and g = g + P e GjP. Then there exists an integer 5 such that 
sg e H^jP Ç Я2/Р. Hence it follows g e G2/F and g e G2 so that G^ ç G2 is proved. 

Assume that r(H2JH^) = n — 1 and let guGi^ -"^Sn be arbitrary elements of 
G2/G1. If ^ 1 , 6̂25 •••5 ö'n are représentants of the cosets g^, g2, ---^gn then ^̂^ e G2, 
i = 1, 2 , . . . , n and from the periodicity of GJH the existence of an integer m Ф 0 
such that mgiG H2, i = 1, 2, ..,, n follows easily. From r(H2\H^ = n -- 1 it is 
easy to derive the existence of integers Я̂ , i = 1, 2, ..., «, not all equal to zero, such 

n n 

that Y, ^i^Qi ^ Hi. From H^ Я G^ it follows now ^ ocÀiingi = Ö (in G2/G1) and the 

elements gi,g2, "-^gn ^^^ dependent in G2/G1 so that r(G2/Gi) ^ n ~~ 1 and the 
proof of the lemma is finished. 

Theorem 1. Let G be a mixed group containing a splitting subgroup H =^ P -\- A, 
where P is a torsion group and A a direct sum of torsion free groups of finite rank. 
If H is fully regular in G then G splits. 

Proo f runs on similar principles as the proof of Theorem Al from [6]. Suppose 
that A = J]d^(K where r[A^ < 00 and a is an arbitrary ordinal. Let T denote the 

a<<T 

maximal torsion subgroup of G and put H' = T ^ A and Я^ = Г 4- Xd ^a- Let us 

define the subgroups Gß of G by the formula GpJT = [HpJT}^^^. Then Gp is surely 
pure in G for every ß ^ с Finally, it is easy to see that H' is fully regular in G, too. 

Using the method of transfinite induction we shall prove that Gp splits for every 
ß ^ a, or more precisely that for every j^ ^ 0" it is 

(2) Gp = T + Bp and for every у < ß it is B^ я Bp . 

For JÖ = 0 it is all evident. Firstly, we shall assume that ß — 1 exists. Then by induc
tion hypothesis it holds 

(3) Gp_i = T+ Bp..^. 

Because Ap^^ ç Hp and G^_i r\ Щ = Щ^^, it is true that G^_i n Ap^^ = 
= Gp^i n Hß n Ap^i = Hp_i n Ap^i = 0 which implies that the factor-group 
GßlBß_i is an extension of (G^_i + Ap.^jJBp.i = (Г4- ß^- i + v4^-i)/B^-i ^ 
^ T + ^ ^ „ i b y 

iGßlBß-i)l{{(^ß-~i + Äp_i)lBp.i) ^ GßliGß^i + Aß^i) = Gßl{Gß^i, Gß n Я ' } . 

By Lemma 1, the factor-group GßJGß^^ is of finite rank, so that by Definition 1 and 
by hypothesis the factor-group Gßl(Gß^i 4- ^^-1) is finite. 

The group Aß^i as a rank finite group is a X-group (see e.g. Prochazka's papers 
[3], [4]) so that GßlBß_i splits, 

(4) GßJBß^i = BßJBß.i + Gß.^JBß., 
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where Gß^iJBß..^ is the maximal torsion subgroup of GßJBß_^, In fact, Gß^-^JBß^-^ 
is a torsion group by (3) and it is maximal because GßJBß^-ijGß^^JBß^^ = GßJGß^i 
is torsion free by Lemma 1. Clearly, Tn Bß = 0, Bß^^ ^ Bß. From (4) and (3) it 
may be easily derived that (2) is true. 

Secondly, let ^ be a limit ordinal. Then clearly Gß == \J Gy and by induction hypo-
y<ß 

thesis Gy = T + By for all 7 < j5 and B^ ç By for all ô < y < ß so that we can put 
Bß ~ (J By. For an arbitrary g e Gß there exists y < ß such that g =^ t + b, t e T, 

y<ß 

b E By я Bß, i.e. g e T + Bß. From this fact the spHttingness of Gß easily follows. 

In particular, for j5 = ex it is G = G^ ~ T + B^ so that the proof of Theorem l i s 
finished. 

Theorem 2. Let G = T -i- В be a splitting mixed group where Tis a torsioti group 
and В torsion free and H is a subgroup of G with the maximal torsion subgroup P. 
If either 

1) TJP is bounded and В is of finite rank, 

or 

2) В = Yjd^x is a direct sum of K-g roups and for every XeA the factor-group 
ЯеЛ 

B^JB; n H is bounded, 

then H splits, too. 

Proof. Firstly, let TJP be bounded and В be of finite rank. Put К = {Т, H} so 
that K= T + K^, where K^^ Kn B. Further, KJH = {Т, Н}Н ^TJTnH = TJP 
is bounded. X^ as a subgroup of В is of finite rank, i.e. it is a iC-group and thus H 
splits. \ 

Secondly, we can assume that A is the set of ordinals a < a. Put 

(5) G , = r + X , B , 

and 

(6) Hß=^ GßHH 

for every ordinal ß ^ a. Clearly, Gß is a pure subgroup of G for every ß S <т. Using 
the method of transfinite induction we shall prove that for every ß ^ с it is 

(7) Hß = P -i- Aß and for у < ß il is оСу ^ Aß . 

For ß = О it is all evident. Firstly, we shall assume that ^ — 1 exists. Then by 
induction hypothesis it holds 1 • i 

(8) H,_, = P + A,_,. 
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By hypothesis and by (6) the factor-group Gß^-^JHß^ i is periodical so that to an arbi
trary ^ e Gß_i there exists an integer ?z ф 0 (depending on g) such that ng e Hß^^. 
By (8) it is ng = p -\- a where p e P, ae Äß^^. From the periodicity of P the existence 
of a non-zero integer m follows such that mp = 0. Altogether we have mng = ma e 
e Äß^j so that the factor-group 

(9) G , - i M , - i 

is a torsion group. Further, by (5) it is Gß = G^-i + ^ß-i* From Aß_.^ n Bß^^ я 
ç Hß_i n Bß^i ^ ^/ î- i ^ Bß-i = 0 it easily follows 

(10) GßJÄß., = Gß^.JAß^, + {Bß^, + Äß_,)lAß_, . 

Due to the isomorphism 

(11) {Bß_i+ Äß^,)lÄß.,^Bß_, 

the factor-group GßJÄß^^^ splits by hypothesis and by (9) Put К = {Hß, -ßyj.J. Then 
Bß^i 4- ^^ -1 ^ ^ a.nd 

(12) KjAp^, = (G^_i/^^_i пК/Л,,_1) + (ß^_i + Л^_0М/,-1 • 

Ыепсе the factor-group KJAß^i splits by (11), (9) and its torsion free direct summand 
is a X-group by hypothesis. Further, HßJAß^i S K\Aß_-^ and the factor-group 
{KlAß^,)l{HßlAß_,) ^ K\Hß = {Hß, Bß_,}\Hß ^ Bß^,lBß.,nHß = Bß_,\Bß,,nH 
is bounded by hypothesis so that HßJAß^-^ spUts by the definition of a K-group. 
The maximal torsion subgroup of HßJAß..^ is Я^_ Jy4^_i. In fact, Hß^^JAß^i is 
a torsion group by (8) and [HßlAß_i)l(Hß_ilAß^i) is torsion free because 

Ç Gß\Gß_^ ^ ^ ^ - 1 - Then we can write 

(13) Я^/Л^_1 = Я , _ J ^ , _ i + A,lA,_, 

where AßJAß^ i is a suitable torsion free subgroup of HßJAß^i. 

Clearly, Aß n P = 0. If he Hß is an arbitrary element, then h -{- Aß_^ = (a + 
+ Aß^-^) + (/i' + Aß_i), a e Aß, h' eHß_^, so that (7) now easily follows in view 
of (8). 

Secondly, let j5 be a hmit ordinal. It is easy to see that Hß — [J Ну and by induction 
y<ß 

hypothesis Ну = P + Ay for all у < j5 and A^ Я Ay for all ô < у < ß. Put Aß == 
= \J Ay, For an arbitrary he Hß there exists у < ß such that g = p + a, p e P, 

y<ß 
a e Ay Я Aß, i.e. /г e P + Äß. From this fact the splittingness of Hß easily follows. 

In particular, for j^ = d it is Я = Я^ = P 4- ^^ and the proof is now finished. 

Definition 2. Let Я be a subgroup of the group G. We say that Я is strongly regular 
in G if the factor-group SjS n Я is finite for every torsion free subgroup S of finite 
rank pure in G. 
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Theorems. Let G be a mixed group with the maximal torsion subgroup T con
taining a splitting subgroup H of the form H = P -i- ̂  where P is a torsion and A 
a direct sum of countably many rank finite groups. If {Н, T]JT is strongly regular 
in GJT then G splits. 

Proof. If A is of finite rank then G ( r + Л) ^ (G/r ) / ( ( r + ^) /Г) = 
= (G/T)/({H, T}lT) is finite by hypothesis, and G splits by Theorem 3 from [5]. 

00 

Let us suppose that A = Yjd-^m K^w) < oo, n = 1, 2 , . . . Put H' = T ^ A, 

H = T -{- Y^^Ai and let G„ be a pure subgroup of G defined by the formula GjT = 
i<n 

= {H'JT}^^^. NOW we shall proceed by induction by n. Firstly, G^ = T splits. If 
Gn-i = T+B„_, splits then for X = G„_i + Л - i , {GniBn~i)i{^n-i) = G^JK ^ 
^ {G„lT)l{KlT) is a finite group as a homomorphic image of {G^lT)l{H'„jT). Then 
GjBn-i splits by Theorem 3 from [5]. It is easy to see that 
(14) G„lB„_, = G„_,JB„^, + B„lB„_, 

for a suitable subgroup B„ ç G„, Now the proof proceeds along the same lines as 
in Theorem 1 (among the limit ordinals only со must be discussed). 

Definition 3. We say that the subgroup H of the group G is regular in G, if the factor-
group SjS n H is finite for every torsion free rank one subgroup S pure in G. 

Note that Baer introduced the following classes of torsion free groups (see e.g. [1], 
d. 174). Define F^ as the set of all countable torsion free groups. If oc is an ordinal, 
a > 1, then we let the torsion free group G belong to Г^ if G ^ Fß ÏOT ß < a and there 
exists a pure subgroup S of finite rank of G such that GjS is a direct sum of groups 
belonging to classes of indices less than a. 

Now we shall formulate three theorems (without proofs) which were stated in [7]. 

Theorem A (see Theorem 4 from [7]): Let G be a torsion free group containing 
a completely decomposable homogeneous subgroup H such that GJH is a torsion 
group. Then G ^ H if and only if 

1) G e F^ for some ordinal a, 

2) H is strongly regular in G. 

Theorem В (see Theorem 1 from [7]). Let G be a torsion free group containing 
a completely decomposable subgroup H such that 

1) T(H) satisfies the maximum condition, 
2) for any two incomparable types î^, Î2f^^^ Т{Н) it is f̂  v Т2 = È.^) If H is 

fully regular in G then G = H. 

^) R denotes the greatest element of the lattice of all types. 
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Theorem С (see Theorem 2 from [7]). Let G be a completely decomposable torsion 
free group such that T{G) satisfies conditions 1) and 2) stated in Theorem B. If H 
is regular in G then G = Я. 

Now we are ready to prove several theorems, some of which are generahzations of 
the theorems 13 — 15 from [2]. This fact we shall not prove here, because it can be 
easily derived from some theorems and corollaries proved in [7]. 

Theorem 4. Let G be a mixed group with the maximal torsion subgroup T con
taining a splitting subgroup H of the form H = P ^ A, where P is a torsion group 
and A a torsion free completely decomposable group such that T{A) satisfies 
conditions 1) and 2) from Theorem B. If H is fully regular in G then G splits, 
G = T 4- v4o ^^d AQ = A. 

Proof. G splits by Theorem 1, G = T + ^o- Further, H ^Н^ = T + A^ G 
and hence HQ == T + AQ r\ HQ. Let U я S Ы pure subgroups of AQ such that SJU 
is a torsion free group of finite rank. From the purity of Л о in G it follows by Defini
tion 1 that the factor-group 5/(5 n Я, I/} = 5/{S n (^o n Я), U} is finite. The 
inclusion H ^ HQ shows that AQ n HQ is fully regular in AQ. AS AQ n HQ ^ HQJT = 
^ A fulfils all the conditions of Theorem B, the isomorphism AQ ̂  AQ n HQ 
completes the proof. 

Theorem 5. Let G be a splitting group, G = T + AQ where T is a torsion group 
and AQ a completely decomposable torsion free group such that T(AQ) satisfies 
conditions 1) and 2) from Theorem B. If H is a regular subgroup of G then H 
splits, H = P -i- A and A ^ AQ. 

Proof. By Theorem 2 Я sphts, Я = P + ^ . As in the preceding proof it is Я ^ 
Ç HQ = T -i- A = T + {AQ n HQ) so that A ^ AQ n HQ. It is not too difficuh to 
show that AQ n HQ is regular in AQ, hence Theorem С completes the proof. 

Theorem 6. Let G be a mixed group with the maximal torsion subgroup T con
taining a splitting subgroup H of the form H = A -\- P where P is a torsion group 
and A a homogeneous completely decomposable torsion free group. If GJT is 
countable and {H, Г}/Г strongly regular in GJT then G splits, G = AQ + T and 
AQ^A. 

Proof. Let us denote HQ = {Н, T} = T + A ^ G. Then A ^ HQJT^ GJT is 
a direct sum of countably many rank one groups and HQJT is clearly strongly regular 
in GJT. By Theorem 3 G splits, G = Г4- AQ. NOW G/Tis a torsion free countable 
group containing HQJT ^ Л as a subgroup, so that by Theorem A (for a = 1) it is 
GjT ~ HQJT and the theorem easily follows. 

Theorem 7. Let G be a mixed group with the maximal torsion subgroup T con
taining a splitting subgroup H of the form H = A 4- P where P is a torsion group 
and A a homogeneous completely decomposable torsion free group. If G contains 
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a subgroup G^ such that H Я^ G^ Я G, H is fully regular in G^, [G^, T}IT is 
strongly regular in GJT and GJGi is countable, then G splits, G = AQ + T and 
Ao = A. 

Proof. By Theorem 4 G^ splits, G^ = Q -\- Ai and A^ ^ AAf g e G — G^ is an 
arbitrary element then by hypothesis it is r{g 4- T}J^^ £ (G^, T}/T for a suitable 
non-zero integer r, i.e. r̂ r = a + t, a e A^, t e T.lf s is the order of t then for m = rs 
it is mg e A^, i.e. mg has a non-zero component in finitely many direct summands of 
a given complete decomposition oï A^ = Yjd^t- Let us choose one element in each 

lel 

coset of GJGi and let us denote by M the set of all these elements. If we denote by /^ 
the set of all indices t e I such that J, contains a non-zero component of at least one 
element mg, g e M^) (m depending on g\ then /^ is clearly countable (because M is 
countable). Put /3 = / -^l^, G' = [T + Yad Л; Щ^ <^" = Ъ Jr It is G' n G" = 0, 

t e l l lelz 
because for g e G' r\ G" it is mg e ( ^d «̂ 0 ^ ^' == 0 for a suitable integer m and 

t e l l 

hence the torsion free character of G" implies g = 0. On the other hand G = 
= {Gl, M] = [G, G"] so that G =- G + G\ 

Further, G'ITÏS countable because the elements from { ^ ^ J„ M} form the set of 

representatives of the cosets of G'JT. If we denote G[ = T + J^^ J^, then clearly 
t e / i 

G[ = G' n Gl and from Definition 2 now easily follows that Gi/Tis strongly regular 
in G'JT. By using Theorem 6 our assertion now follows without complications. 
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'^) The set of those Ji, le I in which mg has a non-zero component does not depend on the 
choice of the integer m for which mg E A-^, Surely, if / is the least positive integer for which tg e A^, 
then m = tq -{- r, 0 ^_ r < t. For r ф 0 it is r^ = mg — qtg e A^ 3. contradiction and the asser
tion follows. 
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