Czechoslovak Mathematical Journal

Kami John

Some remarks on compact maps in Banach spaces

Czechoslovak Mathematical Journal, Vol. 23 (1973), No. 2, 177-182

Persistent URL: http://dml.cz/dmlcz/101158

Terms of use:

© Institute of Mathematics AS CR, 1973

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

CZECHOSLOVAK MATHEMATICAL JOURNAL

SOME REMARKS ON COMPACT MAPS IN BANACH SPACES

Kamil John, Praha

(Received January 15, 1971)

A characterization of compact maps is given similar to that of quasinuclear maps. Other related characterizations are stated in terms of factorization or exprossion of maps as countable series. Every compact map is a product of two compact maps. An equivalence between certain "into" extension properties of compact maps and a possibility of their factorization through c_{0} or m is shown.

1. Notation. E, F, P will always be Banach spaces, G, H will be normed spaces. The usual spaces c_{0}, m, l_{p} are always understood with a countable indexset. If $\alpha_{n}>0$, $\alpha_{n} \rightarrow 0$, we define a normed space $c^{\alpha} \subset c_{0}, c^{\alpha}=\{x ;|x|<\infty\}$ with the norm $|x|=$ $=\sup \left|x_{n}\right| \alpha_{n}^{-1}$, where $x=\left\{x_{n}\right\}$. By I the identity map $c^{\alpha} \rightarrow c_{0}$ will be denoted. It will be shown later that I is compact. By a map we mean always a linear map. In c_{0} we consider the usual norm $\left\|\left\{x_{n}\right\}\right\|=\sup \left|x_{n}\right|$.

To say that a map $T: E \rightarrow F$ can be factorized through G means that there are continuous maps $T_{2}: E \rightarrow G$ and $T_{1}: G \rightarrow F$, such that $T=T_{1} T_{2}$.
$\mathrm{F} \subset P$ means that F is norm-imbedded in P by inclusion. We say that F has $\lambda+$ extension property for compact maps ($\lambda+$ e.p.c.m.), if for every $\varepsilon>0$, every compact map $T: E \rightarrow F$ and every $P \supset E$ there is a continuous (and thus compact in view of Proposition 4) extension \tilde{T} of $T, \tilde{T}: P \rightarrow F$ with $|\tilde{T}| \leqq(\lambda+\varepsilon)|T|$. The space F is called a \mathscr{P}_{λ} space if for every bounded map $T: E \rightarrow F$ and for every $P \supset E$ there is a linear extension \widetilde{T} of $T, \widetilde{T}: P \rightarrow F$ with $|\widetilde{T}| \leqq \lambda|T|$. For the definition of the \mathcal{N}. space see [3, p. 20]. We shall use the fact that every \mathscr{N}_{λ} space has $\lambda+$ e.p.c.m ${ }_{\lambda}$ [3, p. 24].

We start with a strengthened form of a known fact.
2. Lemma. Let $A \subset E$ be compact, such that $x \in A \Rightarrow|x| \leqq \beta$. Then for every $\varepsilon>0$ there is a sequence $\left\{a_{n}\right\}, a_{n} \in E, a_{n} \rightarrow 0,\left|a_{n}\right| \leqq \beta+\varepsilon$, such that every point $x \in A$ can be expressed in the form $x=\sum \lambda_{n} a_{n}$, where $\lambda_{n} \geqq 0, \sum \lambda_{n} \leqq 1$.

Proof. We use the following statement: For every $\varepsilon>0$ and every $a>0$ there are sequences $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$, such that $\alpha_{n}>0, a \geqq \beta_{n}>0, \beta_{n} \rightarrow 0, \sum \alpha_{n} \beta_{n}=a$ and $\sum \alpha_{n} \leqq 1+\varepsilon$. In fact, let $\varepsilon>0$ and choose $\alpha_{n}>0, \sum \alpha_{n}=1+\varepsilon$. Let p be such that $\alpha_{n} \leqq a$ for all $n>p, \sum_{n>p} \alpha_{n}^{2}<a$ and $b=\sum_{n \leqq p} \alpha_{n}>1$. Then $0<c=a-\sum_{n>p} \alpha_{n}^{2}<a$ and $c / b<a$. Put $\beta_{n}=c / b$ if $n \leqq p$ and $\beta_{n}=\alpha_{n}$ if $n>p$. Then $a \geqq \beta_{n}>0$, $\beta_{n} \rightarrow 0$ and we have $\sum_{n} \alpha_{n}=c / b \sum_{n \leqq p} \alpha_{n}+\sum_{n>p} \alpha_{n}^{2}=a$. This completes the proof of our
statement.

To prove the lemma choose $\varepsilon>0$ and put $a=\beta+\varepsilon$. Let $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ be sequences provided by the statement at the beginning of this proof. By U_{r} we mean the open ball of radius r centred at zero. For every integer p put $V_{p}=U_{r_{p}}$, where $r_{p}=$ $=a-\sum_{n \leqq p} \alpha_{n} \beta_{n}$. We have $r_{n} \rightarrow 0, r_{n}>0$ and thus $\left\{V_{p}\right\}$ forms a complete system of neighbourhoods of zero. We have $A \subset U_{a}$. The open set U_{a} is obviously the union of all open balls of radius r_{1} contained in U_{a}. Because of the compactness of A, we may cover A by a finite number of them. Let B_{1} be the finite set of their centres. Obviously $A \subset B_{1}+V_{1}$ and $B_{1} \subset \bar{U}_{s_{1}}$, where we put $s_{n}=r_{n-1}-r_{n}=\alpha_{n} \beta_{n}$. Now put $A_{1}=\left(A-B_{1}\right) \cap V_{1}$. Then A_{1} is compact, $A_{1} \subset V_{1}$ and we may proceed with A_{1} and V_{1} as above with A and U_{a} : Cover A_{1} by a finite number of open balls of radius r_{2} contained in V_{1}. Their centres form a finite set $B_{2} \subset \bar{U}_{s_{2}}$ and obviously $A_{1} \subset B_{2}+V_{2}$. Proceeding by induction we may find compact sets A_{n} and finite sets B_{n}, such that $A_{n}=\left(A_{n-1}-B_{n}\right) \cap V_{n}, A_{n-1} \subset B_{n}+V_{n}$ and $B_{n} \subset \bar{U}_{s_{n}}$. Every $x \in A$ can be expressed as $x=b_{1}+a_{1}$, where $b_{1} \in B_{i}$ and $a_{1} \in A_{1}$. Every $a_{1} \in A_{1}$ can again be expressed as $a_{1}=b_{2}+a_{2}$, where $b_{2} \in B_{2}$ and $a_{2} \in A_{2}$. Proceeding again by induction, we see that $x \in A$ can be expressed for every p in the form $x=$ $=a_{p}+\sum_{n \leqq p} b_{n}$, where $a_{p} \in A_{p}$ and $b_{n} \in B_{n}$. But $a_{p} \rightarrow 0$, because $A_{p} \subset V_{p}$ and thus $x=\sum b_{n}=\sum \alpha_{n} c_{n}$, where $c_{n}=\alpha_{n}^{-1} b_{n}$. Now let us order the elements of the sets $\alpha_{1}^{-1} B_{1}, \alpha_{2}^{-1} B_{2}, \ldots$ in a sequence $\left\{d_{n}\right\}$, such that the elements from $\alpha_{n}^{-1} B_{n}$ are before the elements from $\alpha_{n+1}^{-1} B_{n+1}$. We have $\alpha_{n}^{-1} B_{n} \subset \alpha_{n}^{-1} \bar{U}_{s_{n}}=\bar{U}_{\beta_{n}}$ and because of $\beta_{n} \rightarrow 0,\left|\beta_{n}\right| \leqq a$, we see that $d_{n} \rightarrow 0$ and $\left|d_{n}\right| \leqq \beta+\varepsilon$. Thus $x=\sum \alpha_{n} c_{n}=\sum \gamma_{n} d_{n}$, where $\sum \gamma_{n}=\sum \alpha_{n} \leqq 1+\varepsilon$. We showed: For every $\varepsilon>0$ there are $d_{n} \in E,\left|d_{n}\right| \leqq$ $\leqq \beta+\varepsilon$, such that every $x \in A$ can be expressed as $\sum \gamma_{n} d_{n}$ with $\sum \gamma_{n} \leqq 1+\varepsilon$, $\gamma_{n} \geqq 0$. Now putting $a_{n}=(1+\varepsilon) d_{n}$ and $\lambda_{n}=(1+\varepsilon)^{-1} \gamma_{n}$, we have $x=\sum \gamma_{n} d_{n}=$ $=\sum \lambda_{n} a_{n}$, where $\left|a_{n}\right| \leqq(1+\varepsilon)(\beta+\varepsilon)$ and $\sum \lambda_{n} \leqq 1$. If we notice that $(1+\varepsilon)$. . $(\beta+\varepsilon) \rightarrow \beta$ for $\varepsilon \rightarrow 0$, we obtain our lemma.

The following proposition gives a characterization of compact maps. The equivalence a) and b) is implicitly contained in [6] and is a generalisation of the definition of the quasinuclear map in [4].
3. Proposition. Let $T: E \rightarrow F$ be a map. The following assertions are equivalent.
a) T is compact and $|T| \leqq \beta$.
b) For every $\varepsilon>0$ there is a sequence $\left\{a_{n}\right\}, a_{n} \in E^{\prime},\left|a_{n}\right| \rightarrow 0$, sup $\left|a_{n}\right| \leqq \beta+\varepsilon$, such that

$$
|T(x)| \leqq \sup \left|\left\langle x, a_{n}\right\rangle\right| \quad \text { for every } \quad x \in E .
$$

c) For every $\varepsilon>0$ there is $\alpha \in c_{0}$, a subspace $H \subset c^{\alpha}$, continuous maps $A: E \rightarrow H$ and $B: I(H) \rightarrow F$, such that $T=B \circ I \circ A$ and $|A| \leqq 1,|B| \leqq 1$, $|I|=\sup \left|\alpha_{n}\right| \leqq \beta+\varepsilon$.
d) For every $\varepsilon>0$ and every \mathscr{P}_{λ} space $P \supset F$ there is a sequence $\left\{a_{n}\right\}, a_{n} \in E^{\prime}$, $\sup \left|a_{n}\right| \leqq \beta+\varepsilon$ and a sequence $\left\{y_{n}\right\}, y_{n} \in P$, such that the map T can be expressed in the form

$$
T(x)=\sum\left\langle x, a_{n}\right\rangle y_{n}, \quad x \in E, \quad \text { and } \quad\left|\sum b_{n} y_{n}\right| \leqq \lambda \sup \left|b_{n}\right|
$$

for every $\left\{b_{n}\right\} \in c_{0}$.
Proof. a) \Rightarrow b).The dual map $T^{\prime}: F^{\prime} \rightarrow E^{\prime}$ is compact, $\left|T^{\prime}\right| \leqq \beta$. Let U denote the unit ball in F^{\prime}. Then the set $A=T^{\prime}(U)$ is compact. Now according to Lemma 2 for every $\varepsilon>0$ there are $a_{n} \in E^{\prime}$, sup $\left|a_{n}\right| \leqq \beta+\varepsilon,\left|a_{n}\right| \rightarrow 0$, such that for every $f \in U$ there is a sequence $\left\{\lambda_{n}\right\}, \sum\left|\lambda_{n}\right| \leqq 1$, such that $T^{\prime}(f)=\sum \lambda_{n} a_{n}$. But for every $x \in E$ we have $|f \circ T(x)|=\left|T^{\prime}(f)(x)\right|=\left|\sum \lambda_{n}\left\langle x, a_{n}\right\rangle\right| \leqq \sup \left|\left\langle x, a_{n}\right\rangle\right|$. Thus $|T(x)|=$ $=\sup \{|f \circ T(x)| \mid f \in U\} \leqq \sup \left|\left\langle x, a_{n}\right\rangle\right|$.
$\mathrm{b}) \Rightarrow \mathrm{c})$. We can assume that in b) all $a_{n} \neq 0$. Let $\alpha=\left\{\alpha_{n}\right\}, \alpha_{n}=\left|a_{n}\right|$. We define A by $A(x)=\left\{\left\langle x, a_{n}\right\rangle\right\} \in c^{\alpha} . A$ is continuous because $|A(x)|=\sup \left|\left\langle x, a_{n}\right\rangle\right|$. . $\alpha_{n}^{-1} \leqq|x|,|A| \leqq 1$. Let $H=A(E) \subset c^{\alpha}$. The map $I: H \rightarrow H \subset c_{0}$ is obviously continuous, $\|I(x)\|=\sup \left|x_{n}\right| \leqq \sup \left|x_{n}\right| \alpha_{n}^{-1} \sup \alpha_{n} \leqq(\beta+\varepsilon)|x|,\|\alpha\|=|I| \leqq \beta+\varepsilon$. Now put for every $b=\left\{\left\langle x, a_{n}\right\rangle\right\} \in H \subset c_{0}, B(b)=T(x)$. B is actually a mapping, because if $\left\{\left\langle x, a_{n}\right\rangle\right\}=\left\{\left\langle y, a_{n}\right\rangle\right\}$, then $|T(x-y)| \leqq \sup \left|\left\langle x-y, a_{n}\right\rangle\right|=0$. We have $|B(b)|=|T(x)| \leqq \sup \left|\left\langle x, a_{n}\right\rangle\right|=\|b\|$, thus $|B| \leqq 1$. Obviously $T(x)=B \circ l \circ$ - $A(x)$.
c) $\Rightarrow \mathrm{d}) . P$ being a \mathscr{P}_{λ} space, we may extend $B: H \rightarrow P$ to a map $\widetilde{B}: c_{0} \rightarrow P$, with $|\widetilde{B}| \leqq \lambda|B| \leqq \lambda$. Let π_{n} be linear forms on $c^{\alpha}, \pi_{n}\left(\left\{x_{n}\right\}\right)=x_{n}$. If $x=\left\{x_{n}\right\} \in c^{\alpha}$, then $\left|\pi_{n}(x)\right|=\left|x_{n}\right|=\alpha_{n}\left|x_{n}\right| \alpha_{n}^{-1} \leqq \alpha_{n}|x|$. Thus $\left|\pi_{n}\right| \leqq \alpha_{n}$. Now put $\left\langle x, a_{n}\right\rangle=\pi_{n}$ 。 $\circ A(x)$. Obviously $a_{n} \in E^{\prime},\left|a_{n}\right| \leqq \alpha_{n}|A| \leqq \alpha_{n}$. If $b=\left\{b_{n}\right\} \in c_{0}$, then $b=\sum b_{n} e_{n}$, where $e_{n}=\left\{\delta_{n j}\right\} \in c_{0}$. Put $y_{n}=\widetilde{B}\left(e_{n}\right)$. Then $\widetilde{B}(b)=\sum b_{n} y_{n}$ and $\left|\sum b_{n} y_{n}\right|=|\widetilde{B}(b)| \leqq$ $\leqq \lambda \sup \left|b_{n}\right|$. Thus $T(x)=B \circ I \circ A(x)=B\left(\left\{\pi_{n} \circ A(x)\right\}\right)=\sum \pi_{n} \circ A(x) y_{n}=$ $=\sum\left\langle x, a_{n}\right\rangle y_{n}$. We have sup $\left|a_{n}\right| \leqq \sup \alpha_{n} \leqq \beta+\varepsilon$.
d) \Rightarrow a). There is a \mathscr{P}_{1} space $P \supset F$ (for example a suitable m_{I} space). The maps $T_{p}: E \rightarrow P, T_{p}(x)=\sum_{n \leqq p}\left\langle x, a_{n}\right\rangle y_{n}$ are obviously compact maps. We have

$$
\mid\left(T_{p}-T(x)\left|=\left|\sum_{n>p}\left\langle x, a_{n}\right\rangle y_{n}\right| \leqq \sup _{n>p}\right|\left\langle x, a_{n}\right\rangle\left|\leqq|x| \sup _{n>p}\right| a_{n} \mid \underset{p}{\rightarrow} 0 .\right.
$$

Thus $T=\lim T_{p}$ is compact. Putting $\lambda=1$ in d), we have $|T(x)|=\left|\sum\left\langle x, a_{n}\right\rangle y_{n}\right| \leqq$ $\leqq \sup \left|\left\langle x, a_{n}\right\rangle\right| \leqq|x| \sup \left|a_{n}\right| \leqq|x|(\beta+\varepsilon)$ for every $\varepsilon>0$, and thus $|T| \leqq \beta$.

Remarks. a) If we are not interested in the norm of the map T, then of course we have the equivalence of
a^{\prime}) T is compact
$\left.\mathbf{b}^{\prime}\right)$ There is a sequence $\left\{a_{n}\right\}, a_{n} \in E^{\prime},\left|a_{n}\right| \rightarrow 0$, such that $|T(x)| \leqq \sup \left|\left\langle x, a_{n}\right\rangle\right|$ for every $x \in E$.
Similarly we obtain c^{\prime}) and d^{\prime}) by omitting the β 's and ε 's. In this case the a_{n} can be taken linearly independent, if E has infinite dimension. This follows by a slight modification of the proof of the known weaker form of Lemma 2 (for instance [5, Lemma VII. 2.2.]). By choosing B_{n} in that proof we use repeatedly a trivial observation: In every neighbourhood of zero there is an element which does not belong to a fixed finitedimensional subspace. Thus every element $b_{p} \in B_{n}=\left\{b_{1}, \ldots, b_{i}\right\}$ can be chosen linearly independent of all $B_{m}, m<n$ and of b_{1}, \ldots, b_{p-1}. Then $\bigcup_{n} B_{n}$ is linearly independent.
b) The speed of convergence of $\left\{a_{n}\right\}$ may offer some information on the "compactness" of the map T. If we denote by S_{T} the set of all sequences $\left\{x_{n}\right\}$, such that there are $a_{n} \in E^{\prime}$, with $\left|a_{n}\right| \leqq\left|x_{n}\right|,|T(x)| \leqq \sup \left|\left\langle x, a_{n}\right\rangle\right|$, then S_{T} delivers some information about the measure of the compactness of T. Various classes of maps T may be defined using S_{T}. For example:

$$
\begin{aligned}
& T \text { is compact } \Leftrightarrow S_{T} \cap c_{0} \neq \emptyset, \\
& T \text { is quasinuclear } \Leftrightarrow S_{T} \cap l_{1} \neq \emptyset, \\
& T \text { is " } p \text {-quasinuclear" } \Leftrightarrow S_{T} \cap l_{p} \neq \emptyset .
\end{aligned}
$$

It is not difficult to see that a finite product of p-quasinuclear maps is nuclear (see [4]).
c) In view of Proposition 4 it is not difficult to see that the space P in Proposition 4 d) can also be a space which has $\lambda+$ e.p.c.m., especially \mathscr{N}_{λ} space (see [3]). As a consequence we have:
d) Every \mathscr{P} space, \mathscr{N}_{λ} space, space with $\lambda+$ e.p.c.m. has the approximation property of Grothendieck [2]. In fact it suffices that a p-th dual space has $\lambda+$ e.p.c.m.

The absolutly summable maps, quasinuclear maps and the nuclear maps cannot generally be expressed as products of two maps of the same category. For compact maps we have:
4. Proposition. Every compact map Tis for every $\varepsilon>0$ a product of two compact maps, $T=A \circ B$ with $|A||B| \leqq|T|+\varepsilon$.

Proof. Let $T: E \rightarrow F$ be a compact map. We shall repeatedly use the equivalence of a) and b) from Proposition 3. Choose $a_{n} \in E^{\prime},\left|a_{n}\right| \leqq 1, \alpha_{n} \geqq 0, \alpha_{n} \rightarrow 0$, sup $\alpha_{n} \leqq$ $\leqq|T|+\varepsilon$, such that $|T(x)| \leqq \sup \alpha_{n}\left|\left\langle x, a_{n}\right\rangle\right|$. Put $B(x)=\left\{x_{n}\right\} \in c_{0}$, where $x_{n}=$ $=\left(\sqrt{ } \alpha_{n}\right)\left\langle x, a_{n}\right\rangle$. We have $\|B(x)\|=\sup \left(\sqrt{ } \alpha_{n}\right)\left|\left\langle x, a_{n}\right\rangle\right|$ and thus B is a compact map $B: E \rightarrow \bar{G}$, where $G=B(E) \subset c_{0}$. Now put $A(g)=T(x)$ for $g=\left\{x_{n}\right\} \in G$,
$x_{n}=\left(\sqrt{ } \alpha_{n}\right)\left\langle x, a_{n}\right\rangle$. Then $A: G \rightarrow F$ is a mapping and we have $|A(g)|=|T(x)| \leqq$ $\leqq \sup \alpha_{n}\left|\left\langle x, a_{n}\right\rangle\right|=\sup \left(\sqrt{ } \alpha_{n}\right)\left(\sqrt{ } \alpha_{n}\right)\left\langle x, a_{n}\right\rangle\left|=\sup \left(\sqrt{ } \alpha_{n}\right)\right|\left\langle g, b_{n}\right\rangle \mid$, where $b_{n} \in c_{0}^{\prime}$ are projections, i.e. $\left\langle\left\{x_{n}\right\}, b_{n}\right\rangle=x_{n}$. The same holds for the unique extension A of A to the Banach space \bar{G} and for the extensions of b_{n} to \bar{G}. Thus the map A is compact. Obviously $T=A \circ B$ and $|A| \leqq \sup \left(\sqrt{ } \alpha_{n}\right) \leqq(|T|+\varepsilon)^{1 / 2}, \quad|B| \leqq \sup \left(\sqrt{ } \alpha_{n}\right) \leqq$ $\leqq(|T|+\varepsilon)^{1 / 2}$, e.g. $|A||B| \leqq|T|+\varepsilon$.

The procedure employed here may be used to show some implications in the question of extending compact maps. We restrict our attention only to "into" extension questions.

5. Proposition. The following assertion are equivalent.

a) The Banach space F has $\lambda+$ e.p.c.m.
b) For every $\varepsilon>0$ every compact map T into F can be factorized through c_{0}, $T=T_{1} \circ T_{2}$ with $\left|T_{1}\right|\left|T_{2}\right| \leqq(\lambda+\varepsilon)|T|$.
c) Every compact map $T: E \rightarrow F$ can be expressed for every $\varepsilon>0$ in the form $T(x)=\sum\left\langle x, a_{n}\right\rangle y_{n}$, where $y_{n} \in F, a_{n} \in E^{\prime}, \quad\left|a_{n}\right| \rightarrow 0,\left|a_{n}\right| \leqq(|T|+\varepsilon)$ and $\left|\sum b_{n} y_{n}\right| \leqq \lambda \sup \left|b_{n}\right|$ for every $\left\{b_{n}\right\} \in c_{0}$.
The same holds for spaces m or c^{α} instead of c_{0}.
Proof. a) $\Rightarrow b)$ Let F have $\lambda+$ e.p.c.m. and let $T: E \rightarrow F$ be a compact map. According to Proposition $4 T=A \circ B$ where A, B are compact maps and $|A||B| \leqq$ $\leqq|T|+\varepsilon$. Now factorize the compact map B through a subspace H of c_{0} according to Proposition 3c), $B=C \circ T_{2}$ with $|C|\left|T_{2}\right| \leqq(1+\varepsilon)|B|$. Let $T_{1}: c_{0} \rightarrow F$ be an extension of the map $A \circ C: H \rightarrow F$ with $\left|T_{1}\right| \leqq(\lambda+\varepsilon)|A \circ C|$. We have $T=$ $=A \circ B=A \circ C \circ T_{2}=T_{1} \circ T_{2}$ with $\left|T_{1}\right|\left|T_{2}\right| \leqq(\lambda+\varepsilon)|A \circ C|\left|T_{2}\right| \leqq(\lambda+\varepsilon)|A|$. $\cdot|C|\left|T_{2}\right| \leqq(\lambda+\varepsilon)(1+\varepsilon)|A||B| \leqq(\lambda+\varepsilon)(1+\varepsilon)(|T|+\varepsilon)$. But $(\lambda+\varepsilon)(1+\varepsilon)$. $\cdot(|T|+\varepsilon) \rightarrow \lambda|T|$ for $\varepsilon \rightarrow 0$, which proves b$)$.
$\mathrm{b}) \Rightarrow$ a) Conversely suppose b) and let $T: E \rightarrow F$ be a compact map, $P \supset E . T$ is a product of two compact maps $T=A \circ B$, where $|A||B| \leqq|T|+\varepsilon$. According to the assumption the map A can be factorized through $c_{0}, A=C \circ D$ with $|C||D| \leqq$ $\leqq(\lambda+\varepsilon)|A|$. The space c_{0} being \mathscr{N}_{1} space, the map $D \circ B: E \rightarrow c_{0}$ can be extended to a map $M: P \rightarrow c_{0}$ with $|M| \leqq(1+\varepsilon)|D \circ B|$. Thus $C \circ M$ is an extension of T to a map $P \rightarrow F$ with the norm $|C \circ M| \leqq(1+\varepsilon)|C||D||B| \leqq(\lambda+\varepsilon)(1+\varepsilon)$. $\cdot|A||B| \leqq(\lambda+\varepsilon)(1+\varepsilon)(|T|+\varepsilon) \rightarrow \lambda|T|$.
a) $\Rightarrow c$) follows from Remark 3c).
c) \Rightarrow a) Let $T: E \rightarrow F$ be a compact map, $P \supset E$ and let for the map T the expression of c) hold. By Hahn-Banach theorem there are $b_{n} \in P^{\prime}$ extending a_{n}, such that $\left|b_{n}\right|=\left|a_{n}\right|$. Then the expression $U(x)=\sum\left\langle x, b_{n}\right\rangle y_{n}$ defines a continuous map U : $: P \rightarrow F$, which is an extension of T. We have $|U(x)| \leqq \lambda \sup \left|\left\langle x, b_{n}\right\rangle\right| \leqq \lambda|x|$. $\cdot(|T|+\varepsilon)$, showing that $|U| \leqq \lambda(|T|+\varepsilon) \rightarrow \lambda|T|$ for $\varepsilon \rightarrow 0$.

The second part of the proposition can be proved similarly, but instead of using that c_{0} is \mathscr{N}_{1} space, we use the easily seen fact that m and c^{α} are \mathscr{P}_{1} spaces.

Corollary. For $\lambda=1$ we obtain a condition equivalent to those expressed by Theorem 6.1 in [3]. Thus for example the conditions a), b), c) for $\lambda=1$ are equivallent to the statement that $F^{\prime \prime}$ is \mathscr{P}_{1} space.

Added in proof. After this paper had been submitted for publication, several works appeared, viz. [7], [8], [9].

References

[1] N. Bourbaki, Espaces vectoriels topologiques, Hermann, Paris, 1953/55.
[2] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Memoirs Amer. Math. Soc., 16 (1955).
[3] J. Lindenstrauss, Extension of compact operators, Memoirs Amer. Math. Soc. 48 (1964).
[4] A. Pietsch, Nukleare lokalkonvexe Räume, Akademie-Verlag-Berlin, 1965.
[5] A. Robertson, Topological vector spaces, Cambridge university press, 1964.
[6] T. Terzioğlu, On Schwartz spaces, Math. Ann. 182 (1969), 236-242.
[7] D. J. Randtke, Characterizations of pracompact maps, Schwartz spaces and nuclear spaces. Trans. Amer. Math. Soc. 165, (1972), 87-101.
[8] D. J. Randtke, A factorization theorem for compact operators, Proc. Amer. Math. Soc. 34. 1 (1972), 201-202.
[9] T. Terzioğlu, A characterization of compact linear mappings, Arch. Math., 22 (1972), 76-78.

Author's address: 11567 Praha 1, Žitná 25, ČSSR (Matematický ústav ČSAV).

