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Czechoslovak Mathematical Journal, 20 (95) 1970, Praha 

UNION AND SYMMETRY PRESERVING ENDOMORPHISMS 
OF THE SEMIGROUP OF ALL BINARY RELATIONS ON A SET*) 

A. H. CLIFFORD, New Orleans and D. D. MILLER, Knoxville 

(Received March 19, 1969) 

The famihar theorem that every automorphism of a symmetric group of finite degree 
is inner has undergone several successive generahzations. In 1937, SCHREIER [8] exten­
ded it to the group of all permutations of any setX (i.e., all one-to-one mappings of X 
onto X). In 1952, MALCEV [7] further extended it to the semigroup of all transforma­
tions of a set. (See also LJAPIN [5], p. 302.) In 1959, GLUSKIN [3] extended it in turn 
to the semigroup of all partial transformations of a set. In 1964, CRESTEY [2] 
extended it to the semigroup ^x of all binary relations on a set X, except that he 
imposed the hypothesis that the automorphism of ^x preserve finite unions. In 1965, 
ZARECKII [9] proved it for the semigroup of all binary relations on X having domain 
and range both equal to Z , with no restriction on the automorphism. Finally, in 1966, 
MAGILL [6] showed that every automorphism (without restriction) of ^x is inner. 
Independently, Gluskin [4] in 1967 obtained the same result for ^x ^^id for two of 
its subsemigroups. 

In the present paper we begin the study of the endomorphisms of ^^^ ^^^ determine 
all those that preserve arbitrary unions and map symmetric relations onto symmetric 
relations (Theorem 3 in §2). Theorem 1 in §1 determines all such endomorphisms that 
preserve the empty relation. In §3 we give a somewhat simplified proof of Magill's 
Theorem, and in §4 we consider the case X finite. 

1. ENDOMORPHISMS PRESERVING UNIONS, SYMMETRY, 
AND THE EMPTY RELATION 

A (binary) relation on a set X is just a subset of the cartesian product X x X. The 
product a о ß 0Î two relations a and j5 on X is defined to be the relation 

ac ß = |(x, y)eX X X : 3z e X such that (x, z) e a and (z, y) e ß} , 

*) The research for this paper was supported in part by grant GP 6218 from the National 
Science Foundation to Tulane University. 
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This Operation is associative, and hence the set ^x of all relations on X is a semigroup. 
Since ^x is the set of all subsets of X x X, it is closed under set-theoretical union (J 
and intersection fj- For the elementary properties of ^;^, the reader is referred to [1], 
§1.4. To avoid triviahties, we assume throughout that X has more than one element. 

The converse a~^ of a relation a will be denoted by acr, and we shall regard a as 
the transformation of ^x which takes a into aa = a ~ \ A relation is symmetric if 
and only if it is taken into itself by a. By the domain of a relation a we mean the set 

D(a) = {x e X : {x, y) e a for some у eX] , 

and the range of a is defined to be R{OL) = D(OLG). 
An endomorphism of ^x is a transformation 0 of J'̂ ^̂  satisfying (a о ß) 9 = ав о ßO 

(all ос, ß in ^x)- ^^y transformation 9 oï ^x will be said to preserve unions if, for any 
subset (a^ : i e /} of ^x^ 

{\j{a,:iel})9 - \j{aiß:iEl], 

We shall say that 9 preserves symmetry if it maps symmetric relations into symmetric 
relations. We shall say that 9 preserves converses if it commutes with a. If 9 preserves 
converses then it preserves symmetry. For if 9o = a9, and a is symmetric, i.e., 
oca = a, then (aö) a = {oca) 9 = oc9, i.e., a9 is symmetric. Regarding the converse 
assertion, see Lemma 3 below and the remark following it. 

Throughout this paper, the relation consisting of the single pair (x, y) in X x X 
will be denoted by Ф^у. The empty relation will be denoted by 0. Clearly 

^^ "̂  '̂̂  10 if J + x'. 

Let 9 be any endomorphism of ^x such that W = 0. Let ц^у = Фх,у9. From (l) 
we obtain 

(2) <,,.,",..,-t'- '' >':':• 
[0 if у Ф x\ 

Any system {rj^y : x, у eX] of elements of ^x (indexed by X x Z) satisfying (2) 
will be called a matricial family. 

Lemma 1. Let {f]^^y : x, у eX} be a matricial family of relations on a set X, If one 
member of the family is empty, then every member is empty. In the following, 
assume that at least one, and hence every, ц^^у is not empty. Let D^ be the domain, 
and R^ the range, of rj^ ^. Then the domain of f]x,y is D^, and its range is Ry', and, 
forallx,yinX,D^nRy = 0ifandonlyifx-¥y. 

Proof. Suppose ?;„,, = 0 for some u, v in X. Then rj^y = f/̂  „ о r^^^ о n^^y = 0 for 
every {x, y) in X x X. From rj^^y = rj^^^ о rj^^y and J]^^^ = rj^^y о rjy^^ we see that 
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Н^х,у^ = D^, and the proof that R{rix.y) = ^y ŝ similar. From rj^^^ о rj^^^ = r\^^^ 4= 0 
and r]y^y orj^^^ = (D for X Ф y, we conclude that R^ n D^ Ф ф and that Я^ n D^ = 0 
for X Ф y. 

Lemma 2. / / 9 is a union preserving transformation of M^, and if we set rj^^ = 
= Фу, у 9{x, у eX), then, for any oc ф 0 in ^ХУ 

(3) a9 = U{^x,y ' {^y y) e a} . 

Hence if two union preserving transformations of ^x <^9ree on the one-element 
relations Ф^ у and on 0 then they are equal. 

Proof. The proof is immediate from a = U{^x,y • (-̂ ^ У) ̂  ^} ^^^ ^he hypothesis 
that 9 preserves unions. 

Lemma 3. Let 9 be an endomorphism of ^x- U ^ preserves converses, then it 
preserves symmetry. If 9 preserves unions, symmetry, and the empty relation, then 
it preserves converses. 

Remark . It follows from Theorem 3 below that the hypothesis 0Ö = 0 in the 
second assertion can be omitted. We do not know if the hypothesis that 9 preserve 
unions can likewise be omitted. 

Proof. The first assertion has already been shown. Assume that 9 preserves unions, 
symmetry, and 0. Let r\^y = Фх,у9, and let x ф j^ in X. Since Ф^у u Фу y. is sym­
metric, and 9 preserves unions and symmetry, it follows that r\^y u riy,, = {^x,y ^ 
u Фу^) 9 is symmetric. Let (u, v) e rj^y. Then (v, u) e rj^ у u r]y ^. Since и e D^ and 
v e Ryby Lemma 1, and D^ n i?̂ , = 0 by the same lemma, we conclude that (v, u) ф 
Ф У]^у, and hence {y, u) e Цу^. Thus ц^уО ^ Цу^^. Interchanging x and y, Цу^^а Ç ц^^у, 
and hence г]у ^ — f^y^^oa ç Цх,у^' Thus Щх,у^ = Цу,х^ and 

,, ^x,yöö- = Ц^^уО = rjy^^ = Фу J = Ф^^^о9 . 

Since 9 and a preserve unions and 0, so do 9G and G9. By Lemma 2, 9a = a9. 

By a partial equivalence we mean a symmetric, transitive relation. 

Theorem 1. Let X be a set. Let E be any non-empty subset of X, let n be a partial 
equivalence on X with domain E, and let /i be a mapping of E onto X satisfying 

(4) 7Г о /i = £ X Z . 

Define 9 \^x-^ ^x by 

(5) aö = 71 n (/io a о //"!) (all a in ^x) • 
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Then в is a non-zero endomorphism of ^x ^hich preserves unions and symmetry, 
and maps 0 onto 0. 

Conversely, every such endomorphism of ^^ ^^ obtained in this y^ay. 

R e m a r k 1. The zero endomorphism of ^x (which maps every element of ^x 
onto 0) can be included in the formula (5) if we allow E to be empty, and do not 
require // to be onto. If £ ф 0, condition (4) forces ju to be onto. 

R e m a r k 2. Condition (4) is equivalent to: given t in X and у in £, there exists z 
in X such that {y, z)en (hence z E E) and z/x = t. 

Proof. Let E, 71, and ix satisfy (4), and define в by (5). The latter is equivalent to 

(6) ав — {(x, y)en : (x/i, ypt) e a] . 

For (x, y) e ^ о a о /i~ 4 f and only if there exist u,v'mX such that 

(x, u)e IX , {u,v)eoL, {v, y)e ii~^ , 

Since the first of these is equivalent to xpi = w, and the third to y^i = v, it follows 
that {x, y)e lio a о ß~^ if and only if {xp., yp) e oc. 

Let oc, ße ^x- We proceed to show that ав о ßQ := {a о ß) Q, Let (x, y) e aö о ßO. 
Then there exists z in ^ such that (x, z) e ав and (z, y) e ßO. Hence 

(7) (x, z) G 7Г, [xp, zp)eQC, (z, y)en , {zp, yp)e ß , 

whence (x, y) e n, [xp, yp) eao ß; that is, (x, y) e (a о ß) в. Hence осв о ßO ^ (a о ß) ß. 

То show the converse inclusion, let (x, y) e{oc о Д) Q, Then (x, y)e n and (xp, yp) e 
ecu о ß. The latter implies {xp, t)e a and (t, yp) e ß for some t in X. By (4) and 
Remark 2, there exists z in £ such that (y, z)en and zp = t. We conclude that equa­
tions (7) hold, which imply (x, z) e aO and (z, y) e ßO, hence (x, у)еав о ßO. 

Since о distributes over arbitrary unions ([1], Exercise 1(b), p. 15), it is clear from 
(5) that в preserves unions. It is clear from (6) that if a is symmetric, so is aö; thus 0 
preserves symmetry, lï œ = X x X, then coo = тс ф 0, and so 9 is not the zero 
endomorphism. It is also clear from (5) that W = 0. 

Conversely, let 0 be a non-zero endomorphism of ^x which preserves unions and 
symmetry, and maps 0 onto 0. Let г]^у = Ф^ув. Since фв = 0, equations (2) hold. 
If rj^y = 0 for every x, у in X, then в is the zero endomorphism, by Lemma 2. Hence 
at least one rj^ у is not empty, and, by Lemma 1, every rj^y is non-empty. 

Since Фх,х is symmetric, and 0 preserves symmetry, it follows that rjx,x ŝ symmetric, 
and so, in the notation of Lemma 1, D^ = R^. Let us write E^ = D^ = R^, and let 
E = ( j |£^ : X e X}. By Lemma 1, the domain of rj^ у is E^, its range is Ey, E^ ф 0 for 
all X, and 

(8) E^nEy = (D if X Ф j ; {x,yeX). 
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By Lemma 3, 9 preserves converses, and so 

(9) x̂,ycr = Ф^^(7 = Ф^^усгв = Фу J = rjy^^ . 

Let 

(10) n^\j{n,y,{x,yi)eX xX]. 

By (9), n is symmetric, and by (2) it is transitive. Hence it is a partial equivalence on X 
with domain 

[ueX : (w, u)en] = [ueX : (w, u) e ц^^у for some (x, y) in X x X} = 

= [u e X : и e E^ for some x in X} = \J{E^ : x e X} = E . 

Note that 

(11) rj^^y = n n {E^ X Ey). 

For if (M, г;) e 7C n (£^ x Ey), then (w, y) e rj^^ уг for some (x', y') in X x X. Then 
и e E^ n E^, and from (8) we conclude that x = x'. Similarly, у = y\ and hence 
(w, i?) e f/̂  y. The converse inclusion is clear. 

Let 

(12) fi = {{x,y)eX X X:xeEy}, 

Clearly fi is a (single-valued) mapping of E onto X. 
Now let a e J^^. Since в is union preserving, Lemma 2 holds. From (3), (U), and 

(12), we see that (w, v) e осв if and only if there exists (x, y) in X x X such that (in 
turn) each of the following equivalent assertions holds: 

(u,v)e rj^ у and (x, y) e a , 

(M, f) 6 7Г, ueEj,, ve Ey , and (x, y) e a , 

(w, v)en , [u, x)e fi , (x, y) e a , and (y, f) e jw" ^ . 

Hence (u, f) e aO if and only if both (u, v) e n and (u, Î;) e ̂  о a о ц̂~ ^ ; that is, if and 
only if (5) holds. 

Finally, we prove (4), as stated in Remark 2. Let teX, у E E. By definition of £, 
у G E^ for some x in X. Since E^ is the domain of rj^j, there exists z in Z such that 
(y, z) e f/̂ ,,. By (11), (y, z) e я and z e E,. 

E x a m p l e 1. Let X be the set of positive integers, let E be the even integers, and let n 
be congruence modulo 4. Let /i : £ -> X be defined by nji"^ == E„ = {4n ~ 2, 4n}, 
for every n in X. Then ?7̂ ,„ is the two-element relation consisting of the pairs (4m - 2, 
An — 2) and (4m, 4?г). 
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2. ENDOMORPHISMS PRESERVING UNIONS AND SYMMETRY 

In this section we remove the restriction that the endomorphism в of ^x ^^P 0 
onto 0. 

Lemma 4. Let в^ and 02 ^^ endomorphisms of ^x^ ^^^ let E^ and £2 ^^ disjoint 
subsets of X, such that осв^ ^ Ei x Ei [i — 1, 2) for all a in ^x- Then 6^ и 02, 
defined by 

(x{9i u 02) = a0i u a02 (all a in ^x) 

is an endomoprhism of ^x- The endomorphism 0^ u 02 preserves unions or sym­
metry or the empty relation if and only if both в^ and 02 do the same, respectively. 

Proof. Let oi,ße ^x- Then a02 о ßO^ ç [Ej x £2) ° (^1 x ^1) = 0. and similarly, 
a0i о j502 = 0. Since о distributes over u , 

a(0i u 02) о ß{e^ u 02) = (a0i u a02) о [ßd^ u j?02) = [ав^ о ßß^) u (a02 о j502) = 

= (a о ^) 0, u (a о ß) 02 = (a о ß) (в, u 02) . 

The last assertion of the lemma is evident. 

Lemma 5. / / {rj^y : x, ye X} is a matricial family, and if we define 0 : ^x ~^ ^x 
Ьуфв = 0 and 

(13) ав = \j{rj.,y'{x,y)eoc], (ффае^х), 

then 0 is an endomorphism of ^x ^^^^ preserves unions [and 0). Moreover, 0 preserves 
symmetry if and only if 

(14) rj^^ycr = rjy^^ {all x,yeX). 

Proof. Let a, ß E ̂ x , and let (u, v)e (хв о ß9. Then there exists w in X such that 
(u, w) e осв and (w, v) e ßO. This implies that there exist x, y, s,t m X such that 

{x, y)ea, (u, w) e rj^^y , {s,t)eß , (w, v) e rj,^,, 

Hence (u, v) e rj^y о rj^j, v^hich implies у = s, and then (u, v) e rj^y, and у = s also 
implies (x, t)eoco ß. We conclude that (w, i;) e (a о ß) в. 

Conversely, let (u,v)e((xo ß) 0. Then (w, t;) e f/̂ .̂  for some {x, t) in ao ß. The 
latter implies that there exists 3; in X such that (x, y)e a and (y, t) e ß. Since rj^y = 
= rjxy о rjyf, the former impHes that there exists w in Z such that (w, w) e r]x,y and 
(w, v) e Цу^. Hence {u, w) G a0 and (w, v) e ßd, so that (u, v)e сев о ßO. 
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We have thus shown that ß is an endomorphism of ^x- Now let {â  : iel} be any 
subset of ,^x- Then 

(Ua,) 0 = и {^.,y : {x, y) € Uo .̂} = и и {^.,. : {x, y) e a J = {){^ß) . 
» x,3? i i x,y i 

Hence 0 preserves unions. That 00 = 0 is part of the definition of 0. 

We note that Ф^у в = rj^y. If 0 preserves symmetry, then it preserves converses, by 
Lemma 3, and (14) follows from (9). Conversely, assume (14), and let a be a symmetric 
element of ^x- Let (u, v) e a0, so that (u, v) e ц^у for some (x, j;) in a. Then (i;, u) e 
e rj^yCT = f]y^^, and since (y, x) e a, we conclude that (v, u) e a0. Hence 0 preserves 
symmetry. 

Theorem 2. Let X be a set. Let С be a partial equivalence on X with domain F, 
Let 9 be an endomorphism of ^x tupping 0 onto 0 and having the property that 
there exists a subset E of X, disjoint from F, such that сив ^ E x E for all a in ^x-
Define в' : ̂ x -^ ^x by 

(15) ав' = осви С {all a in ^x) • 

Then 0' is an endomorphism of ^x capping 0 onto C-
If в preserves unions and symmetry, so does 0'. Conversely, every endomorphism 

of ^x ^hat preserves unions and symmetry is obtained in this way. 

Proof. If we define 0'' : ̂ x -^ ^x by a0" = С for all a in ^x^ then (since С ° С = 
= С) в'' is an endomorphism of ^x- The transformation в' of ^x is just 0 u в" as 
defined in Lemma 4, and is an endomorphism of ^x^ since E n F = 0. Moreover, 
00' = 0 0 u C = 0 ^ C = C- That 0' preserves unions and symmetry if 0 does, also 
follows from Lemma 4. 

Conversely, let 0' be an endomorphism of ^x which preserves unions and sym­
metry. Let С = 0O\ and let ri'^y = Фх,уО\ (x, у e X). By Lemma 2, 

(16) a0' = \JW:,,y : {x, y)ea} , for all a Ф 0 in ^x • 

Now Ç, о С = C^ and Co" = С since 0' preserves symmetry; hence С is a partial equiva­
lence on X. Let F be the domain of C- If С = 0, there is nothing to prove. Conse­
quently we may assume С + 0? and hence F Ф 0. 

Similarly, г]х,х is a partial equivalence on Z , for each x in X. Let E^ be the domain 
of ?/^^. Since 0' preserves unions, it preserves inclusion, and so С ̂  ?;^^ for all x in X. 
In particular, F я F^. Since 0' is an endomorphism of J'jf, we have: 

(18) ^;,,°c = c ° < , ==c. 
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From f/̂  ,, о rj'^y = rj'x^y and rj'^y о г]'^ ^ = ц'^,^, we see that the domain of ц'х,у is E'^, 
and similarly we can show that its range is Ey. 

We observe next that if w G F and (w, v) e ц'^у, then (м, v) e C. For, let z be any 
element of X such that z Ф x. Since и e F ^ E'^, and £^ is the domain of the partial 
equivalence rj^.^, it follows that (w, u) e ?/̂ .̂ From this and (if, y) e ?f̂ ŷ, we conclude 
from (17) that (u, v) e rj'^ ^ о г]'^^ = (. 

Similarly we can show that if t; e F and {u, v) e rj'^y, then (м, v) e C« We conclude 
that if (M, V) e щ'^у, then either (i/, i;) e С or (w, i;) € F ,̂ x Ey, where F^ = ^ X \ F . In 
other words, if we set 

(19) Пх,у = Пх,у ^ {Ex X Ey) , 

then 

(20) < ^ = rj^^yUC'. 

Here rj^y and С are disjoint in the strong sense that both their domains and their 
ranges are disjoint. Consequently 

(21) ^x,y°^s,t = {^x,y^11s,t)^ C' 

From (17) and (20) we conclude when у = s that the left side of (21) is equal to 
^x,f ^ C; and from the strong disjointness we infer that rj^y о rjyt = rj^ ^. If у ф s, 
then the left side of (21) is equal to C, and we infer that ri^y о rj^ ^ = 0. Hence {rj^y : 
: (x, y)eX X X] is a matricial family. 

By Lemma 5, the transformation в of ^x defined by (13) and 00 = 0 is an endo-
morphism of ^x- For every a in J*;̂ , ав ^ E x E, where F = U{^x • ̂  e X } . Since 
each F^ is disjoint from F, so is F. (15) now follows from (13), (16), and (20) for 
a Ф 0; and it is clear for a = 0 since 00' = С and 00 = 0. 

We combine Theorems 1 and 2 into the following, which is the main result of the 
paper. 

Theorem 3. Let X be a set, and let E and F be disjoint subsets of X. Let n and Ç, 
be partial equivalences on X with domains E and F, respectively. Let fibe a mapping 
of E into X satisfying n о jn = E x X, Define в : ^x ~^ ^x ^У 

(22) a0 = [тг n (̂ u о a о / I ' l ) ] u С (a e ^x) • 

Then 0 /5 an endomorphism of ^x preserving unions and symmetry, and, conversely, 
every such endomorphism of ^x ^^ obtained in this way. 
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3. AUTOMORPHISMS OF % 

The purpose of this section is to give an alternative proof of Magill's Theorem 
that every automorphism of ^x is inner. 

Let Я be a permutation of X, and let 1 : ^x ~^ ^x be the corresponding inner 
automorphism of ^x^ ^hat is, 

(23) а Я - Я ~ ' о а о Я (a e i^^) . 

We note that 

(24) Ф ^ ^ Я ^ Ф ^ , ^ , {x.yeX). 

For (M, v)e A~'^ О Ф^ ^ о Я if and only if (u, x) e À~^ and (>', v) G Я; that is, if and only 
if и = хЯ and v = yÀ. 

Lemma 6. (1) Let 0 be an endomorphism of ^x ^hich leaves fixed the empty 
relation 0 and every one-element relation Фх,у Then в is the identity automorphism 
of^X' 

(2) If two endomorphisms Oi and 62 of ^x le(^ve 0fixed and agree on all the Ф^^^уу 
and one of them is an automorphism, then 0^ = ^2-

Proof. 
(1) Let a e ^x- Then, for any x, у in X, 

'" I0 if {х,у)фа. 

Applying 9 and using the hypothesis that Фх,уО = Фх,у, etc., and 00 = 0, we get 

" [0 if ( x , y ) ^ a . 
But 

"'" I 0 if {х,у)фав. , , 

Hence (x, 3;) e a if and only if (x, y) G ав, that is, aö = a.' 

(2) Suppose ^1 is an automorphism. Then 02^7^ leaves 0 and every Ф-^^у fixed, so 
026^^ is the identity automorphism of J';̂ ,̂ by (1), whence 62 = 0^. 

For subsets £, F of X, let Ф^ p denote the relation E x F on X. We write Ф^ ^ 
for ФЕ,{Х]-> efc. Note that Ф^р = 0 if either E = 0 or F = 0. As pointed out by 
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Crestey [2], ^x has a 0-minimal ideal M which is contained in ail non-zero ideals 
of ^x^ namely M = [Ф^^р : E Ç Z , F ç X}. For if 0 Ф a e 0^x then 

a о ф^р = ф^, ^,, where E' = {x e X : (x, y) G a for some v in E} , 

ФЕ,Р ° a = Ф^^р., where F' = {y e X : (x, y) e a for some x in F} . 

Thus M is an ideal of ^x- If ^ is any non-zero ideal of ^x^ and 0 ф a e Л, and if 
(x, y) e a, then Ä contains the element Ф^^х ° a ° ^y,F = ^E,F^ for any £ Ç X, 
F Ç X. 

Let iV be the set of right non-zero-divisors in M, i.e., 

N — {аеМ:уо(х = ф implies у = 0 (y ^ .:^^)| . 

Clearly Ф^р is a right non-zero-divisor if and only if F = X and F Ф 0, and con­
sequently N = {Фх,р : F с X, F Ф 0}. 

We define a relation ^ on iV as follows: 

a ^ ^ if and only if ß oy = 0 implies a о y = 0(a, ß e N; ye ^x) • 

Note that ФХ^Е S Фх,р if and only if F Ç F, so ^ is a partial order on N, 

Now let в be any automorphism of ^x- Clearly M9 = M and N0 = N. Since the 
relation ^ on iV is defined in terms of o, it is preserved by 0. Thus в maps the set of 
minimal elements of N onto itself; but this is just the set {Фх,у ' У e X } . Similarly, 
0 maps the set {Фх,х ' xeX} onto itself. Since the same holds for 0 " \ we conclude 
that there exist permutations À and /i of X such that Фх,х^ = ^хл,х and Фх,у0 = 
= ^х.уд- Applying в to Ф^^у = Ф^х ° ^х,у. we obtain Ф^^в = Ф^^х ° <^х,уц = 
= Фхя,уд. Applying 0 to Ф ,̂̂  = Ф ,̂̂  о ф^ ^ we obtain Ф,,я,хд = ^хя,хд ° ^хя.хд-
Since Фхх,хц + 0 for every x in X, we conclude that xÀ = x/i, and hence that 1 = fi. 
We have thus shown that there is a permutation Я of X such that Фх,уО = Ф я̂.̂ я-

By (24), в agrees with the inner autmorphism I of ^x on {Фх,у - x:, у e X}, and so 
0 = I b> Lemma 6. Hence 0 is inner, which concludes the proof of MagilFs Theorem. 

4. ENDOMORPHISMS OF ^x WHEN X IS FINITE 

In Theorem 3, if F Ф 0, then /i must map F onto X. If X is finite, F Ф 0 implies 
that F = X, that /x is a permutation of X, and that F = 0, hence С = 0. Furthermore, 
the condition 7 r o ^ [ x = = F x X = X x X , with fi a permutation of X, requires that 
я = X X X. (22) thus reduces toa0 = juoao^u~^; that is, 0 is an inner automorphism. 
On the other hand, if F = 0, then тг = 0, and (22) reduces to ав = С- Thus the follow­
ing is an immediate consequence of Theorem 3. 

Theorem 4. Let X be a finite set. Every endomorphism 0 of ^x ^hich preserves 
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unions and symmetry is either an inner automorphism of ^x^ ^^ ^^^^ maps Mx onto 
a single partial equivalence C-

We conclude with a theorem in which the properties of preserving unions and 
symmetry are not in the hypothesis, but (for finite X) are consequences of the conclu­
sion. Since the two hypotheses of Theorem 5 are satisfied by any automorphism 
of J^x, we get a simple proof of Magill's Theorem (for finite X), depending only on 
Lemma 1 and Lemma 6. 

Theorem 4 shows that Theorem 5 would be false if we omitted the hypothesis (i). 
We give an example to show that we likewise cannot omit the hypothesis (ii). 

E x a m p l e 2, Let в : ̂ x ~^ ^x ^^V every unit I of J*;̂ ^ onto itself (Я a permutation 
of X), and let в map every non-unit oï ^x ^^ t̂o 0. (This works for X finite because the 
set of non-units of ^x is an ideal of J'jf, which is not so if X is infinite.) It is clear 
that в is an endomorphism of ^x- This also affords us an example of an endo­
morphism preserving 0 and symmetry (in fact, converses), but not unions. 

Theorems. Let X he a finite set. Let в he an endomorphism of ^x satisfying 
(i) W = 0, and (ii) Ф^ув Ф 0 / o r at least one pair (x, y) in X x X, Then в is an 
inner automorphism of J^^. 

Proof. Let rj^y = Фх,у^- By (i), {ц^^у : (x, j ) e X x X] is a matricial family. By (ii), 
ц^У Ф 0 for at least one pair (x, y), and, by Lemma 1, ц^^у ф 0 for every pair (x, y). 
Let D^ be the domain and R^ the range of t]x,x' Ву Lemma 1, the domain of ц^у is D^ 
and its range is Ry, and D^ n Я ,̂ = 0 if and only if x ф j . In particular, E^ = D^ n 
n î ^ Ф 0. On the other hand, if x Ф y, E^ n Ey ^ D^ n Ry = 0. 

Since X is finite, these facts imply that each E^ is a one-element set. Denoting the 
element of E^ by хЯ, it follows that Я is a permutation of X. (Я is the inverse of the 
mapping fi defined by (12).) 

It follows that jR̂  and D^ are also one-element sets. For suppose that R^ contained 
some element other than хЯ. Since Я is a permutation, this additional element is yX 
for some у =¥ x in X. But yXe Ey я Dy, contradicting R^ n Dy = 0. Thus R^ = 
= E^ = {хЯ}. Similarly, D^ = E^ for each x in X, Since г]х,у ^ D^ x Ry, it follows 
that rj^^y = Ф я̂,з,я- Thus Ф^^ув = Ф^̂ я,);я. 

Comparing with (24), в and 1 have the same effect on the one-elemeni relations Ф^у, 
and both map 0 onto 0. By Lemma 6, they coincide. Thus the given endomorphism 9 
is equal to the inner automorphism I of Ĵ ĵ .̂ 
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