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A SURVEY OF SEPARABLE DESCRIPTIVE THEORY
OF SETS AND SPACES

ZpENEK FroLik, Prahal)
(Received March 11, 1969)

This is a survey of the theory of analytic and various Borel-like (Lusinian like) sets
and spaces as developed in the last decade.

©® N YA WL

O N - T = S Sy
w AW N = O

40

CONTENT

. Notation and terminology (Souslin sets, Baire sets, B(.#), By(.#), S(4), Si(4),
the space X of irrationals).

Separation theorem.

. Usco-compact correspondences (dusco-compact and closed-graph correspondences).
Souslin and analytic sets.

Separation of analytic sets.

Bianalytic spaces.

Borelian spaces.

BB-sets and Baire sets in compact spaces.

. Complete sequences of coverings.

. B-spaces and K-Borel sets.

. Respectability of composites.

. The Souslin graph theorem.

. Remarks to the non-separable theory.

. Abstract theory in paved spaces.

. Theory of sieves and remarks (Sieve theory, standart and analytic measurable
spaces, Blackwell spaces).
Bibliography.

1) This is a revised edition of the author’s lectures at the University of Bari in 1968.

6



1. NOTATION AND TERMINOLOGY

1.1. A relation is a class of ordered pairs; Dg and Eg stand for the domain and the
range of g. A family is a single-valued relation where Dp is a set; it is denoted by
symbols like {X, | a € 4}, {X,}, or {a > X, | a € A}, {a - X,}. The set of all elements
with property P is denoted by E{x | P(x)}. If f and g are two relations then f < g
means that f is a restriction of g.

1.2. If ., and ., are collections of sets we denote by [.#,] n [.#,] the set of
all M, n M, with M, in .#; and similarly for u.

1.3. Let .# be a collection of sets. The set consisting of the intersections (unions)
of all countable families in .# is denoted by .#; (.#,,, resp.). The set consisting of the
unions of all countable disjoint families in .# is denoted by .#,,. We denote by B(.#)
the smallest collection A" o .4 with the property A/, = A ; = A", and we call the
elements of B(.#) the Borel-.# sets. The smallest /" > .# with /'y = N, = N
is denoted by B,(.#).

The following result is easy, however very useful.

Proposition. Let .4 be a collection of sets. Then

B(.#) = U{B(AN)| AN < M, N countable}
B, (M) = U{By(AN)| N = M, N countable} .

The next result is of crucial importance. For the classical proof based on the Borel
classification see KURATOWSKI [ 1, p. 259].

Theorem. Let .# be a collection of subsets of a set P. If compl, .# < B,(.),
then

B(.4) = B(.#) = E{X | X e By(M), P — X € B(.M)}
(and By(M) is an o-algebra).
Proof. Put
% = E{X | X € By(M), P — X € B(.M)}

Clearly:
M =€ = ByM) <= B(M),
and hence it is enough to show that B(%) < &. First observe that if X, X, € %, then

X nX,eByM) and P - (X, 0nXy)=(P-X)nX,)u(X;n(P-X,)u
U((P - X,)n (P - X,))eBy(A), and hence X, N X, € €; thus ¥ is closed under
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taking finite intersections. From this fact it follows that € is closed under finite
unions and that the differences of elements of ¥ belong to € because X; — X, =
=X, n(P — X,). Now if {C,} is a sequence in &, then {B,} with B, = C, —
— U{C| k < n} is a disjoint sequence in %, and hence U{C,} = U{B,} € B,(.%);
since P — U{C,} = N{P — C,} € By(A), we get that U{C,} € ¥. Hence €, c %.
Since compl (%) <= %, we get also €; = %. The proof is complete.

1.4. Baire sets. A zero set (another term: an exact closed set) in a space P is a set
of the form Z(f) = E{x | fx = 0} where f is a continuous real-valued function on P;
the collection of all zero sets in P is denoted by zero (P). The complements of the zero
sets are called cozero sets (another term: exact open sets), and the collection of all
these sets is denoted by cozero (P). Since clearly zero (P) = (cozero (P)),, it follows
from Theorem 1.3 that

B(zero (P)) = By(cozero (P)) ;
the elements of B(zero (P)) are called the Baire sets in P. It should be remarked that
B,(zero (P)) + B(zero (P))

in general, e.g. if P is the closed unit interval of reals. The Baire sets in a space P form
a o-algebra, that means in particular, the complements of Baire sets are Baire sets.
The following theorem will be needed:

Theorem. If # is a countable collection of Baire sets in a space P, then there
exists a continuous mapping f of P into a separable metrizable space M such that
B = f~'[f[B]] for each B in B, and each f[B] is a Baire set in Ef. (The space M
can be taken to be the Hilbert cube.)

Proof. Choose a countable collection & of zero sets in P such that # < B(F).
Choose continuous functions fr (0 < fr < 1 if you want) with Z(f) = F for F
in #,and consider the reduced product f of P into R* (defined by fx = {fpx | F e
€ #)}). For each F in # let F' = E{y | y e R%, fry = 0; consider the set #* of all F’,
F € #, and finally B(#").

1.5. Distinguishable sets. A set X in a space P is called distinguishable if there
exists a continuous mapping of P into a separable metrizable space such that f[X] n
N f[P — X] = 0. It is easy to see that a set X < P is distinguishable in P if and only
if there exists a countable set # of bounded continuous functions on P such that for .
each x in X and yin P — X there exists an f in & such that fx =+ fy.

Theorem. The set of all distinguishable sets in a space P form a o¢-algebra
containing the Baire sets in P. If 9 is a countable collection of distinguishable

sets in P then there exists a continuous mapping into a separable metrizable space
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such that f[D] n f[P — D] = 0 for each D in 9. For the metrizable space one
can take the Hilbert cube.

Proposition. If a compact set X in a space P is distinguishable in P then X is
a zero set in P (in particular, X is closed).

Proof. Choose a continuous mapping f of P into a metrizable space M such that
X = f~'[Y] where Y = f[X]. The set Y is compact, hence closed in M. Since M is
metrizable, Yis a zero set, and hence X is a zero set.

1.6. Borel-closed and Borel-open sets. The elements of B(closed (P)) are called
Borel-closed sets in P, and the Borel-open sets in P are the elements of B(open (P)).
In general

B(closed (P)) + B(open (P)),

and X is Borel-open if and only if P — X is Borel-closed. If P is perfectly normal
(in particular, if P is metrizable), then zero (P) = closed (P), and hence Baire sets,
Borel-closed, and Borel-open sets coincide.

1.7. The space X of irrationals. Denote by N the set and the discrete space of the
natural numbers, by S the set of all finite sequences in N, and by X the set of all infinite
sequences in N. Thus £ = NN, Endow X with the product topology, i.e. the topology
of pointwise convergence. For s in S put

s =E{oc|oeZ s <d}.

Clearly {Xs} is a base for open sets in X, and s < ¢ if and only if s > Xr. The space Z
is known to be homeomorphic with the space of all irrational numbers on the real
line. For the further use denote by S, the set of all elements of S of length n, n =
= 1,2, ... For ¢ in ¥ we denote by o, the only element s in S, with s < a.

Remark. The fact that X is homeomorphic with the irrationals follows from the
following theorem of MAZURKIEWICZ:

If P is a separable completely metrizable space such that

(a) no non-void open set is compact, and

(b) the closed-open sets form an open base for P, then P is homeomorphic with X.

The proof is very simple. Take a complete metric for P, and observe that for
every ¢ > 0, each open non-void set can be written as an infinite disjoint union of
closed-open sets of diameter less than e. Using this fact, one can construct disjoint
open covers {Ps | s€S,} by sets of diameter less than 1/n such that Ps < Ptif t < s.
Let h : £ — P assign to each ¢ the only point of N{Ps | s < g}. Clearly h[Zs] = Ps,
and hence & is a homeomorphism.
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1.8. Souslin sets. Let .# be a collection of sets. A Souslin family in .# is a single-
valued relation M with DM = S, and EM < .. The Souslin set of M is the set

SM = U{N{Ms|s <o} |oeX}.

The relation associated with M, denoted by M, is the set of all (o, y> with ¢ € £, and
y € Ms for all s < o; clearly EM = SM. Denote by S(.#) the collection of all SM
with M : S — ; the elements of S(./%) are called the Souslin sets derived from .#,
or simply Souslin .#-sets. It is elementary that

B(S(4)) = S(4) .
It can be proved (see Section 14)
S(S(4)) = S(4) .
Denote by S,(.#) the set of all SM with (M) ™" single-valued. It is easy to show
By(S,(4)) = S(4),
and it can be proved (see Section 14)
S/SM)) = S(M).

The elements of S(closed (P)) are called the Souslin sets in P, and the elements
of S,(closed (P)) are called the sets with a disjoint Souslin representation. In this
case the idempotency of S and S, will be proved in Sections 4 and 6.

1.9. A connection between B and S. Sometimes it is convenient to describe
Borel- / sets by means of the Souslin operation. The following result will be needed
in Section 11.

Theorem (FroL{k [9] and [12]). Let .# be a collection of subsets of a set P, and
let compl A consist of complements in P of sets in M. Then X < P is Borel- 4 if
and only if there exist

F:S—> #, and G:S— compl #
such that

X=SF, P-X=SG,
and for each o and t in X there exists an n with
* F, nG, =0.
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Proof. Let € be the collection of subsets of P satisfying the property described
in Theorem. It is routine to show that

G, =€ =%> M,

and hence it is enough to show that ¥ < B(.#). Assume the contrary and take an X
in ¢ — B(.#). Under the assumption in Theorem, there exist s; € S; and ¢, € S; such
that F[Zs,] ¢ B = P — G[Zt,] for no B in B(.#), and by induction, s,,; €S,
t,+1 € S,+q such that s, > S, t,+ > 1, and

F[Zs,,1] = B < P — G[Zt,,,]

for no B in B(.#). Pick ¢ and 7 in X with s, = ¢, and t, = 7, for each n. Clearly the
relation (*) is fulfilled for no n; this contradiction completes the proof.

Remark. If P is an uncountable separable completely metrizable space, then the
collection of the Souslin sets is strictly larger than the collection of all Baire sets.

A Souslin family {Ms} is said regular (or monotonic) if Ms = Mt whenever t < s.
If {Ms} is a Souslin family, and if define
Ns = N{Mt|t < s},
then N is a regular Souslin family, and

SM = SN .

The family N is called the regularization of M. The following simple observation
will be frequently used quite carelessly.

Proposition. If M is regular, and if all {Ms|seS,} are disjoint, then

SM = N{U{Ms|seeS,} |neN}.

1.10. All spaces in this subsection are assumed to be separated (i.e. Hausdorff) and
uniformizable, hence completely regular. A compactification of a space P is a com-
pact space K containing P as a dense subspace. Among the all compactifications of P
there exists a compactification BP (called a Cech-Stone compactification of P)
characterized by each of the following equivalent properties:

(a) If K is a compactification of P then there exists a continuous mapping of P
onto K that is the identity on P. :

(b) If f is a continuous mapping of P into a compact space C then a continuous
mapping of X into C extends f;

(c) Condition b with C a compact interval of reals.

There is one useful theorem we shall need.
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Theorem. Let f be a continuous mapping of a compact space K onto a compact
space K,. If the restriction of f to a dense subspace P of K onto f[P] is proper then
f[K - P] = K, — f[P].

By a proper mapping we mean a continuous closed mapping such that the preimages
of points are compact.

Proof. Let ye f[P], K, = Pn f~'[y], xe K — P.Choose a closed neighborhood U
of x in K with U nK, =0, and put F = U n P. The mapping f : P — f[P] is closed
and hence f[F] is closed in f[P]; thus clg, f[F] n f[P] = f[F]. Since y¢f[F],
and x e cl F, hence fx € clg, F, necessarily fx # y.

2. SEPARATION THEOREMS

2.1. Definition. Given a collection .# of sets, two sets X and Y are said to be
separated by sets in M, or simply #-separated, if there exist X,,Y; € # with
XcX,YcY,and X; nY, =0.

For example, if P is a space, and if .# is the collection of all open sets in P, then P
is called separated (= Hausdorff ) if any two distinct singletons are separated, regular
if it is Ty and if each singleton (x) and any closed F disjoint to (x) are separated,
normal if any two disjoint closed sets are separated. Note the following important
proposition that has been already used in 1.10.

2.2. If P is a separated space then each compact set K = P and any closed set
disjoint to K are separated, in particular, every compact subspace of P is closed.
If P is regular, then any two disjoint closed sets, one of which is compact, are separated
by open sets.

2.3. Separation Lemma. Let .# be an additive and multiplicative collection of
subsets of a set P. Assume that & is a finite collection of subsets of P such that any
two disjoint finite intersections of elements of

[#] o [compl, ()]
are M -separated.

Then for each M = (\ F, M € M, there exists a family My = {My|F e F}
ranging in M such that My > F and

NAMy = M.
In particular, if NF = 0, then Mg = 0.
Proof. By induction, see [F 14], proof of Lemma 1.

In the next section we shall need the following corollary to Separation Lemma.
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2.4. If & is a finite collection of compact sets in a separated space P, and if U is
a neighborhood of (&, there exist neighborhoods Uy of F, Fe %, such that
N{Ug|FeF} < U.

In Section 5 we shall need the following corollary.

2.5. Let A/ be an additive and o-multiplicative collection of subsets of P (hence
Pe M). Assume that s is a countable collection of sets in P such that any two
disjoint finite intersections of elements of [ /] N [compl (.#)] are .#-separated.
Assume that a family

{Mg | F < oA, F finite}
ranging in M is given such that \F < Mg for each & . Then there exists a family
{Ka|Ae ot}
ranging in M such that K, > A for all A in o/, and

N{K,|Ae F} = My
for each finite F < .

3. USCO-COMPACT CORRESPONDENCES

The basic properties of analytic and Souslin sets follow immediately from the
results of this section on closed-graph and usco-compact correspondences. For
a deeper theory we refer to Frolik [16].

A correspondence f of a space P into a space Q is a triple {gr f, P, Q), usually
written gr f : P — Q, where gr f, the so-called graph of f, is a subset of P x Q. If
convenient, we write f instead of gr f, and gr f instead of f; this convention is com-
monly used when dealing with mappings. In particular, Df is used instead of D gr f,
and similarly for Ef. If (gr f)~!is single-valued, then f is called a fibration or a disjoint
correspondence.

3.1. Definition. A correspondence f : P — Q is — usco (i.e. upper semi-continuous)
if the preimage of each closed set is closed, — compact if the values are compact (i.e.
the sets f[(x)] are compact), — usco-compact if f is usco and compact, — dusco if f
is disjoint and usco-compact.

3.2. Examples. a) Each continuous mapping is usco-compact. b) The inverse of
a proper (= perfect) mapping is dusco-compact. Recall that a mapping p: P — Q
is proper if p is continuous, the preimages of points are compact, and the images of
closed sets are closed, see 1.10. In particular, if x is the projection of K x P into P
and K is compact, then = is proper.
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3.3. Letf: P — Q be usco. Then Df is closed in P, and the restriction of f to any
subspace of P is usco, and also the restriction to any closed subspace of Q is usco.
This is also true for usco-compact etc.

34.If f: P > Q is usco-compact and if P is Lindelof or compact then so is Ef.

Proof.Let % be a finitely additive open covering of Ef. For each U in % let U’
be the set of all x € P with f[(x)] = U. Clearly {U’ | U € %} is an open cover of P.
Now the both statements follow by a straightforward argument.

3.5. The composite of two usco-compact (dusco-compact) correspondences is
usco-compact (dusco-compact, respectively).

Proof. Use 3.4.

3.6. If {f,: P.— Q,} are usco-compact then so is f: II{P,} —» TI{Q,} defined
by fI({x.})] = {f.[(x.)]}, and if P, = P for each a, then so is usco-compact the
correspondence f : P — I1{Q,} defined by f[(x)] = TI{f,[(x)]}-

Proofis left to the reader, see, e.g., Frolik [16].

3.7. Let {f,:P,— Q} be a family of usco-compact correspondences. Then
f:Z{P,} = Q, defined by {<a, x), y) € f if and only if {x, y) € f,, is usco-compact.

Obvious. Recall that Z{P,} is the set of all {a, x), x € P,, endowed with the finest
topology such that all {x - {a, x)} : P, — P are continuous.

3.8. Theorem. Let {f,: P, —> Q} be a family of usco-compact (dusco-compact)
correspondences; then f = A{f,} : TI{P,} — Q defined by

fIExaD] = n{fl(xa)1} »

is usco-compact (dusco-compact) provided that Q is separated.

Proof. Let U be an open neighborhood of f[{x,}]; clearly there exists a finite
set A of indices such that N{f,[(x,)] | a € A} = U. By 2.4 there exist open neigh-
borhoods U, of f,[(x,)], a e A4, such that N{U,|a€ A} = U. Since f,’s are usco,
there exist neighborhoods V, of x, such that

fa[Va] < Ua *
Now clearly

Myl =U

provided that y, € V, for a in A. This proves that f is usco.
The following result is crucial for the theory of analytic sets.
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3.9. Theorem. Let # be an open covering of a space P, and for each B in & let
fs: Pg = Q be an usco-compact correspondence. Then

f:P x I{Py|Be %} > Q
defined by
FIKx, {xa}))] = N{fsl(x5)] | x € B e #}

is usco-compact provided Q is separated.

Proof. Similar to 3.8.

3.10. Definition. A correspondence f: P — Q is said to be closed-graph if the
graph of f is a closed set in the product space P x Q.

Proposition. Each of the following conditions is necessary and sufficient for
a correspondence f : P — Q to be closed-graph:

a) If {x,yyeP x.Q — f then U x Vn f =0 for some neighborhoods U of x
andV of y.

b) If xe P, and if ye Q — f[(x)] then there exists a neighborhood U of x and
a neighborhood V of y such that f[U] nV = 0.

c) For any x in P and any local base % at x we have N{clf[U]|Ueu} =

= ()]

Proof. By definition condition a is necessary and sutficient. Cleerly conditions a, b
and c are equivalent each to the other one.
As an immediate consequence we get (see 1.8 for the definition of Souslin sets)

Theorem. A set X < Q is a Souslin set in a space Q if and only if X = Ef for
some closed-graph correspondence f : £ — Q.

The relationship between closed-graph and usco-compact correspondences is
described in the next theorem.

3.11. Theorem. An usco-compact correspondence into a separated space is closed
graph. A closed graph correspondence into a compact space is usco-compact.

Proof. Let f: P — Q be a correspondence. First assume that f is usco-compact
and Q is separated, and we are given any x in P and any y ¢ Q — f[(x)]. Since Q is
separated the compact sets f(x) and () are separated, i.e. there exist disjoint open
sets W o f[(x)] and V = (x). Since f is usco, there exists a neighborhood U of x in P
such that f[U] = W. Thus

flulnv=0.

By Proposition 3.10 the correspondence f is closed-graph.
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Assume now that f is closed-graph, and Q is compact. The values are closed, hence
compact. To prove that f is usco, choose any x in P and an open neighborhood W
of K = f[(x)] in Q. The set F = Q — W is closed, hence compact. For each y in F
there exist an open neighborhood V, of y and a neighborhood U, of x such that

flu,]nV,=0.
A finite family {V, l y € A} covers compact F; put

U=N{U,|yed}, V=U{,|ye4d}.
Clearly

f[lUlnV=0,

and hence

flU]ew.

It follows that f is usco.

Remark. The following condition is necessary and sufficient for a correspondence
f:P — Q to be closed-graph:

if C is compact in P, K is compact in Q, and if f[C] n K = @, then f[U] nV = 0
for some neighborhoods U of C, and V of K.

3.12. Theorem. Replacing usco-compact by closed-graph in 3.3, 3.7, 3.8, and 3.9,
then the resulting assertions hold without any assumption on Q.

Proof. Routine.

Remark. The assumption that Q is separated in 3.8, 3.9 and 3.11 is essential. On
the other hand similar results are true for closed-graph usco-compact correspondences;
this enables us to develop the basic properties of analytic sets in general spaces, see

[F 16].
4. SOUSLIN AND ANALYTIC SETS

Recall theorem 3.10:

4.1. A set X in a space P is Souslin if and only if X = Ef for some closed-graph
correspondence f : Z — P.

4.2. Definition. An analytic set in a space P is a set of the form X = Ef where
f:Z — P is an usco-compact closed-graph correspondence. The set of all analytic

sets in P is denoted by anal (P).

4.3. Every analytic set is Souslin. In a compact space every Souslin set is analytic,

-416



and more generally, if X is a Souslin set derived from the closed compact sets in
a space P, then X is analytic.

Proof. The first assertion follows from 4.1, the second is proved by showing that
if X = SF where Fs are closed and compact in a space P then the associated cor-
respondence F : & — P is closed-graph and usco-compact.

4.4. In any space S(Souslin (P)) = Souslin (P), and in any separated space P
S(anal (P)) = anal (P).

Proof. The space £ and ¥ x X° are homeomorphic (in particular there exists
a continuous mapping of £ onto = x X°), and 3.9 and 3.12 apply.

Remark. The result is true for any P, see [F 16].

4.5. Closed sets in Souslin (analytic) sets are Souslin (analytic, respectively).

Proof. Let C be closed in X, where X < P. Choose a closed set C in P with Cy N
N X = C. The propositions 3.3 and 3.12 apply.

4.6. If a space P is analytic in itself then P is a Lindelof space.
Proof. Use 3.4.

The concept of the analytic set depends essentially on the surrounding space,
because if X < P and f: X — X is closed-graph then f : ¥ — P need not be closed-
graph. On the other hand, if f : £ — X is usco-compact then so is f : ¥ — P. Now
if P is separated then any usco-compact correspondence is closed-graph by 3.11 and
hence if f : £ —» X is usco-compact then f : £ — P is usco-compact and closed-graph.
Thus we have proved:

4.7. If X is analytic in itself, then X is analytic in any separated space P > X.
4.8. Definition. An analytic space is a regular space which is analytic in itself.

4.9. Theorem. Every analytic space is paracompact, in particular, normal, and
hence uniformizable.

Proof. Every regular Lindelof space is paracompact.

The general theorem used in the proof of 4.9 is not elementary (for a proof see
CecH [2] or KFLLEY [1]). On the other hand, the most interesting part of the theory
concerns just the uniformizable spaces, and therefore the reader may include uni-
formizability into the definition without loosing the deep part of the theory. The
present author has written almost all his papers on analytic sets in the class of all
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completely regular spaces, and here we start with a more general setting because
several basic theorems can be proved in this setting without any changes. On the
other hand, we recall that the basic properties of analytic sets can be derived without
any separation axioms, see [F 16]; this paper can be regarded an advance course in
compactness. The abstract setting is discussed in section 14, and in [F 17].

4.10. In the class of all regular spaces the class of all analytic spaces is closed
under usco-compact correspondences.

Proof. Obvious from the definition of analytic spaces, 3.9 and 3.12.

It is proved in [F 16] that the class of all analytic sets in itself is closed under
usco-compact closed-graph correspondences. Of course, it follows immediately from
the definition and 3.5 that in the class of all separated spaces the subclass of all
separated analytic in itself spaces is closed under usco-compact correspondences.

4.11. Theorem. The following conditions on a separated uniformizable space P
are equivalent:

(a) P is analytic.
(b) P is Souslin in any separated Q > P.
(¢) P is Souslin in some compactification of P.

(d) P is a Souslin set derived from closed-compact sets in some space.

Proof is obvious; P has a separated compactification.

4.12. Definition. A small analytic set in a space P is a set of the form Ef where f
is a closed-graph single-valued usco correspondence of X into P. Similarly we define
small Souslin sets in a space, and small analytic spaces.

4.13. Theorem. All previous results in this section remain true if analytic and
Souslin are replaced by small analytic and small Souslin. Any small analytic
space in itself is hereditarily Lindeldf, and every metrizable analytic space is
small analytic.

Proof. The first assertion is obvious. To prove the second one, let f : £ — P be an
usco single-valued correspondence onto P, and consider X < P, Y = f~'[X], and
the restriction of f to a correspondence g of X onto Y. Clearly g is usco-compact,
Y is Lindelof, and hence X is Lindel6f by 3.4. To prove the third assertion, assume
that a metrizable P is analytic. Since P is analytic, it is Lindelof, and hence second
countable because of the metrizability. Choose a countable open base # for P, and
for each B in # an usco-compact correspondence fz : X — P onto P such that
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fs '[B] n f5 '[P — B] = 0(the sets Band P — Bare analytic; Bisan F, and P — B
is closed in analytic P). If we take the intersection

f:225p
of {f5}, then f is usco-compact onto P by 3.8, and clearly f is single-valued.

Corollary.*) A metrizable space P is analytic if and only if P is empty or P is
the image of X under a continuous mapping.

Proof. Every non-void closed subspace Y of X is a retract of X, i.e. there exists
a continuous mapping r of £ onto Y such that > = r. This is proved as follows:
Define r(x) = x for x in Y. To define r on £ — Y consider the sequence {S,} deter-
mined inductively by setting

=E{s|s€S,, ZsnY=0, ZsnU{Zt|teS,_,} = 0}.

Now let r be constant on each Zs, s € J{S,}, and let Er < Y. Clearly r is continuous
and r* = r.

Remark. S(small anal (P)) = small anal (P) for any separated space P. In any
space P
S(small Souslin (P)) = small Souslin (P) .

Proof is similar to that for analytic and Souslin sets.

4.14. Remarks.(a) If P is small analytic in itself then P is semi-separated (i.e. T;).
Every compact space is analytic in itself.

(b) Ido not know any description of separated spaces that are Souslin in separated
spaces, call them here absolute Souslin spaces. Clearly every analytic space is absolute
Souslin, and every completely regular absolute Souslin space is analytic. It is almost
obvious that absolute Souslin need not be analytic, e.g. an absolutely closed space
need not be analytic.

(c) The proof of 4.13 gives the following more general result:

If a sequence of open coverings of an analytic space P is given then there exists
an usco-compact correspondence of £ onto P such that the values refine each of the
coverings.

4.15. Choquet’s and Sion’s definitions. Assume in advance all spaces separated.
A space P is Choquet-analytic if there exists a continuous mapping of a F s in some
compact space onto P. A space is Sion-analytic if there exists a continuous mapping

*) E. MICHAEL and A. STONE have proved that every non-void analytic metrizable space is
a quotient of X.
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of a (compact),; onto P. Clearly every Choquet-analytic is Sion-analytic, and by 4.3
every Sion-analytic is analytic in itself.

Theorem. Assume that X is a Souslin set in a space P, and that there is a countable
union Y of compact sets in P such that X < Y. Then X is Sion-analytic; if P is
completely regular then X is Choquet-analytic.

Proof. There is a closed set C in £ x P such that X is the projection of C (i.e.
C : X — P is closed-graph and EC = X). Take a metrizable compactification K of X.
Then Cis a

*) (compact (P x K)),s

because C is closed in £ x Y, and £ x Y belongs to (*).

5. SEPARATION OF ANALYTIC SETS
We start with a general lemma.

51. Let f:X — P and g :X — P be correspondences, and let Ef n Eg = 0.
Let M be a collection of sets with B(M) = M.IfEf =« X <« P — Eg forno X in M,
then there exist o and t in X such that

fl[Zo,] =X = P — g[Z1,]

fornoninNandnoX in /.

Proof. Since Ef = U{f[Zs]|s€S,}, Eg = U{g[Zs] |se S}, if Ef c X = P —
— Eg for no X in ., then there exist s, € S; and t, € S; such that f[Zs;] = X <
< P — g[Zt,]forno X in .. Since f[Zs,] = U{f[Zs] | s€ S, s > s5,}, and similarly
for f[£t,], we can select s, € S, and t, € S, such that s; < s,, t; < t,, and f[Zs,]
< X c P — g[Zt,] for no X in .#. Now the proof goes by induction.

5.2. Theorem. (Frolik [4], Theorem 5, and [8], Theorem 1.) Let P be a uniform-
izable space, A = P an analytic set, and C a Souslin set in P with An C = 0.
Then

(1) There exists a Baire set B with A <« B = P — C;

(2) There exists a continuous mapping @ of P into a separable metrizable space
such that o[A] n ¢[C] = 0.

Proof. Choose an usco-compact f:X — P, and a closed-graph g : £ — P such
that 4 = Ef, C = Eg. Assuming the negation of (1), by 5.1 we get ¢ and 7 in X such
that

f[Z0,] =« X = P — g[=1,]
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for no n and no Baire set X. The sets fo and gt are disjoint, () ¢l g[Z7,] = g7, and fo
is compact, and therefore

fonclg[Zy] =0

for some k. Take a cozero set N o fo with N = P — cl g[Zr,]. There exists an [
such that f[Z0,] =« Nforn 2 I. Nowifn = I, and if n 2 k then

f[Z0,] =« N = P — g[=1,]
which contradicts our assumption and proves (1). The proof of (2) is similar.

5.3. Theorem. Let A be an analytic set in a space P, and let C be a Souslin set
in P disjoint to A. There exists a set U in B(open (P)) such that

AcUcP-C.

Proof. Let f: £ — P be a closed-graph usco-compact correspondence with Ef =
= A, and let g : £ — P be closed-graph with Eg = C. Assuming the contrary we
reach a contradiction as in 5.2; just put

U=P-g[Z].

5.4. Theorem. (MEYER [1]. Any two disjoint Souslin sets in a countably compact
space P are separated in B(closed (P)).

Proof. Let f:Z - P, and g :X —» P be closed-graph correspondences with
Ef n Eg = 0. If Ef and Eg were not separated in # = B(closed (P)) then there
would exist s, € S, t, € S; such that f[Zs,] and g[Zt,] would not be separated in 4,
and by induction there would exist ¢ and 7 in T such that f[3r,] and g[2r,] would
not be separated for each n. Since P is countably compact and ¢l f[o,] N
N Ncl g[=,] = 0, necessarily

cdf[Ze,] nclg[Z,] =0

for some n, which contradicts the choice of ¢ and .

5.5. Theorem. If P is a separated space, A = P is analytic, and if C< P — A
is Souslin in P, then A =« B = P — C for some Borel-open C. If, in addition, C is
analytic in P, then there exist Borel-open B, and B, with A < B, C = B, and
B,nB, =0.

- The proof is left to the reader.
5.6. If & is a disjoint countable collection of analytic sets in a uniformizable
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space. P,.then there ‘exists a disjoint family {B4 { Ae%} of Baire sets in P with
B, o A for each A in of.

Proof. For each distinct 4 and A’ (hence 4 N A’ = @) select Baire sets B(4, 4')
> Aand B(A', A) > A’ such that B(4, A") n B(4, A) = (2) (this can be done by 5.2),
and put B, = n{B(A A)| A est, A + A}

5.7. Theorem. Let &/ be a countable collection of analytic sets in a space P, and let
{Bs | #F < o, F finite}
be a family of Baire sets in P such that
Bz > NF

for each F. There exists a family {B, | A € s} of Baire sets such that By > A for
each A, and

N{Bs| Ae #F} c B,
for each finite ¥ < o

Proof. Separation theorem 2.5 applies with .o/ the given countable collection of
analytic sets in P, and 4 the collection of all Baire sets in P.

5.8. Thoreem. A set X in an analytic space P is a Baire set in P if and only if the
two spaces X and P — X are analytic.

Proof. “Only if”’ is obvious, and “if”’ follows from 5.2.

5.9. Corollary. If each closed set in an analytic space P is a Baire set, then each
open set is analytic, hence Lindeldf, hence F; thus P is perfectly normal.

Problem. Is the assumption that P is analytic essential? Is it true with analytic
replaced by normal?

5.10. Remark.*) In an analytic space P the collection of all Baire sets is the
smallest collectzon M of sets in P such that '

a) B(.#) = ,/// and
b) each point of P has arbitrary small neighborhoods that belong to /.

Proof. See [F 16, Theorem 4.2].

*) This result has been surprisingly developed in the author’s ‘“Stone-Weirstrass theorems for
C(X) with sequential topology”’, Proc. Amer. Math. Soc. 1970.

1422



6. BIANALYTIC SPACES

All spaces in this section are assumed to be separated and uniformizable (i.e.
completely regular).

6.1. Theorem and definition. The following conditions a through g on a space P
are equivalent:

a) The spaces P and BP — P are analytic;

b) The space P and K — P are analytic for some compactification K of P;

¢) The space P and K — P are analytic for any compactification K of P;

d) The set P is a Baire set in f§P;

e) The set P is a Baire set in some compactification K of P,

f) The set P is a Baire set in any compactification K of P.

‘ g) There exists a proper mapping onto a metrizable space satisfying conditions
a—f.

A space satisfying conditions a — g is called bianalytic.

Proof. I. If K is a compactification of P then there exists a proper mapping f of fP
onto K such that f[fP — P] = K — P.If BP — P is analytic then K — P is analytic
(thus condition a implies condition c) as a continuous image of an analytic space,
and if K — P is analytic, then P — P is analytic (thus b implies a) as an usco-compact
image of an analytic space. Since clearly ¢ implies b, conditions a through c are
equivalent.

II. Obviously d implies a, e implies b, and f implies c. The converse implications
follow from Theorem 5.8. Thus conditions a through f are equivalent.

III. Assume condition a; there exists a continuous mapping f of P onto a metriz-
able space M such that P = f~'| f[P]]. Thus f[P] n f[BP — P] = 0, and hence
both f[P] and f[BP — P] are analytic. The mapping f is proper because Df is
compact; hence the restriction of f to P is proper because P = f~![f[P]]. Thus
condition g is fulfilled. To prove the converse implication, assume that f is a proper
mapping of P onto Q, and consider the continuous extension of f to a mapping F
of BP onto Q. Since f[fP — P] = pQ — Q (by 1.10), P satisfies condition a if and
only if Q satisfies condition a. This concludes the proof, and in addition we have
proved the following theorem.

6.2. Theorem. The class of all bianalytic spaces is closed under proper mappings
(in the class of uniformizable spaces) in both directions. Bianalytic spaces are just
the preimages of metrizable bianalytic spaces under proper mappings.

6.3. The empty space is the only space that is a Baire set in any space; this is
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obvious. It might be in place to remark that there exists an embedding of the closed
unit interval I into a completely regular space P such that each point of I is a G; in P
but I is not. This example will be needed in Section 8.

6.4. Examples. We shall show that a one-to-one continuous image of a bianalytic
(metrizable) space need not be bianalytic, and the union of two bianalytic subspaces
need not be bianalytic. The fact needed is the following:

A. If xe BN — N, then N U (x) is no Baire set in SN.

This follows from:

B. If B is a Baire set in SN, and B — N = @ then B — N has a non-void interior
in BN — N.

The last proposition is derived immediately from

C. Every zero set in SN — N has a non-void interior.
See, for example, GILLMAN-JERISON [1].

Exhibition of the examples: N U (x) is not bianalytic, but N U (x) endowed with
the discrete topology is bianalytic. Both N and (x) are bianalytic, but N U (x) is not.

6.5. Examples in 6.4 show that the concept of bianalytic spaces is not any good
substitute for a generalization of classical separable absolute Borel set. In the next
section one-to-one continuous images of bianalytic spaces will be studied; the external
properties of these spaces turn out to be nice, and perhaps the best we can expect,
We start with another definition that will be convenient for developing of properties,

Remark. The results are taken from Frolik [4]. For more results in this direction
we refer to Frolik [7].

7. BORELIAN SPACES

The spaces studied in this section were introduced in Frolik [4]; they were studied
in RoGERs [2] in the class of separated spaces under the name of descriptive Borel
sets. The definitions and the results in 7.1, 7.2, and 7.3 parallel the pattern in Section 4;
the details are left to the reader.

7.1. Definition. A Borelian set in a space P (not necessarily completely regular)
is the image of £ under a closed-graph dusco-compact correspondence into P.
A Borelian space is a regular space that is Borelian in itself.

7.2. Theorem. If P is a separated space then the set Borelian (P) of all Borelian
sets in P is invariant under S,, in particular,under B,. Every Borelian space is
uniformizable, and every Borelian space is a Borelian set in every separated space.
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7.3. Theorem. Regular dusco-compact images of Borelian spaces are Borelian.

Proof. 3.5.

Corollary. Regular one-to-one continuous images of Borelian spaces are Borelian.

Proof. Any one-to-one continuous mapping is dusco-compact.

7.4. Proposition. Assume that P is a Borelian subset of a space Q. Then:

a) If Q is separated then

P e ([open (Q)] N [closed (Q)],,s) 5

b) If Q is regular then
P € B(closed (Q)) ;

¢) If Q is uniformizable then
P e ([closed (Q)] n [Baire (Q)]),.s -

Proof. Let f be a closed graph dusco-compact correspondence of X into Q such
that P = Ef. By Theorem 5.3, and 5.4 there exists a family {Fs | s € S} with Fs o
> f[£s] such that each family {Fs | s € S,} is disjoint, and F(s) € B(open (Q)) if Q is
separated, F(s)e B(closed (Q)) if Q is regular, and Fs are Baire sets if Q is uniform-
izable.

Clearly P = S{s > Fs n cl f[Es]}. Since {Fs nclf[Zs]|seS,} are disjoint we
have, assuming that the regularization has been done,

S{s » Fs ncl f[Zs]} = N{U{Fs nclf[Es]|seS,} | neN — (0)}

which proves the results.

77.5. Theorem. Every bianalytic space is Borelian. Borelian spaces are just regular
one-to-one continuous images of bianalytic spaces.

Proof. I. To prove the first statement, in virtue of 7.2 and the fact that Baire (Q) =
= B, (cozero (Q)), it is enough to show that if P is a cozero set in some compactifica-
tion K of P then P is a Borelian space. Choose a continuous f : K — R such that
Z(f) = K — P. Then the restriction g of f to a mapping of P onto f[P] = R is
perfect and f[P] is a closed subspace of R — (0). Hence, by 7.3 it is enough to show
that R — (0) is Borelian. But R — (0) is the disjoint union of the countable space of
rationals =0, and the space of irrationals, both being Borelian.
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II. The proof of the second statement follows immediately from the following
factorization theorem for dusco-compact correspondences.

7.6. Proposition. If f: P — Q is dusco-compact, then f = g.p~!, where p is
a proper mapping, and g is a one-to-one continuous mapping. If P and Q are
separated uniformizable spaces then so is the domain of p.

Proof. Put T = Ef, and let % be the collection of all f[(x)], x € Df. Let & be the
set of all F = T'such that F n C is closed in C for each C in %, and f ~*[F] is closed
in P. It is routine to verify that & is the collection of all closed sets for some topology
on T; let T be endowed with that topology. Clearly p = f~' : T — P is proper (not
necessarily onto!), and the identity mapping g of T'into Q is continuous (all directly
from the definition of T). Thus f = g o p~* is the required factorization of f. If Q is
separated then evidently T is separated. Assume that the two spaces P and Q are
separated and uniformizable. We have to prove that T'is uniformizable. Assume that F
is closed in Tand ye T — F. If y ¢ cly F, then there exists a continuous function r
on Q with ry = 0 and rfcl, F] = (1), and the continuous function ' = rog on T
has the property that 'y = 0, #'[F] = (1). It remains the case where y e cly F;
in this case we can write F = F; U F, such that y ¢ cl, Fy, and F, is closed in T'(the
intersection of a closed set in Q with F), and f[f~'[y]] does not meet F,. Hence
f![F,] = Kis closed in P, and does not contain z = f~'y. Thence there is a conti-
nuous function k on P that is 0 at z, and 1 on K. Define r on T by setting

rx = k(f'[x]).
If X < R then
r'[X] = sk XT
and hence r is continuous. Obviously ris 0 at y, and 1 on F,.

Remark. As an immediate corollary we get that f: P — Q is usco-compact if and
only if f = g o p~! where p is proper, and g is continuous; if P and Q are separated
and uniformizable, then the middle space can be taken to have the same property.
Proposition applies to ’

{x>y|lyef[(x)] xx}:P>Q x P.

Now we are ready to prove the external characterizations of Borelian spaces.

7.7. Theorem. Each of the following conditions a through e is necessary and
sufficient for a completely regular space P to be a Borelian space:

a) If P = Q, and if Q is completely regular then
P e ([closed (Q)] n [Baire (Q)]),.s -
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b) Condition a with Q = BP.
¢) Condition a with Q a given compactification of P.
d) Condition a with Q any compactification of P.

e¢) Condition a where Q is a Borelian space.

Proof. Each of the conditions is necessary by 7.4. Each of the conditions is
sufficient because if Q is a Borelian space then

Borelian (@) = B,(closed (Q) U Baire (Q))
by 7.2 and 7.5.

We note the following result we have just proved:
7.8. If Q is Borelian then
Borelian (Q) = B,(closed (Q) U Baire (Q)) = ([closed (Q)] N [Baire (Q)])yus -

7.9. Example. A og-compact completely regular space need not be Borelian. Take
an uncountable compact space K with exactly one cluster point, say x. Take the sum
space Z{K | neN} and identify the points <n, x), neN. The quotient space Q is
clearly a g-compact space. On the other hand Q is not Borelian. Assuming that f is
a dusco-compact correspondence of X onto Q, we take the unique ¢ in X with fo
containing the point E{(n, x) ] ne N}, and get that

/2 - ()]

is a Lindeldf space. But Q — fo is not Lindelof. This contradiction shows that Q is
not Borelian.

7.10. A small Borelian set in a space P is the image of ¥ under a closed-graph
dusco-compact single-valued correspondence of X into P. Thus the small Borelian
sets in P are just the closed-graph one-to-one continuous images of closed subspaces
of .

Proposition. A metrizable Borelian space is small Borelian.

Proof. Assume that P is metrizable and Borelian. Since P is Borelian, it is second
countable. Take a countable base {U,} for P. The sets U, and their complements
are Borelian (because they are Baire sets), and therefore there exists a sequence {f,}
of dusco-compact correspondences such that the values of f, refine the cover
{U,, P —U,} for each n. Take the intersection-correspondence f = A{f,}. By
3.8 f is dusco-compact, and clearly the diameter of each of the values of f is zero.
Hence f is single-valued.
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Theorem. The collection of all small Borelian sets in a separated (this is not
essential) space is invariant under S, in particular under B,. In a metrizable space
the Borelian sets are invariant under B.

7.11. Proposition. The following conditions on a metrizable space are equivalent:

a) P is Borelian;

b) P is small Borelian;

¢) P is bianalytic;

d) P is separable, and P is a Baire set in every metrizable space Q > P;
e) P is separable, and P is Borel-closed in every metrizable Q > P; and
f) P is separable, and P is Borel-open in every metrizable Q > P.

Proof. Recall that every separable metrizable space has a metrizable compacti-
fication.

The metrizable spaces satisfying the equivalent conditions in Proposition 7.11 are
called Lusinian by Bourbaki, classical Borel sets by Choquet, and metrizable
absolute Baire sets or separable absolute Borel metrizable spaces by the author.

8. BB-SETS

In this section all spaces are assumed to be separated and uniformizable (i.e.,
completely regular).

8.1. Definition. A BB-set in a space P is a Baire set X in P such that the subspace X
of P is Borelian. The set of all BB-sets in P is denoted by BB(P).

If P is Borelian, then each Baire set in P is Borelian, and hence BB(P) = Baire (P).
If P is Borelian then

(1) Borelian (P) = BB(P) (= Baire (P))
if and only if
) closed (P) = Baire (P).

Only “if” is evident, and to prove “if”’, observe that it follows from (1) that
B(closed (P)) < Baire (P); since Borelian (F) = B(closed (P)), we get (2).

8. 2 Theorem. For any space P the collection BB(P) is a o-ring.

Proof If A and B are two BB-sets, then A — B is a Baire set in P, and hence in A4,
and that implies that A — B is Borelian. Thus A — B is a BB-set. Clearly BB-sets
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are closed under countable intersections and countable disjoint unions because Baire
sets as well as Borelian sets are. Since JA; = Ao U (4; — Ag) U (4, — 4; — 4o) U
U ..., we get invariance under arbitrary countable unions.

The BB-sets were introduced in [R 3] under the term descriptive Baire sets. J. D.
K~owtLEs and C. A. RoGERS proved Theorem 8.2, equivalence of a and b in Theorem
8.5, and Corollary 8.7. All other results, and all proofs are taken from Frolik [8]
and [9].

8.3. Lemma. Let f:X — P be a dusco-compact correspondence. There exists
a continuous mapping m of P into a separable metrizable space M such that m o f
is dusco-compact.

Proof. We need m such that m . f is disjoint, because usco-compactness is auto-
matically satisfied. As in the proof of 7.4 there exists a family {B, ] s €S} of Baire
sets such that B, > f[Zs], and each family {B,|seS,} is disjoint. By 1.5 there
exists a continuous mapping m into a separable metrizable space M such that

m[B] nm[P — B]] =0

for each s. Now if ¢ and 7 are two distinct elements of X, then g, + 7, for some n,

(mof)[(0)] = m[B,],
(mof)[(9)] = m[B.],

and m[B,,] n m[B, ] = 0 because o, * T,,.

8.4. Theorem. I'n order that a Borelian subspace X of P to be a Baire set in P it
is necessary and sufficient that X be distinguishable. In other words,

BB(P) = Borelian (P) n distinguishable (P)

Proof. Necessity is obvious because each Baire set is distinguishable. Assume
that X is distinguishable and Borelian. Since X is distinguishable, there exists a con-
tinuous mapping m, of P into a separable metrizable space M such that m,[X]
N my[P — X] = 0. Since X is Borelian, there exists a dusco-compact correspon-
dence f of X into P such that X = Ef. By 8.3 there exists a continuous mapping m,
of P into a separable metrizable space M, such that m, o f is disjoint. Let m be the
reduced product of m, and m,; m is the mapping of P into M = M; x M, defined
by mx = {mx, m,x). Clearly mof is disjoint (because of m,), and m[X]n
N m[P — X] = 0 because of a similar property of m,. The set m[X] = E(mof) is
Borelian, hence a Baire set in M because M is metrizable. Since X = m™'[m[X]],
X is a Baire set in P.
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Remarks. We note the following two more general results; (b) will be needed
in 8.5:

(a) Itis clear that it is enough to assume that X is distinguishable in a more general
sense, namely, by continuous mappings into metrizable spaces not necessarily
separable.

(b) A set X = Pisa BB-set in P if and only if it is Borelian, and for each dusco-
compact correspondence f of X in P with X = Ef, there exists a continuous mapping m
of P into a separable metrizable space M such that m o f is disjoint and m[X] n
nm[P—X]=0.

8.5. Denote by Zp, or simply Z, the correspondence of C*(P) into P defined by
Z[(r)] = Z(r) = E{x | xe P, rx = 0}. Here C*(P) denotes the Banach space of all
bounded continuous functions on P.

Theorem. The following conditions on a set X in a space P are equivalent:

(a) X is a BB-set in P;

(b) There exists a dusco-compact correspondence f of X into P such that Ef = X,
and f = Z o F with F a continuous mapping of % into C*(P);

(¢) X is Borelian, and each dusco-compact correspondence of T into P with

Ef = X admits a factorization f = Z o F with F a continuous mapping of X
into C*(P).

Proof. Clearly (c) implies (b). Assume (b); the set F[Z] is separable, and so we
can take a countable dense & in EF. It is easy to verify that & distinguishes the
points of X from the points of P — X. Hence X is distinguishable, and by 8.2,
a Baire set. Thus (b) implies (a). It remains to prove that (a) implies (c). Let f be
a dusco-compact correspondence of £ into P such that Ef = X. By Remark (b)
in 8.4 there exists a continuous mapping m of P into a separable metrizable space M
such that m[X] n m[P — X] = 0, and m o f is disjoint. Choose a metric d for M,
and for each ¢ in T put

rox = min (1, (dist (x, (m o f) [(2)]))) .

r ={x->rx|xeM}:M->R.

Clearly*)
F' :{oc—r,}:Z—> C*M)
is continuous, hence

F = m*s F' : L - C*P)

is continuous where m* : C*(M) — C*(P) is the adjoint of m. Clearly f = Z - F.’

*) This map need not be continuous. One must be more careful at this point.
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8.6. Here we derive a characterization of Baire sets in a compact space K by means
of continuous mappings of X into C*(K). This is clearly in the lines of the classical
result stating that separable absolute Borel sets (= metrizable Borelian spaces,
see 7.11) are one-to-one continuous images of closed subspaces of . We need the
following.

Lemma. A space is countably compact (if and) only if Zp: C*(P) - P is usco;a
space is compact (if and) only if Zp : C*(P) —> P is usco-compact.

Proof. We shall prove that Z, is usco-compact if P is compact; this is precisely
what is needed for our purpose. The values are compact because they are closed in
a compact space. Let C < P be closed, let Z(f,) n C # 0, and let {f,} converge to f
in C*(P). Choose {x,} in C with f,x, = 0, and let x be a cluster point of x,. Then
x € C, and clearly fx = 0.

Theorem. A set X in a compact space P is a Baire set in P if and only if there
exists a one-to-one continuous mapping F of a closed subspace C of X into C*(P)
such that

{oc > Z(F,)| o€ C}

is a disjoint cover of X.

Proof. 8.5, and 8.6.

8.7. The result in this section gives a sufficient condition for the validity of the
inclusion

Borelian (P) < Baire (P) .

If P is Borelian then a necessary and sufficient condition is that every open set is
a cozero set, see 8.1.

Theorem. If each open set in P is a Souslin set in P then each Borelian set in P
is a Baire set in P.

Proof. Let f be a dusco-compact correspondence of X into P. As in the proof of
8.3 or 7.4 it follows from 5.6 that there exists a family {Bs} of Baire sets in P such
that Bs o f[s], and éach {Bs|seS,} is disjoint. By Separation theorem 5.2, and
by our assumption that open sets are Souslin there exists a family {4s|se S} of
Baire sets in P such that f[£s]  As < cl [Zs]. Hence

Ef = U{N{A4sn Bs|s < o} |ceX},
and the set on the right-hand side is equal to (after regularization)
N{U{4s " Bs|seS,} | n}.
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Corollary. Each Borelian set in P is a Baire set provided that every open set is
a Souslin set.

9. COMPLETE SEQUENCES OF COVERINGS

In this section we describe analytic spaces, Borelian spaces, and one more kind of
spaces by existence of complete sequences of coverings with certain properties. All
spaces are assumed to be completely regular. The method of complete sequences
can be used to develop the properties of analytic and Borelian sets without any use
of correspondences. In fact both methods are used in [F 4] in the proofs. The method
of complete sequences is intrinsic. The method of complete sequences applies to
non-separable theory, and it is not known if the non-separable theory can be based
on a general theory of correspondences, see Section 13. All results are taken from
Frolik [4], [5], [7], [13] and [14].

9.1. Definition. Let pu = {4, | ae A} be a family of coverings of a space P.
A u-Cauchy filter is a filter .4 on P such that 4 n M, # @ for each a in A.

For a discussion of this notion we refer to Frolik [2], [3] and [5].

9.2. Proposition. Let u be a complete family of coverings of P. If F is closed
subspace of P, then the trace of p on F is a complete family. If f is a dusco-compact
correspondence onto a regular space Q, then the image of u under f is a complete
family on Q.

Proof. The direct proof of the first statement is obvious and therefore the proof
may be left to the reader; on the other hand the first assertion follows immediately
from the second one because the inverse of an embedding on a closed subspace is
dusco-compact. To prove the second assertion, assume that pu = {/#,|ae A4} is
complete, f: P — Q is dusco-compact onto, ahd denote by v = {4, | a € 4} the
image of u under f; thus A/, is the set of all f[M], M € #,. Since f is disjoint we
have that ./, is the set of all f~![N], N € A,. Assume that 4" is a v-Cauchy, and
consider the set .# of all f™'[N], Ne /. Clearly # is a p-Cauchy filter on P.
Without any loss of generality we may assume that 4" is an ultrafilter, then .# is an
ultrafilter, and hence .# converges to a point x of P. Consider the compact set
K = f[(x)]. If 4 were convergent to no point of K then one could construct an
open neighborhood V of K such that V¢ A”; this follows from the compactness of K
and the fact that 4" is an ultrafilter. Consider the set U of all z € P such that f[(z)] =
< V. Since V¢ A, clearly U ¢ . ; this contradicts the fact that .# converges to x
because U is a neighborhood of x.

9.3. Theorem. A regular space P is analytic if and only if there exists a complete
sequence p = {.M,} of countable coverings of P.
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Proof. Assume that u = {#,} is a complete sequence of countable coverings
on P. Let {Ms},, n = 1,2, ..., be a sequence ranging on .#,. For each o € T put

fo = N{N{M;™ | n £ k} keN}

where o(n) is the n-th coordinate of ¢. It may be proved that f: X — P is usco-
compact and surjective.

Conversely, assume that f is an usco-compact correspondence of ¥ onto P. Let,
as usual, S be the set of all finite sequences of natural numbers, S, the set of all s€S

>~n

of the length n. Write o, for the restriction of o € X to the initial segment of N of
the length n. Define an order s < ¢ on S, to mean that s # ¢ and the first coordinate
of s distinct from that of ¢ is less than that of ¢. Put

s = E{c|o€Z, s < g}
where s < o means that s = ¢, for some n, and define

Ms = f[Zs] — U{f[Z(] |t < s},
M, =E{Ms|seS,}.

It is easy to see that Ms n Mt = Q for s & ¢, seS,, te S, and that Ms n Mt & @
implies that either s is a section of ¢ or ¢ is a section of s. It follows that if ./ is
a Cauchy filter, and M, € # n M, then there exists a ¢ in Z such that if M, = Ms
then s < o. Since f is usco-compact, that implies that N{cl M | M € J} has a cluster
point in fo.

9.4. Definition. A B-structure on a space P is a complete sequence yu = {#,} of
countable coverings of P such that

(*) N{M.} = N{el N{M, | k =< n} | neN}

for any sequence {M,} such that M, € #,. A Borelian structure on P is a B-structure
u = {,} on P such that each .#, is disjoint.

9.5. (a) If u = {M,} is a B-structure (Borelian structure), and F is either closed
or an element of some .#,,, then the trace of p on F is a B-structure (Borelian struc-

ture, respectively) on F. Thus the elements of the coverings of a B-structure are
analytic (9.3).

(b) The image under a dusco-compact correspondence of a B-structure (Borelian
structure) is a B-structure (Borelian structure).

(c) Any complete countable sequence of closed coverings is a B-structure.

Proof. The assertions (a) and (c) are evident. To prove assertion (b), by virtue
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of 9.2 we only need to show that the image of a B-structure satisfies the structural
condition 9.4 (). Denote by v = {/",} the image of x under f.

Let {N,} be any sequence with N, € A", and put M, = f7![N,], M = n{M,},
and N = (\{N,}. The set f[M] is compact, and clearly f[M] = N. Choose any
open neighborhood ¥V of N, and put U = E{x | f[(x)] = V}. There exists an n such
that N{M, | k < n} = ¥, and hence N{N, |k < n} < U. Since Q is regular, this
implies that condition (x) is fulfilled.

9.6. Theorem. Each of the following two conditions is necessary and sufficient
Jfor a space P to be Borelian:

(a) There exists a Borelian structure on P;

(b) There exists a complete sequence {<,} of disjoint countable coverings such
that the elements of the coverings are analytic sets.

Proof. By 9.5 (a) condition (a) implies condition (b). We shall prove that (a) is
necessary, and (b) is sufficient.

Assume that P is Borelian; choose a dusco-compact correspondence f of £ onto P.
Let ., consist of all f[Zs], s € S, ;. It will be verified that 4 = {.#,} is a Borelian
structure on P. Since f is disjoint, the coverings .#,, are disjoint, and .#, , ; refines #,.
Further, if {M,} is a monotonic sequence such that M, € .#,, then there exists a o
in T such that M, = f[Zo,,,], and fo = N{M,}. It follows now from the fact that f
is usco-compact that fo = N{cl M,}. If M, e A, such that {M,} is not monotonic
then ﬂ{M ; | i< k} = 0, and the structural condition is evidently fulfilled. It remains
to show that p is complete. Let .# be a u-Cauchy filter on P; there exists a ¢ in
such that f[Zo,] € # for each n. If no point of fo were a cluster point of .# then,
because of compactness of fo, there would exist an open neighborhood U of fo
with U ¢ /. Since f is usco, necessarily

f[Zo,] = U

for some n, which contradicts the fact that f[Zo,] € .#, and concludes the proof of
necessity of (a). '
Assume condition (b). We shall prove that

P e ([closed (K)] n [Baire (K)]),.s

for a given compactification K of P. By Theorem 7.7 P will be Borelian. By 5.6 there
exists a family {B, | Ae o,} of Baire sets in K with B, > A such that each family
{BA | Ae o} is disjoint. Since {«7,} is complete, &,’s are disjoint and as we may
and shall assume that &/, ; refines &,, we have

P =UlN{el 4, [neN | {4,) e p)
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where B is the set of all sequences {4,} with 4, € &, that are filter bases (i.e. have
finite intersection property). Hence

P =U{N{By, nclA4,|neN}|{4,}ep}.

Since {B, | 4 € A,} are disjoint, one can interchange the signs for the union and the
intersection, and get

P=N{U{BsnclA|Aes}|neN}.
This concludes the proof of Theorem 9.6.

9.7. A uniformizable space P is an F s in BP if and only if there exists a complete
sequence of closed countable coverings of P.

Procf. Assume that P is an F,; in SP. Hence
P = N{U{Fu|keN}|neN}.

Let &, be the set of all F,, n P, k e N. It is easy to verify that {#,} is complete.

Conversely assume that {#,} be a complete sequence of countable closed coverings
of P. The space P is analytic by 9.3, and hence paracompact by 4.9.

One can prove (see FroLik [5], Theorem 7) that
P=N{U{cl;p F|Fe#,} | neN}.

The point is that N{cl F, | k < n} = 0 whenever N{F, |k < n} =0 for closed
sets F, in P, and this follows from the normality of P.

Remark. A o-compact space need not be Borelian by 7.6. A space P is called
a B-space if there exists a B-structure on P. By 9.6 every Borelian space is a B-space,
and by 9.7 every o-compact space is a B-space. The class of all B-spaces will be studied
in Section 10.

10. B-SPACES AND K-BOREL SETS
All spaces are assumed to be completely regular.

10.1. Definition. A space P is called a B-space if P is regular, and if there exists
a B-structure on P.

Every Borelian space is B-space, and the converse is not true by 9.7, Remark. No
external characterization of B-spaces is known, however, in one particular case we
can prove that the external behaviour of B-spaces is nice; this works, in particular,
for metrizable spaces. We need the following concept:
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10.2. Definition. A quasi-classical space is an usco-compact image of a separable
metrizable space. A space P is quasi-classical at infinity if JP — P is quasi-classical.

The class of all quasi-classical spaces is closed under usco-compact correspondences,
and hence, if K — P is quasi-classical for some compactification K of P, then fJP — P
is quasi-classical and hence, K — P is quasi-classical for each compactification of P.
For example, every separable metrizable space is both quasi-classical, and quasi-
classical at infinity.

10.3. Lemma. Assume that {&l,,} is a complete sequence of countable coverings of
a space P such that each element of s/ = (\{«/,} is analytic. Let Q > P be a space
such that Q — P is quasi-classical. Then

P e ([closed (Q)] n [Baire (Q)]),s -

Proof. Let & be the union of all &,, n € N. By our assumption there exists an
usco-compact correspondence k of a separable metrizable space R onto Q — P.
Choose a countable base # of R. For each finite # < o/ and each Bin % let Z(#, B)
be a Baire set in Q such that & < Z(g7 R B), and if there exists a Baire set Z with
NF < Z = Q — k[B], then Z(#, B) = Q — k[B]. Let for each finite # < o,
Zg be the intersection of all Z(#, B), Be 4. ’

Apply Theorem 5.7 to Q, the collection &/ and the family {Z5}; we get a family
{Z,| Ae o} of Baire sets such that 4 = Z,, and N{Z,| Ae F} < Z, for each
finite # < /. We shall prove that

P=nN{U{Z,nclyA|Ae s} |neN}.

The inclusion < being evident, assume that a point x € Q — P is in the set on the
right-hand side. Thus there exist 4, in &7, such that

(+*) xeN{Z,, nclyA4,}.
Consider the set
K =N{clp N {A| k < n}|neN}.

Since o is complete, the set K is compact (it may be empty!), and for each neigh-
borhood U of K there exists an ny € N such that

cdpN{Ac |k Sy} = U.

Choose a y in R with x € ky. The set ky is compact, and if V is a neighborhood of ky
in Q then there exists a B, in 4 such that

k[B,] = V.

The sets K and ky are disjoint, because K = P and ky n P = (. The space Q is

/
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uniformizable and therefore there exists a neighbourhood of K, which is a zero set
in Q such that

Znky=290.
Put # = E{A, | k < n}, and consider the set k[Bo-z] (=Q — Z). Therefore
Zgy < Q — k[BZ] .
Hence
N{Zs |nSntaky=0,
thus
x¢EMZ4, | n < ng}.

This contradicts our assumption (xx) above, and establishes the converse inclusion.

Remark. Inthe case of a Borelian structure the proof is much more simpler without
any assumption on Q — P. By the first separation theorem we can choose Baire
sets Z,, A€ o, in Q such that Z, > A for each A4 in &, and the collections

{z,|Ae s}
are disjoint. Then, after the regularization, we may interchange |J and () in
N{U{Z,nclgA|Ae st} |neN},

and the resulting set is easy to prove to be P (the proof is the same as in the proof of
Theorem 7.4). For details see [F 3], Theorem 11 or [F 6], Theorem 7. This method
can be used to prove that if there exists a B-structure on a space P such that the
elements of the coverings are Baire sets in P, then P is Borelian.

10.4. Theorem. If P is a B-space that is quasi-classical at infinity then

(%) P € ([closed (Q)] n [Baire (Q)])s

for each space Q > P. In particular, this is true if P is a metrizable B-space.

Proof. If {«,} is a B-structure on P, then each element of &/ = U{«,} is analytic
by 9.5. Hence, by 10.3, formula (x) is true for each compactification Q of P. It
follows that () is true for any Q > P.

10.5. Theorem. Each of the following conditions is necessary and sufficient for
a metrizable space P to be Borelian (= separable absolute Borel set):

(1) There exists a B-structure on P;
(2) There exists a Borelian structure on P;
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(3) There exists a complete sequence {7} of countable coverings of P such that
the elements of U{«,} are analytic;

(4) Condition (3) with o£,’s disjoint.
Proof. Use 10.3, 10.4, and the fact that every separable metrizable space has
a metrizable compactification.

10.6. Problems. (a) Is it true that every B-space is of the form (x) in 10.4 in any
space Q?

(b) Assume that P e B(closed (BP)); is P a B-space?

(c) Assume that P e B(closed (BP)); is P e B(closed (K)) for any compactifica-
tion of P?

(d) Problem (c) with the additional assumption that P is metrizable.

These problems are restated in 10.7, and 10.8.

10.7. Call a space P an absolute Bdrel-closed space if P e B(closed (Q)) for each
Q o P. Clearly each Borelian space is absolute Borel-closed space, and I do not
know if every B-space is an absolute Borel-closed space.

10.8. A space P is called K-Borel if P e B(closed (BP)), or equivalently,
" if P e B(closed (K)) for some compactification K of P or equivalently, if Pe
e B(compact (Q)) for some Q = P. I donotknow whether any K-Borel space is abso-
lute Borel-closed space, even if P is metrizable. See also Section 13.1.

11. RESPECTABILITY OF COMPOSITES

No assumption on spaces is made in this section. For an application in Section 12
we shall need the corollary 11.2 (a) to Theorem 11.1. For the convenience we shall
give a direct proof of 11.2 (a) for the case of uniformizable separated spaces. For the
detailed proofs see FRoLik [15].

A correspondence f : P — Q is called graph-Souslin or graph-analytic if the graph
of f is, respectively, Souslin or analyticin P x Q.

11.1. Theorem. Let f, : P — Q and f, : Q — R be correspondences for topological
spaces, and let f : P — R be the composite f, o f1. Then

(a) If f, and f, are graph-Souslin, and if one of them is graph-analytic, then f is
graph-Souslin.

(b) If f1 and f, are graph-analytic, then so is f.

(c) If f1 and f, are closed-graph, and if one of them is graph-compact, then f is
closed-graph.

(d) If £, and f, are graph-compact, then so is f.
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11.2. Corollaries to 11.1. Let = be the projection of P x Q into P. Then:

(@) If S is a Souslin set in P x Q then n[S] is a Souslin set in P whenever Q is
analytic. (RoGERs [4].)
(b) If S is closed in P x Q then n[S] is closed in P provided that Q is compact.

Proof. Use the obvious relation
a[S]xQ0=0xQ-S.

11.3. Proof of 11.2 (a) for the case when P and Q are uniformizable and separated.
Choose a compactification K of P. There exists a Souslin set R in K x Q such that

S=Rn(Px Q).

The set R is analytic (as a Souslin set in an analytic space), and hence the projection A
of R into K is analytic, hence Souslin in K. Clearly n[S] = P n A. Thus z[S] is
Souslin in P.

Remark. If P and Q are arbitrary spaces, and if S is analytic in P x Q (or closed
and compact in P x Q) then so is n[S] in P. This follows from the following proposi-
tion ([F 16, Theorem 2]): if f: R > P x Q is usco-compact and closed-graph then
7 o f is closed-graph (and usco-compact). See also Remark 14.3.

11.4. The proof of 11.1 (c), (d) is easy, and therefore left to the reader. One more
result is needed for (b):

Lemma. Assume that K, <« P x Q and K, < Q x R are compact, and U is
a neighborhood of K = K, c K, in P x R. There exist a neighborhood U, of K,
in P x Q, and a neighborhood U, of K, in Q x K such thatU, .U, < U.

Proof. Assume the contrary. Hence there exists a neighborhood U of K such
that U, o U; — U # 0 for each neighborhood U; of K;, i = 1, 2. It follows there
exist nets oy = {<x,, y,»} and o, = {<y, z,>} such that o; is eventually in each
neighborhood of K;, i = 1, 2, and <{x,, z,»> ¢ U for all a. Now we use the following
useful result which has been used twice for filters:

if a net {t,} is frequently in each neighborhood of a compact set K in a space T,
then some subnet of {t,} converges to a point of K.

By this result we may and shall assume that o, converges to a point {x, y) of K|,
and o, converges to a point (y, z) of K,. Then {<x,, z,»} converges to {x, z),
which contradicts our assumption that {x,, z,» ¢ U for all a.

Finally to prove the results on nets {t,} clustering around a compact set K in T,
assume that no point of K is a cluster point of {z,}. For each t in K there exists an
open neighborhood U, of ¢ such that {t,} is eventually in T — U,. Thus {z,} is even-
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tually in the complement of each finite union of U,’s, in particular, in the complement
of some neighborhood of K.

11.5. To prove 11.1 (a), (b) we need*) the notion of a certain composite-product
of parametrizations of graphs.

Definition. If k, : T, > P x Q, and k, : T, - Q x R are correspondences, we
define a correspondence

k=k,Ok,:Ty x T, > P xR

K[(<ts, 20)] = ka[(t2)] o i [(13)] -

Theorem. If k; are closed-graph, and one of them is usco-compact, then k =
= k, [ ky is closed-graph: If both k, and k, are usco-compact then so is k.

by setting

Proof. 11.1 (c), (d), and 11.4.

11.6. Proof of 11.1 (a), (b): Apply Theorem 11.5.

12. THE SOUSLIN GRAPH THEOREM

Here we just state the main results from FroL{k [10]. It should be remarked that
the original Banach’s proof of the classical Banach theorem got a nice setting in
MARC WILDE’s paper [1], see also KELLEY [2], Closed-Graph Theorem. The result
in 12.1is a generalization of SCHWARTZ [1] as well as MARTINEAU [1] results.

12.1. Souslin-graph theorem. Assume that E is a T.L.S. which is inductively
generated by homomorphisms from non-meager T.L.S., and that F is a locally
convex T.L.S. which is analytic. Then

if f is a homomorphism of E into F such that the graph of f is a Souslin set in
E x F then f is continuous. .

The proof follows immediately from

12.2. Theorem. Let g : E, - E, and h : F — F, be continuous homomorphisms,
where E,, E, and F are T.L.S., and F is a locally convex T.L.S. Assume that E is
non-meager, and F is analytic. Then

if the graph of a homomorphism f : E — F is a Souslin set in E X F then k =
= hofog is continuous.

*) A much simpler proof goes as follows (for (a)): let C = E{{x, y, z) | fix =y, oy = z};
C is analytic, and the graph of f'is the projection of C.
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The proof follows from Propositions 11.3, 12.3 and 12.4. In fact the following more
general result is established by that:

Proposition. Assume that E,, E, F, and F, are inductively continuous groups,
g and h are continuous homomorphisms, and F is analytic. Then for each symmetric
closed set K in Fy such that Un o K = F, there exists an n such that k™'[nK] is
a neighborhood of the zero in E;.

12.3. Any Souslin set in any space has the property of Baire. More generally, the
collection of all sets with the property of Baire in any space is invariant under the
Souslin operation. ‘

Recall that a set X has the property of Baire in a space P (is almost open in another
terminology) if (F — X) u (X — F) is meager for some closed (or equivalently:
open) set F in P. For a proof see Kuratowski [1].

12.4. Assumethat X is non-meager, and has the property of Baire in an inductively
continuous group G. Then X — X (= E{x — y | xe X, y e X}) is a neighborhood
of zero in G.

For a proof we refer to Kuratowski [1] or Kelley [2], or Cech [2].

12.5. It would be useful to know more about analytic locally convex linear spaces.
We refer to TReVES [1], Appendix, for examples.

13. REMARKS TO NON-SEPARABLE THEORY*)

Classical separable theory deals with respectable sets in separable metrizable
spaces. In the preceding sections an extension of the separable theory to completely
regular spaces (basic properties of analytic sets to general spaces) was described.
Restricting respectable spaces to metrizable we get exactly concepts of classical
separable theory. The analytic spaces are just completely regular absolute Souslin
sets, bianalytic spaces are just absolute Baire sets (in tight extensions!), Borelian
spaces have also a description as absolute something between Baire and Borel-closed.
Thus Baire sets and Borel-closed sets led to separable theory.

Classical non-separable theory deals with respectable sets in the class of all metriz-
able spaces. For non-separable classical theory we refer to A. H. STONE papers. In
metrizable spaces Baire set, Borel-closed sets, and Borel-open sets coincide. It turns
out that absolute Borel-open spaces give a non-separable theory. After developing
the basic properties of these spaces, a connection with separable theory will be de-

*) For every good recent results (1969, 1970) of two A. H. Stone students see the Stone’s
paper in Proc. Top. Conf. in Pullman (April 1970), Washington State University.
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scribed. For details we refer to [F 11]. All spaces are assumed to be completely
regular.

13.1. Definition. A tight extension of a space P is a space Q = P such that P is
dense in Q. An absolute Borel-open (absolute Souslin-open, absolute G;) space is
a space P that has the respective property in each of its tight extensions.

For more results on G;-spaces we refer to Frolik [1], [2], [3] and recent papers
by WIcke and WORRELL, where one can find further references. It seems to be clear
why the absoluteness is restricted to tight extensions.

Theorem. Each of the following conditions is necessary and sufficient for a space P
1o be an absolute Borel-open space (absolute Souslin-open space, absolute Gy-space):

a) P is Borel-open (Souslin-open, G;, respectively) in BP.

b) P is Borel-open (Souslin-open, G, respectively) in some compactification of P.

¢) P is Borel-open (Souslin-open, G, respectively) in each compactification of P.

Proof. It is routine that the set of the stated conditions is necessary and sufficient,
and c implies b, and b implies a. Therefore we have to prove that a implies c. Let K
be a compactification of P, and let f: fP — K be the continuous extension of the
identity of P, and let ¢ : open (BP) — open (K) be defined by

oU =E{y|f ™'y = U}.

It is easy to verify that if P = SU with U : S — open (BP), then P = S¢ o U when
(¢ o U)s = @Us, for each s in S (this proves the part concerning the Souslin-open
set), and if P = N{U, | n € N} with U, open in P, then P = N{pU,} with ¢U, open
in K, and this proves the part concerning Gy’s. Finally assume that P is Borel-open
in fP; then by Theorem 1.9

P=SU, pP— P =SF

where U : S — open (BP), F : S — closed (BP), and for each ¢ and 7 in X there exists
an n such that .
Us,nF1,=0.

Put U’ = ¢ - U, and define F’ by setting F's = f[Fs] for s in S then clearly

P=SU, K- P=SF,
and also
Us,nFr,=0
whenever
Uos, nFr, =0;

this proves that P is Borel-open in K by Theorem 1.9.
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Remark. A similar result is true for each Borel-open class, see WILLARD [1].

13.2. Definition. A classical absolute Borel set (Souslin set) is a metrizable space
that is a Baire set (Souslin set) in every metrizable space in which it is embedded.

Theorem. Each of the following conditions is necessary and sufficient for
a metrizable space P to be a classical absolute Borel (Souslin) set:

a) P is Borel-open (Souslin-open) set in a completion Q of P.
b) P is an absolute Borel-open (Souslin-open) space.
c) Pisof the form A n G in BP when A is Borelian (analytic) in BP, and G is a G;.

Proof. By definition condition a is necessary and it is obvious that b is sufficient.
To prove that a implies b, assume that P is Borel-open (Souslin-open) in a completion
Q of P. By a well-known result of E. Cech [1] @ is an absolute G,. Thus P is a Borel-
open (Souslin-open) set in each compactification of Q, and hence, by Theorem 13.1,
condition b is fulfilled. Thus each of the conditions a and b is necessary and sufficient.
The proof is completed by showing that a is equivalent to c. We start with the easier
implication. Assume that P is a Borel-open (Souslin-open) set in a completion Q of P.
Because of metrizability of Q, P is a Baire set (Souslin set) in Q. Hence P = Q n B
with B a Baire set (Souslin set) in BQ. Consider the canonical mapping f of P
onto BQ, and put G = f~*[Q], 4 = f~![B]. It is easy to verify that condition ¢ is
fulfilled. Finally assume condition c. Take a dusco-compact (usco-compact) cor-
respondence g of X into P with Ef = A. Take a metric d for P such that, if Q is
a completion of (P, d), and if f is the canonical mapping of SP onto SQ, then
f7'[@Q] = G. This follows from the fact that P is paracompact; if G = N{U,}
with U, open, then d should be chosen such that the closures in P of sets of diameter
less than 1/n + 1 are contained in U,. In the case when f is dusco-compact we may
and shall assume that d is chosen such that the correspondence

h = f odg
is dusco-compact (see 8.3). If B = Eh, then
QnB=P
in BQ (compare with the concluding part of the proof of Theorem 13.1).

Remark. Condition ¢ in Theorem 13.2 is a realization of a very general approach
to non-separable theory. Assume that we are given a class " of respectable spaces
in a separable theory. We define the corresponding class in the non-separable theory
to be the class of open P that are of the form G n K in P with K in ¢, and G a G,
in BP. For more details we refer to FrRoLik [9] and [11].

In conclusion we shall state without outlines of proofs several characterizations
from [11].

443



13.3. Intrinsic characterizations. Recall that all spaces in this section are assumed
to be completely regular.

13.3.1. A space P is absolutely Souslin-open if and only if there exists a Souslin
family U :S — open (P) such that S(U) = P, and a family {%(s)|seS}, each
U(s) being an open cover of U(s), such that the following condition is fulfilled:

If M is afilter on P and if there exists a o in X with # N %(s) * 0 foralls < o,
then .4 has a cluster point. (This is Theorem 16A in [F 11].)

13.3.2. If M is a Souslin family we define the co-Souslin set associated with M to
be the set

coS (M) = N{U{M(s)|s < o} |oceZ}.
The following is easy to check:

If P is a set, and if M :S — exp P, and N:S — exp P are such that Ms =
= P — Ns for all s then

S(P) = P — coS(N).

13.3.3. Theorem. The following condition is necessary and sufficient for a space P
to be absolutely Borel-open:

There exist U and {%(s)} with the properties in Theorem 13.3.1, and an order-
preserving mapping V : S — open (P) such that {{V(s)| s < o} | 0 € £} is a complete
family of coverings, and for each o, t € T there exists an n with Ug, < Vr,. (This is
Theorem 16B in [F 11].)

The proof uses important Theorem 1.9.

13.3.4. Theorem. The following condition is necessary and sufficient for a space P
to be Borel-closed in BP:

There exist F, H : S — closed (P) such that: (a) {{Hs | s < ¢} | 0 € £} is a complete
family of coverings, (b) if M is a filter on P and Mse M for all s <o and some
6 €X, then M has a cluster point, and (c) for each o, T € X there exists an n with
Fo, = Hr,. (This is Theorem 16C in [F 11].)

The proof again depends on Theorem 1.9.

13.4. Further intrinsic characterizations. Assume that P is a space and a = {oy, 0.,
is a pair such that «;-Cauchy filters are defined. For example o; may be a metric on P,
a uniformity on P, or a family of coverings of P. Another example: if M is a Souslin
family of subsets of P then an M-Cauchy filter is a filter .# such that Ms e # for
all s < o for some o in . An o-Cauchy filter is a filter that is «;~Cauchy for i = 1, 2,
We say that o is complete (on P) if every a-Cauchy filter has a cluster point in P.
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One can prove that a space P is analytic if and only if there exists a complete Souslin
family M of subsets of P with SM = P. Indeed if f is an usco-compact correspondence
of £ onto P then {f[Zs]|se S} is a complete Souslin family, and if M is complete
Souslin family on P then {¢ — Mo} : £ — P is usco-compact.

13.4.1. Theorem. Each of the following two conditions is necessary an sufficient
for metrizable space P to be absolutely Souslin space:

a) There exist a sequence {U,} of open coverings of P, and a Souslin family M
of subsets of P with SM = P such that {{%,}, M) is complete on P.

b) There exist a continuous pseudometric d on P and an M as in a) such that
{d, M) is complete. (See [F 11], Section 1.)

13.4.2. By a Borel structure on a space P we mean a Souslin family M such that
each {Ms | seS,} is a disjoint cover of P, Ms = Mt if t < s, and what is more
important, if o, T € X then the sets Mg, and Mz, are functionally separated for large
enough n. If P is a proximity space (or if a proximity is clearly given, e.g. if P is
a metric space), then by a Borel structure on P we mean a Borel structure on the
induced topological space such that the last condition is strenthened by replacing
“functionally separated’’ by “distant’’. A Borel structure M is said to be complete if
the sequence {{Ms|seS,}} is complete. Up to the indexing a complete Borel
structure on P is nothing else than a Borelian structure on P.

13.4.3. Theorem. Each of the following conditions is necessary and sufficient for
a metrizable space P to be absolutely Borel:

a) There exist a Borel structure M on P, and a sequence {%,,} of open coverings
of P such that {M, {#,}» is complete.

b) There exist a metric d for P and a Borel structure M on (P, d) such that
{M, d) is complete.

Proof. See section 2 in [F 11] where further similar characterizations are given.

Remark. Define a Borel structure on a subset X of a space P to be a Borel struc-
ture M on X with the last condition understood in the whole space; we call M relative-
ly complete if every M-Cauchy filter on X has a cluster point in X whenever it has
a cluster point in P. One can prove that a subset of a metrizable space P is a Baire set
in P if and only if there exists a relatively complete Borel structure on X in P.

13.5. Further characterizations.

13.5.1. Theorem. A space P is a classical absolutely Souslin (Borel) space if and
only if P is homeomorphic to a closed subspace of a product space G x B where G
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is a completely metrizable space, and B is a separable classical absolutely Souslin
(Borel) space.

Proof. [F 11, Theorem 12.]

13.5.2. Theorem. A metrizable space P is classical absolutely Souslin (Borel)
space if and only if for each completion R of P there exists a continuous mapping f
of P into a separable classical absolute Souslin (Borel) space, that extends to no
point of R — P.

14. ABSTRACT THEORY IN PAVED SPACES

It is an interesting and useful fact that the fundamental concepts of analytic set
and Borelian set can be defined and developed in general setting, starting with any
collection of sets that is subject in several basic results to one of the two natural con-
ditions, finite multiplicativity or finite additivity. For the proofs and more details we
refer to Frolik [17]. In addition we shall define all the concepts over a given space Q,
not necessarily the space X of all irrationals, and show what properties of Q are
needed for the validity of the fundamental theorems. For example to get the stability
of the Souslin operation on Q (i.e, S S = S) it is enough to assume that Q maps
continuously onto Q%°. This is the reason for recommending this section also to the
readers interested just in the descriptive theory in topological spaces. For technical
reasons, and to point out the topological standpoint, we shall work with pairs
(S, M) where S is a set and .# is a collection of subsets of S.

14.1. A paved space is a pair P = (S, #) where S is set and ./ is a collection of
subsets of S; S is denoted by |P|, and ./ is denoted by st P and called the pavement
of P. The elements of the pavements are called the stones of P. If we assume that the
empty set is a stone then we get precisely the concept of paved space as introduced
by P. MEYER [1]. Every topological space is regarded to be a paved space; the stones
are just the closed sets. For a paved space P we denote by top P the topological space
whose underlying set is |P| and the pavement of top P is the smallest topology (to
mean the closed sets) containing the pavement of P.

A correspondence f: Q — P of paved spaces is called usco if the preimages of
stones are the stones. Clearly the identity mapping of top P into P is usco. It is
evident that if a mapping f of a topological space Q into P is usco, then f: Q — top P
is usco. This is not true for correspondences in general. Nevertheless this is true for
usco-compact correspondences whenever the paved space is finitely multiplicative.
To introduce usco-compact correspondences it is enough to define compact sets in
paved spaces. Define a set X in P to be compact if X is compact in top P. The argu-
ment establishing the Alexander lemma shows that a set X in P is compact if and
only if for each collection . of stones such that (X) U & is a filter subbase (i.e. it has
the finite intersection property) the intersection of # meets X.
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Proposition. The composite of two usco or usco-compact correspondences has the
respective property. If f is an usco-compact correspondence of a topological space Q
into a finitely multiplicative paved space P then f : Q — top P is usco-compact.

In the case of topological spaces the Souslin sets are defined as the images of X
under the closed-graph correspondences. It may seem to be natural to define a cor-
respondence f: Q — P to be closed-graph if f: Q — top P is closed graph. With
this definition we would not get the Souslin sets in P as closed-graph images of X; we
would get the Souslin sets in top P. We are going to introduce the so-called S-cor-
respondences to get that the Souslin sets in a paved space are just the images of
under S-correspondences. Proposition 14.2 says something about the relationship
between S-correspondences and closed-graph correspondences. More information is
given in 14.6.

14.2. By a Souslin family over B in 4 we mean a single-valued relation M
with DM being a family of sets # and EM < .#. The Souslin set of M, designated
by SM, is the set

U{N{MB, | xe B,e B} | xe U%} .
Thus if 2 = {Zs | s € S} then we get just the Souslin .#-sets. The collection of all
Souslin sets in ./ over 4 is denoted by S,(.%).
The relation associated with M is the set M of all pairs {x, y)> such that x e %
and y e MB, for each B, containing x. Clearly

EM = SM .

Proposition. Let f be a correspondence of a topological space Q into a paved
space P. If f is associated with a Souslin family over an open cover of Q in st P
then the graph of f is a closed set in Q x top P. If f: Q — top P is closed-graph
then f is associated with a Souslin family in st (top P) over any open base for Q.

Definition. An S-family over a topological space Q in a paved space P is a Souslin
family M in st P over an open countable cover of Q. The correspondence
M:Q-P
is said to be associated with M. Finally, an S-correspondence is a correspondence
associated with an S-family.

The following two theorems are fundamental for developing of Souslin, analytic
and Borelian sets. '

Theorem 1. Let f: R — Q be an usco-compact correspondence for topological
spaces. If g : Q — P is an S-correspondence then so is the composite h = g o f

provided that the pavement of P is finitely additive.
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Remark. Theorem 1 is formulated for a correspondence associated with a Souslin
family over a countable cover. The proof is the same for any cardinal of the cover and
therefore we get the following

Corollary. (Theorem in [F 16].) If f : R > Q, and g : Q — P are correspondences
for topological spaces, if f is usco-compact and if g is closed-graph then h is
closed-graph.

Theorem 2. Assume that P is a paved space, & is an open cover of a topological
space Q. For each B, in & let f,: Qp, — P be a correspondence of a topological
space Qp, into P. Define a correspondence f of (see Theorem 3.9)

Q' = 0 x I{Q,, | B, #}
into P by setting

«x {x, | Bue B}, y>egr f
if and only if

yeN{fl(x)]|xeB,e%}.

If B is countable, and if all f, are S-correspondences then so is f. If, in addition,
there is a subcover € of # such that all f, with B, in € are usco-compact then f is
usco-compact provided that the pavement of P is finitely multiplicative.

Corollary. The intersection of a countable number of S-correspondences is an
S-correspondence. If in addition one of the correspondences is usco-compact then
so is the intersection provided that the pavement is finitely multiplicative.

Remark. As a consequence of the general setting of Theorem 2 we get that the
Souslin product of closed-graph correspondences is closed-graph, and the Souslin
product of usco-compact closed-graph correspondences is usco-compact and
closed-graph.

14.3. Definition. Let Q be a topological space, and let P be a paved space. A Souslin
set in P over Q is the image of Q under an S-correspondence of Q into P. An analytic
set in P over Q is the image of Q under an usco-compact S-correspondence of Q
into P. Souslin sets with disjoint representation (called d-Souslin sets) and Borelian
sets are defined in an obvious way. We use Sy(P), Ay(P), S4(P) and AY(P) to denote
the collection of all, respectively, Souslin, analytic, d-Souslin or Borelian sets in P
over Q. If . is a collection of sets then Sy(.#) etc. have the obvious meaning. If
Q = Z, then the subscript Q is omitted and we speak just about Souslin etc. sets in P
or in /. It follows from the definitions that:
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Proposition 1. If X is a stone in a finitely multiplicative P, and if Y is Souslin or
analytic or with a disjoint Souslin representation or Borelian in P over Q, then so
isXNnY.

Proposition 2. Let P be a paved space, and let Q be a topological space. Every
Souslin (d-Souslin) set in P over Q is Souslin (d-Souslin) in top P over Q. If P is
finitely multiplicative then every analytic (Borelian) set in P over Q is analytic
(Borelian) in top P over Q.

Proof. The first statement follows from Proposition 14.2, the second from the
fact that if f: Q — P is usco-compact then f: Q — top P is usco-compact provided
that Q is a topological space and P is finitely multiplicative.

Thus in the case of finitely multiplicative paved spaces if X is respectable in P
then X is respectable in top P. There are several theorems saying that if X is respect-
able in P provided that X is respectable in P in a weaker sense, e.g. distinguishable.
For results of this sort see 14.7.

The following results don’t need any comment.

Theorem 1. Assume that f is an S-correspondence of a topological space Q into
a finitely additive paved space P, and let A = Q be the image of a topological
space R under an usco-compact correspondence of R into Q (this assumption is
fulfilled if A is analytic in Q over R). Then f[A] is Souslin in P over R, and if in
addition f is usco-compact then f[ A] is analytic in P over R.

Proof. Apply Theorem 1 in 14.2.

Theorem 2. Let P be a paved space, and let Q be a topological space that con-
tinuously maps onto Q®°. Then

SQ(SQ(P ) = SQ(P )
and if P is finitely multiplicative then
So(Ag(P)) = Ay(P).

If, in addition, Q bijectively continuously maps onto Q®°, then the formulas are
true with the supper script d attached.

Proof. Apply Theorem 2 in 14.2 and the following obvious
Lemma. If there exists a continuous mapping of Q, onto Q then
So,(P) = Sy(P), and A, (P) > Ay(P)
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for any paved space P. If there exists a one-to-one continuous mapping of Q
onto Q then the formulas are true with the supper script d attached.

Corollary. Assume that P is a finitely multiplicative paved space, and Q is a topo-
logical space that maps continuously (bijectively) on Q. Then X < |P| is analytic
(Borelian) in P over Q if and only if X is Souslin (d-Souslin) in P over Q, and X is
contained in an analytic (Borelian) set in P over Q.

Proposition 3. Assume that Q is a topological space and P is a paved space. Then
st So(P) = (st P); .
If Q is regular and contains an infinite discrete set then
st So(P) = (st P), .
Corollary a. For any collection of sets we have

B(S(.#)) = S(M) = B(M) > M,
B(A(4)) = A(M) > B(M) > M .

A similar theorem for S%, A? shows that

Corollary b. For any collection .# we have

B,(SU(.#)) = S.M) > B(M) > M,
B,(A(M)) = A M) > By(M) > M .

Example. If Q is a countably infinite discrete space then SQ(JI) = Mg If we
want to repeat this operation infinitely times, we must consider Q%° = X, but then
S(.#) may be strictly larger than B(.#), e.g. if . is the set of all closed sets on the
real line.

Remark. In the case of topological spaces the projection of an analytic set is
always analytic. This is an immediate consequence of Theorem 2 in Frolik [16] that
says that if 7 is a projection of a product space R x P onto P,andif f: Q - R x P
is a closed-graph usco-compact correspondence, then 7 o f is closed-graph (and, of
course, usco-compact). In the present general setting we haven’t defined the product
of paved spaces, and therefore no generalization of this important theorem is given,
and as a result, the projection technique for developing of analytic sets is not discussed
here. For a development of Souslin sets by the projection technique we refer to
P. MEYER [1] and 14.6. In the case of general topological spaces the projection tech-
nique is developed in Frolik [16] for Souslin and also analytic sets.
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14.4. In this subsection we consider the respectable sets over the space ¥ of
irrational numbers. The first result says that the open base {Zs | s € S} for ¥ suffices;
this shows that the theory presented in this section extends the classical theory. The
further results are related to separation of analytic sets.

Proposition 1. If f is an S-correspondence of X into a finitely multiplicative paved
space P then there exists a homeomorphism k of T onto itself such that f o k is
associated with a Souslin family in P over {Zs}.

We refer to Frolik [12] for the proof, and also for further related results, e.g., in
the case of the Souslin sets, for a replacement of finite multiplicativity by the assump-
tion that the empty set is a stone.

The first separation principle has the following setting.

Proposition 2. Assume that P is a finitely multiplicative paved space, and let €
be a collection of subsets of |P| such that B(¢) = €.

a) Assume that if X is a compact set in (st P),, and if Y is a stone disjoint to X,
then there exists a neighborhood U € € of X intop P with U nY = Q. Then if X is
analytic in P, and if X is a Souslin set in P disjoint to X, then X =« C = |P| = Y
for some C in €.

b) Assume that any two disjoint compact sets in (st P), are separated by neigh-
borhoods belonging to €. Then any two disjoint analytic sets in P are separated in €.

Remark. The separation assumption in Proposition 2 are satisfied if top P is
a separated space that locally belongs to ¥. This is needed in the next result that
should be compared with 5.10. A set X in P is called bianalytic if X and P — X are
analytic. We denote by Bianal (P) the collections of all bianalytic sets in P.

Theorem. Assume that P is finitely multiplicative paved space such that top P is
separated and locally belongs to a collection of sets Z. Let  be thecomplementary
part of B(Z). Then

Z o Bianal (top P) > Bianal (P),
and if top P is analytic and & = st P then
Z = Bianal (top P) = Bianal (P)

and top P locally belongs to ¥ .

Consider the particular case where top P is a separated completely regular space
and st P is the set of all zero-sets in top P. It is clear that Proposition 2 is a generaliza-
tion of the author’s theorems 5.8 and 5.10.
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14.5. Here we want to give four further characterizations of Borelian spaces, see
Theorem 7.7.

Theorem 1. Each of the following four conditions is necessary and sufficient for
a completely regular space P to be a Borelian space:

1. X is an absolute d-Souslin set in the class of all completely regular spaces.

2. X is a d-Souslin set in some Borelian space.

3. X is a d-Souslin set in some compact separated space.

4. X is a d-Souslin set derived from compact sets in a completely regular space.

Proof. Necessity is obvious, and to prove sufficiency it is enough to observe that
a correspondence associated with a Souslin family ranging in compact sets is usco-
compact, and that the intersection of a closed-graph correspondence with an usco-
compact correspondence is usco-compact.

Lemma. Let X be a Borelian set in a finitely multiplicative paved space, and let €
be a collection of sets such that any two analytic sets are separated in €. Then

Xe([¢]n ‘[st P)oss -

Proof. See 7.4

Theorem 2. Assume that P is finitely multiplicative paved space, and let € with
B(%) = & be a collection of Borelian sets such that

(*) ‘ % separates analytic sets .

Then
A(P) = ([¢] n [st P])s,s -

Condition (x) is satisfied if top P is separated and locally belongs to %.

14.6. Graph characterization of S-cerrespondences. We know that any S-cor-
respondence is closed-graph, and the converse is not true in general. To characterize
S-correspondences by a property of graphs it is convenient to introduce several
concepts.

Definition. The complements of the stones in a paved space are called costones.
Thus in a topological space the costones are just the open sets. If Q and P are paved
spaces we say that X < |Q| x |P|is a o-set if X is the union of a countable collection
of sets of the form U x V where U is a costone in Q and V is a costone in P. The
complements of o-sets are called o-sets. It should be remarked that the product
Q x P has not been defined.
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Theorem. In order that a correspondence f of a topological space Q into a paved
space P such that |P| is a stone to be an S-correspondence it is necessary and
sufficient that the graph of f to be a J-set.

Proof. If f is associated with a Souslin family M in P over a countable cover {B,}
then the complement of the graph is the union of all the sets B, x (|P| — MB,),
and hence it is a o-set. Conversely, if the complement of the graph of f is the union
of a countable family {B, x V,} where B, and V, are costones in the respective paved
spaces, then put

MB, = |P| - ,.

We may and shall assume that one of the sets B, X ¥, is Q x 0 (= 0). Then f is
associated with M.

14.7. D-sets. We know that every analytic or Borelian set in a multiplicative paved
space P has the respective property in top P. In this section we are concerned with the
question under what sufficient conditions an analytic or Borelian set in top P has
the respective property in P. The most important example is given in 14.8. The
reader is invited to read simultaneously that section.

Definition 1. A D-set in a paved space P is a set X such that there exists a countable
collection € of stones with the property that if xe X and ye P — X then xe C <
< P — () for some C in .

Clearly the collection of D-sets is invariant under countable intersections and
countable unions, and each stone in P is a D-set in P.

Definition 2. A paved space P is called first countable if each stone X in P is the
intersection of a sequence {C,} of stones such that X < int C, for each n (the interior
is taken in top P). It should be remarked that this definition has nothing to do with
first countable topological spaces.

The main result reads.

Theorem 1. Assume that P is a first countable paved space such that any two
disjoint analytic sets in top P are separated by D-sets in P. Then a Borelian set X
in top P is Borelian in P if and only if X is a D-set.

We shall see that this is a generalization of Theorem 8.4 on BB-sets. In the case of
analytic set the situation is more complicated, and the two main results are given
below. In Theorem 1 ““only if*’ is obvious, and “if*” follows from the following
simple result.

Proposition 1. Assume that P is a paved space, such that f is an usco correspondence
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of a topolo‘g‘ic[zl' s‘p_&‘ce Q into top P. Let ¥ be a countable collection of stones such
that for each 'y in Q and each x in P — fy there exists a C in € with

fycintCeCc P —(x).
Then f : Q — P is an S-correspondence.

Proof. For each C in ¥ let U, be the set of all y € Q with fy < int C. Clearly f is
associated with {Uc - C | Ce %}.

Proof of Theorem 1. Assume that X is a Borelian set in top P and a D-set in P.
Choose a dusco-compact S-correspondence f of X into top P with X = Ef, and
a countable collection & of stones in P such that X is “distinguished” by 2, and for
each n e N, and distinct s, ¢ € S, there exist D-sets X, Y, “distinguished” by 2 such
that f[Zs] = X, f[£¢] = X,. Choose a finitely additive countable collection ¥ > 2
of stones such that each element of D of 2 is the intersection of a sequence {C,}
in % such that D < int C, for each n. One can verify that the assumptions of Pro-
position 1 are fulfilled. By Proposition 1 f : £ — P is dusco-compact.

As concerns analytic sets we get:

Theorem 2. Assume that P is a first countable finitely additive paved space, and
let f : £ — top P be an usco-compact correspondence such that there exists a count-
able collection 9 of sets with the following property: if ye X, and if xe P — fy
then there exists a D in @ with fy e D = P — (x). Then Ef is analytic in P.

Proof is based on a similar idea as the proof of Theorem 1.
Very important is the following result.

Theorem 3. Assume that P is a paved space, f:Z — top P is usco-compact,
and there exists an usco mapping g of P into a topological space R such that
9 '[9[Ef]] = Ef, and g : top P > R is closed-graph. Then Ef is Souslin in P.

Proof. The composite h = g o f is closed-graph by Theorem 14.2.1, and hence Eh
is Souslin in R. Since g : P — R is usco, Ef = g~ '[Eh] is Souslin in P.

Remark. If X is Souslin in P, and if X is analytic in top P then X need not be
analytic in P even if P has all properties in this subsection. See Example in 14.8.

14.8. Exact sets. For a topological space P denote by exact (P) the set |P| endowed
with the collection of all zero sets (called exact closed sets in P, see Cech [2]), and
we let Baire (P) to denote |P| endowed with the smallest o-algebra containing the
exact closed sets in P. If P is a paved space we define exact (P) or Baire (P) to be,
respectively, éxact (top P) or Baire (top P).
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Clearly the paved space exact (P) is first countable, finitely additive, and countably
multiplicative.

Theorem. If P is completely regular than the Borelian sets in exact (P) are just
the BB-sets in P.

Example. Let K be a compact space with just one cluster point, say x, and let the
cardinal of K be at least ¥,. Let P be the sum of {K | n € N} with the points {x, n),
n € N, identified. Evidently K is Souslin in exact (K) and K is analytic, but one can
show that K is not analytic in exact (K).

14.9. P. Meyer’s proof of stability of the Souslin operation. A paved space is said
to be countably compact if each countable filter subbase of stones has non-void
intersection. Obviously every compact paved space is countably compact. Observe
that £ endowed with @ and the collection of all sets Xs, s € S, is countably compact;
this space will be denoted by Z. In this section we assume that the empty set is a stone
in every paved space.

Theorem. Let P be a paved space. If Q is countably compact paved space and if C
is the countable intersection of contable unions of sets of the form X x Y with
X est P,Yest Q, then the projection of C into P is a Souslin set in P. If A is Souslin
in P and if Q = X, then there exists an C with the above properties such that A is the
projection of C into P.

Proof is left to the reader.

Definition. If P and Q are paved spaces, we denote by P ® Q the set P x Q
endowed with the collection of all sets X x Y with X or Y a stone in P or Q, respec-
tively.

Lemma. Under the assumptions on P and Q in Theorem, if C is a Souslin set in
P ® Q then the projection X of C into P is a Souslin set.

Proof. Take a countably compact Q' and a countable intersection C’ of countable
unions of stones in (P @ Q) ® Q' such that C is the projection of C’. Clearly X is the
projection of C’ into P: observe that (P ® Q) ® Q' is isomorphic to P ® (Q ® Q),
and Q ® Q' is countably compact.

Proof of the stability of the Souslin operation: apply Lemma and Theorem.

Remark. Notice that this proof is based on the classical projection technique;
P. Meyer observed that countably compact may replace analycity. The projection
technique was also used by Bourbaki to prove capacitability of Souslin sets. For
a development of projection technique in general spaces we refer to [F 16]. It should
be remarked that [F 17] can be completed to include the projection technique in
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general setting. Finally observe that several separation theorems can be stated for
Souslin sets in countably compact spaces.

15. THEORY OF SIEVES AND REMARKS

A sieve is a pair <C, < > when C is a relation and < is a linear order for the
range EC of C. The sifted set of C, designated by SF(C), is the set of all points x
in DC such that the subset C[x] of EC is not well ordered (that means: there exists
a strictly decreasing sequence in C[x]). Now if Q is a linearly ordered set, and if P
is a set (possibly endowed with some structures) then by a sieve in P x Q we mean
asieve <C, < > suchthat C =« P x Q, and <EC, < > is an ordered subset of Q.
We shall only consider the sieves in P x Q when P is a paved space, and Q is the
ordered space Q or rationals, or the ordered space R of reals. Theory of sieves is
a classical powerful tool in studying the Souslin operation and Borel sets. It seems
that the first sieve was considered by H. LEBESGUES; on the other hand it was N. LusIN
who defined something very close to Lusin sieve as defined below, and discovered the
ideas of everything that could be done. For an excellent introduction to the theory of
sieves in the classical setting we refer to Kuratowski [1]. The Polish school has
supplied a tremendous volume of material. On the other hand we would like to
encourage the interested reader to go through the Lusin’s paper [2], and to consult
the difficulties in Kuratowski [1]. For many ingenious tricks one should go to W.
SIERPINSKI’s papers. For contemporary point of view we refer to Rogers [5], where
further references could be found; this paper is also recommended as an introduction.
It is my opinion that the theory of sieves is open to a fruitful study from the contem-
porary point of view.

This section is concluded by hitting some problems concerning stadard Borel
spaces, standard analytic spaces (as introduced by C. W. MAckEy [1]), Blackwell
spaces, and by several remarks to the general theory of compact generated algebras
and related notions. The present author intends to publish more developed theory
elsewhere; I don’t want to set the basic definitions here because I am not sure of the
details that could change the whole setting of the theory.

We add just one paragraph to report on Rogers [6]; this is a contribution to the
problem how to generalize the property of metrizable spaces that every open set is
respectable with respect to closed sets. The subject seems to be open to further
investigations.

15.1. Relationship to the Souslin operation. A Lusin sieve on a paved space P is
sieve C in P x Q, that can be written as

C = U{X, x (g,) | neN}

where the X,’s are stones in P, and {q,} is a one-to-one sequence in Q.
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15.1.1. Lemma. If a paved space is finitely multiplicative, then every Souslin
set in P is the sifted set of a Lusin sieve on P.

Proof. Assume that X = SM where M : S — st P; we may and shall assume that
Ms <= Mt for t < s. Define r : S — Q by setting

rs = 1 _ 2—io—l - ... _2—1'0-1'1—..."'1',.—"—1
for s = {iklk‘g n} eS. Put
C = U{Ms x (rs)|seS}.

One can check that X is the sifted set of C, and it is obvious that C is a Lusin sieve
on P.

On the other hand the sifted set of a Lusin sieve is always a Souslin set. We shall
prove more:

15.1.2. Lemma. Assume that P is a paved space, and that C is a subset of P x R
such that the projection of C n (P x I) into P is a Souslin set (analytic set) in P for
each half open interval I in R. Then the sifted set of C is Souslin (analytic) in P.

Proof. We may and shall assume that C = P x [0, 1]. Arrange all the rationals
in JO, 1] in a one-to-one sequence {r(n)}, and for each s = {i, | k < n} €S put

Rs = [r(io) . ... . #(iy), r(io) . ... . r(iy—1)[
where we set r(iy) . ... . r(i,-4) = 1if n = 0. Finally put
Ms = D(Cn P x Rs).

Since all Ms, s€ S, are Souslin (analytic) in P, SM is also Souslin (analytic) in P.
One can easily verify that S(M) is the sifted set of C.

As a corollary we get the following

Theorem. If P is a topological space then the sifted sets of Souslin (analytic) sets
in P x R are Souslin (analytic) sets in P; each Souslin set in P is the sifted set of
a Lusin sieve. '

]

The reader is invited to get more from the Lemmas.
15.2. Lusin sieves. For every well ordered set X we use 7(X) to denote the unique
ordinal such that X is order isomorphic to the ordered set of all ordinals less than

7(X). If an ordered set X is not well ordered we put o(X) = w, (for convenience).
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If X is a well ordered subset of R then 7(X) < w, (i.e. 7(X) is a countable ordinal).

Thence
SF(C) = E{x | «(C[x]) = o} .

We say that a sieve C is bounded over a set X if
sup {t(C[x]) | xe X} < w, .
The following result is simple, but very important (essentially Lusin [2], p. 72).

15.2.1. Lemma. Let C be a Lusin sieve on a paved space P. For each countable
ordinal o the set
C, = E{x | «(C[x]) = «}

is a Borel set in P (and N{C,| o < w,} = SF(C)).

Proof. Assume that
C = U{X, x (g,) | neN}

where X, are stones, and {g,} : N — Q is one-to-one. Define X;, neN, a < w, by
setting
X% =X,, andfor a> 1

Xt =X, nN{X5| B <a} ifaisa limit cardinal,
and
Xt =X,nU{X7 " | q: < q,} otherwise.

One can verify that
C, = U{X;|neN}.

Thence the sets C, are Borel in P, and by definition

SF(C) = N{C, |« < w,}.

Corollary. If a Lusin sieve C on P is bounded over a set Y then there exists a Borel
set B in P with
SF(C)cBc P —Y.

In particular, SF(C) is a Borel set whenever C is bounded on P — SF(C).

Call a sieve C bounded if C is bounded on the complement of SF(C) (to be more
precise, say on the complement of SF(C) in DC). By Corollary 15.2.1, if a Lusin sieve
is bounded then the sifted set is a Borel set. One of the best results of Lusin [2] is the
converse in the case when the paved space is R (or R”, as he remarks). We state here
the Rogers formulation (Rogers [8, Lemma 2]).
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15.2.2. Lemma. Assume that P is finitely multiplicative paved space, A is an
analytic set in top P (or more generally, an usco-compact image of T in top P),
and C is a Souslin set intop P x Q. If A n SF(C) = 0, then C is bounded over A.

Remark. The assumption that 4 is an usco-compact image of X is essential. For
example, take an analytic set X in R, that is not Borel, and express X as the sifted set
of Lusin sieve C on R. By 15.2.1 C is not bounded. Consider the subspace P = R — X
of R, and the Lusin sieve C' = C n (P x Q) on P. Clearly C’ is not bounded, and
the sifted set of C’ is empty, thence Borel.

Theorem. Assume that P is a finitely multiplicative paved space, and that A is
analytic in top P (it is enough to assume that A is an usco-compact image of
T in top P). If X is a Souslin set in P disjoint from A, then

XcBcP-4
for some Borel set B in P; particularly, if X = P — A then X is Borel in P.
Corollary. If # = B(st P) then
exp (P — A) N st S(P) = S(M nexp (P — A)).

It should be remarked that Theorem is a refinement of the first separation principle
as formulated before.

15.3. The second principle. The first theorem is the Rogers generalization of
Kunugui’s generalization of the Lusin’s second separation principle (Rogers [5],
Theorem 14).

15.3.1. Theorem. Let A and B be Souslin sets derived from the bi-Souslin sets in
a space P. Then there are sets C, D that are complements of Souslin sets in P and
that satisfy

CnD=0, A—BcC, B—AcD.

The next result is the Rogers generalization of a result of Konpo (Rogers [5],
Theorem 16).

15.3.2. Theorem. For any space P
$¢ (bi-Souslin (P)) = bi-Souslin (P) .

This result follows by the method of the proof of 7.4 from the following (Rogers
[5], Theorem 15)
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15.3.3. If A and B are disjoint Souslin sets derived from bi-Souslin sets in
a space P, then there are disjoint bi-Souslin A, and B, with A = A, B = B,.

The proof of the results of this section depends on the following fundamental
result of Lusin (see Rogers [5], Theorem 11).

15.3.4. Let P be a space, and let A and B be subsets of P x Q such that the sets
PxQ—A and B

are Souslin in P x Q. The set of all x € P with A[x] similar to a subset of B[x] is
a Souslin set in P.

15.4. Uniformization. Assume that C is a ‘respectable’ set in the product space
P x Q. Is there a single-valued relation f = C with DC = Df, EC = Ef such that f
is as good as Cin P x Q? If P, Q = R and C is co-analytic then f can be chosen
co-analytic, and this is not true for Borel or analytic. One can consider a similar
problem: is there ‘respectable’ compact-valued section? This problem is studied in
Rogers [5].

15.5. Measurable spaces. A measurable space, shortly an M-space is a paved
space P such that the pavement is a o-algebra. A measurable mapping, or shortly
an M-mapping, is an usco mapping of M-spaces. An M-quotient mapping is an
M-mapping f : P — Q such that X is a stone in Q whenever f~![X] is a stone in P.
For example, if P is a topological space then the Baire space Baire (P) of P is an
M-space, and if f : P — Q is continuous then f : Baire (P) — Baire (Q) is an M-
mapping, but the converse is not true in general.

A collection . of sets in a paved space P is said to be distinguishing if for each
two distinct points x, y in P there exists an M in 4 such that either xe M, y ¢ M or
yeM, x¢ M. An M-space is said to be separated if the pavement is distinguishing.

An M-base or a generating collection for an M-space P is a subset .# of the
pavement such that the pavement is the smallest g-algebra on P containing /.
An M-space P is separable if it has a countable M-base.

For example for any paved space P the M-modification of P is the M-space MP
having the pavement of P for an M-base. It should be remarked that if P is a topolo-
gical space then MP is often called the Borel space of or induced by P, and the stones
are called Borel sets in P; in our terminology Borel is used in the situations when the
smallest collection closed under B is considered, e.g. Borel-closed sets, Borel-open
sets. We have stressed many times that

MP = Baire P = Borel P

if P is metrizable. In the particular case of metrizable spaces we shall also use classica
terminology, e.g. classical separable absolute Borel space.
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15.5.1. Embeddings into standard spaces. Denote by 2 the discrete space con-
sisting from two points, 0 and 1. If 4 is a set we denote by Cantor (4) the topological
space 2. Thus the points are the families x = {x, | a € A} with x, zero or one, and
the topology is the topology of coordinatewise convergence. Denote by B, a € 4,
the set of all x in Cantor (4) with x, = 1. The complement of B is denoted by B;
clearly B] is the set of all x with x, = 0. Note that {B}} is an open subbase for
Cantor (A), B! is closed and open, and the space is compact. Having in mind that
Cantor (4) and Cantor (B) are homeomorphic whenever 4 and B are of the same
cardinal, we use the symbol Cantor (m), with m an cardinal, without specifying the
meaning. Obviously Cantor (m) is metrizable il and only if m is countable.

An M-embedding is a one-to-one M-mapping f : P — Q such that each stone in P
is the preimage of a stone in Q.

Embedding Lemma. Assume that € is an M-base for a separated M-space P. If X
is a subset of P denote by yx the characteristic function of X: thus yyx = 1 if
x € X, and yyx = 0 otherwise. Define

f: P - Baire (Cantor (%))
by setting
fx={ycx|Ce%}.
Then:
A. fis an M-embedding.

B. f is onto if and only if for each non-void ' = € the set N6 — U(% — ')
is a singleton.

C. The range of f is a closed subspace of Cantor (%) if and only if the collection
of all C and P — C with C in € is a compact pavement of P.

Proof. Write Q for Cantor (fg) Evidently f is one-to-one, and to prove that f is an
embedding it is enough to observe that

f B¢ =CcC
for each Cin €. To prove B, take a point y in Q, and observe that
) =ne - U@ - ¢)

where €’ is the set of all C in ¥ with yc = 1. Finally, notice that ‘only if* in C is
very easy to verify, and to prove ‘if”, take any point y in the closure f[P] in Q, and
observe that the collection {D¢ | C € %}, where D¢ = Cif yo = 1,and D¢ = P — C
otherwise, has the finite intersection property (is a filter subbase), and N{Dc} + 0
if and only if y € f[P].

461



Theorem. Assume that P is a separated M-space. Then P embeds in Baire
(Cantor (m)) whenever there exists an M-base of cardinal at most m; particularly,
if P is separable then P embeds into Baire (Cantor (X)), and thence P embeds into
the Baire space of a compact, metrizable totally disconnected space. Further,
P is isomorphic with the Baire space of a Cantor space if and only if there exists
an M-Base with the ‘coordinating’ property in Lemma, statement B. Finally, P is
isomorphic with the Baire space of a compact totally disconnected space if and only
if it has an M-base that is closed under complementation, and that is a compact
pavement.

15.5.2. Analytic M-spaces. An M-space P is said to be analytic if P is isomorphic
with the Baire space of an analytic space.

Lemma. Let f be a continuous mapping of an analytic space P onto a space Q.
Then

f : Baire (P) — Baire (Q)
is an M-quotient mapping, thence an isomorphism if injective.

Proof. If X = Q, and if f ~'[X] is a Baire set in P, then f [ X] and P — f~'[X]
are analytic, thence their images X and Q — X are analytic in Q, and hence X is
a Baire set in Q by Separation Theorem.

Corollary. If P is isomorphic with the Baire space of a Borelian space then P is
isomorphic with the Baire space of a bi-analytic space. (Use the fact that every
Borelian space is a one-to-one continuous image of a bi-analytic space.)

Remark. It follows from 15.2.2 that if . is a collection of stones in an analytic
M-space P with B(.#) = ., then

S(M)nstP = M.

We shall not need this fact.

Now we are going to prove a very powerful result, that is classical Souslin theorem
if the space P is metrizable. By a Borelian M-space we mean an M-space that is
isomorphic with the Baire space of a Borelian topological space.:

Theorem.*) Let f be an M-mapping of an analytic M-space P’ into a separated
separable M-space Q'. Then f : P' - f[P'] = Q' is M-quotient, and the subspace

*) An improved version one can find in the author’s ‘““Measurable map with analytic domain
and Metrizable range is quotient”, Bull. Amer. Math. Soc. 1970.
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f[P']of Q'isanalytic.If f is one-to-one, and if P’ is Borelian then f[ P'] is metrizable
Borelian.

Proof. Let P be an analytic topological space such that P’ is the Baire space of P.
By Theorem 15.5.1 we can choose a compact metrizable space R such that Q' is
a subspace of the Baire space R’ of R. Take a countable open base % for R (obviously
the elements of € are Baire sets in R), and for each C in € put

MC = f7'[C] x C.
One can check immediately that
SM =grf

and the associated relation M is disjoint. For the definition and properties of SM for
Souslin families over a topological space consult 14.2.

Since all MC are analytic (as Baire sets in an analytic space P x R), the graph of f
is analytic. If P is Borelian then all the sets MC are Borelian (because R does be
Borelian), and hence the graph of f is Borelian. Thence, the projection f[P] of gr f
into R is analytic, and if, in addition, P is Borelian and f is one-to-one, then f[P] is
Borelian. It remains to show that the Baire space of f[P] is a subspace of R’, and
this is evident because of the metrizability of R (and in general it would follow from
the fact that f[ P] is analytic), and that the M-mapping

f: P" > Baire f[P]

is an M-quotient. Assume that X is a set in f[ P] such that the set f ~'[X] is a Baire
set in P. Hence the two sets

f7[X] and P - f7'[X]
are analytic, thence the two sets
grfo(f7'[X] x R) and grfn((P — f7'[X]) x R)
are analytic, thence their projections
X and f[P]-X
are analytic, and via Separation Theorem the set X is a Baire set in f[P].

Remark. One can avoid the use of ‘Souslin sets over a topological space’ by
replacing R with the space X of irrationals.

Corollary. If P is an analytic M-space, and if a countable collection € of stones
distinguishes the points of P, then € is an M-base for P, and P is isomorphic with
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the Baire space of a metrizable analytic space (= classical analytic space). In
particular, an analytic space is separable if and only if it is isomorphic with the
Baire space of a metrizable analytic space. If P is a Borelian M-space, and if
a countable collection € of stones distinguishes the points of P, then € is an M-base,
and P is isomorphic with the Baire space of a metrizable Borelian space (= classical
separable absolute Borel set).

Definition. A Blackwell space is a separable separated M-space P such that every
countable collection of stones that distinguishes the points is an M-base. By a pseudo-
Blackwell space we shall mean a separated M-space such that every M-mapping
onto a separable separated M-space is M-quotient. Similarly, by a pseudo-analytic
space we shall mean a separated M-space such that every M-mapping onto a separable
separated M-space Q is M-quotient, and Q is analytic.

Proposition. Every analytic space is pseudo-analytic, every Blackwell space is
pseudo-Blackwell (in fact, a pseudo-Blackwell space is Blackwell if and only if it
is separable), every separable analytic space is a Blackwell space. Every quotient
of a pseudo-Blackwell space is pseudo-Blackwell.

Proof. Routine.

The classical Blackwell pfoblem whether or not every Blackwell space is analytic
(that is still open) can be extended to pseudo-analytic and pseudo-Blackwell spaces.

15.5.3. Standard spaces. A classical result says that any two uncountable separable
absolute Borel sets (= metrizable Borelian spaces) are isomorphic M-spaces (Kura-
towski [ 1]). It follows that if P is a separable separated Borelian M-space then either P
is countable, and then the pavement consists of all subsets of P, or P is isomorphic
with Baire (Cantor (N,)).

Definition. A standard M-space is an M-space P that is isomorphic either to Baire
(Cantor (m)) for some m, or to a singleton, or to a countable sum of such spaced
(defined in a natural way).

Theorem. Each stone in a standard M-space is standard. A standard space is
separable if and only if each standard subspace is a stone.

For this theorem, and for further devclopment the following simple result is
needed.

Lemma. If f is a continuous mapping of a product space P = TI{P, | ae A} into
a separable metrizable space, then f factorizes through a projection of P onto
a countable subproduct.
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The concept of a separable standard space was introduced by C. W. Mackey [1]
(under the name Standard Borel space), who also gave non-topological character-
ization of these spaces as in Theorem 15.5.1.

The results of this subsection will be published elsewhere.

15.6. Spaces with respectable open sets. Assumptions on the space that every
space is ‘respectable’ appear in many useful theorems. For example recall that each
Borelian set is a Baire set whenever each open set is Souslin. Unfortunately no deep
analysis of such conditions has been done. C. A. Rogers [6] proved the following
interesting theorem. I don’t see the conceptual background of the theorem, and
therefore the reader is referred to the original Rogers proof.

Theorem. Suppose that every open set in a separated topological space P has
a Souslin representation S(F) with all Fs closed, and all F[Zs] being M-sets. Then
every open set has a similar representation with F disjoint, and if f:X — P is
usco-compact such that the sets f[Zs] are M-sets, then f[Z] is Borelian.

Added in proof:

15.7. Measure-theoretic properties of analytic sets. G. Choquet [2] is responsible for
applications in the theory of capacites, M. Sion [3], [5] contributed to applications
in measure theory. The present author noticet in ‘‘Projection limits of measure
spaces”’, Sixth Berkeley Symposium on Statistics and Probability Theory, that every
Baire o-measure on an analytic space extends (uniquely) to a reg uar Borel measure,
and applied this result (with Lemma 15.5.2 and Theorem 15.5.2) to projeciive limits
of measure spaces. The specific properties of Baire measures on analyt'c sraces are
developed in abstract setting in ‘“‘Capacity-compact measures” (to appear), in pa-
ticular one gets a generalization of Bochner-Choksi-Metivier theorem.
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