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NORMAL PRIME FILTERS OF A LATTICE ORDERED GROUP 

JÂN JAKUBIK, Kosice 

(Received January 9, 1973) . 

The representation of lattice ordered groups as subdirect products of linearly 
ordered groups was investigated in several papers ([1], [4] —[7], [9]— [13]). Let P 
be the positive cone of a lattice ordered group G and let FF be the union of all normal 
prime filters of P, KQ = {x e G : \x\ ф W}. Then KQ is an Wdeal of G and GJKQ is 
the largest quotient group of G that can be represented as a subdirect product of 
linearly ordered groups (cf. [1]). 

BANASCHEWSKI [1] remarks that it might be of interest to have a characterization 
of W and KQ internally in terms of the elements of G and that it remains as an open 
question whether W is the set of all elements 0 < ae G such that 

(l) (xi + a — Xi) л .. . л (xfc + a — Xfc) > 0 for any XIE G , 

Let Wi be the set of all strictly positive elements a of G satisfying (1). In this paper 
it will be shown that there exists an /-group G with two generators such that W ф W^, 
thus answering in the negative the above mentioned question (§2). An internal 
characterization of the sets Pfand KQ for any /-group G will be given in §3. 

Let G be a subdirect product of linearly ordered groups. Then for each 0 < a e G 
and any finite set x^, ..., x„ e G the relation (1) is valid. In §4 we show that for an 
infinite set {x^} (г e l ) such that Ateii^i + <3f — x )̂ exists, the relation 

Aieli^i + a - Xf) > 0 
need not hold. 

The standard terminology for lattice ordered groups will be used (cf. Birkhoflf [2], 
Fuchs [3]). The lattice ordered groups will be written additively though they are not 
assumed to be abehan. 

1. PRELIMINARIES 

Let us recall some definitions and results that we shall use. 
Let G be a lattice ordered group with the positive cone P. A proper subset 0 Ф б 

of P will be called a prime filter in P if 
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(i) X, ye Q implies x A y e Q; 
(ii) xe Q and ze P, z ^ x implies z e Q; 
(iii) X, y e P and x + y e Q impHes xe Q or y e Q. 

The relation between prime filters of P and homomorphisms of G into totally 
ordered groups is described by the following proposition: 

(*) ([^]' Proposition 1.) For any homomorphism f with /(G) + {0} of G into 
a linearly ordered group Г, ß(/) = [xe P :f{x) > 0} is normal prime filter and 
Ker (/) = {xe G : |x| ^ ß(/)}- Conversely, for any normal prime filter Q in P 
there exists an epimorphism f from G into a linearly ordered group such that 
Q = 6(/)j namely the natural homomorphism G -> GJK where К is the Uideal 
{xe G:\x\eQ}. 

For any Л c: G we denote 

A^ = {xe G :\x\ л |a| = 0 for each ae A] , 

The set A^ will be called a polar of G. Each polar is a convex Z-subgroup of G. The 
following theorem was proven in [13]: 

(**) A lattice ordered group G is a subdirect union of linearly ordered groups if 
and only if each polar of G is normal, 

2. AN EXAMPLE 

Lemma 1. Let cp be a homomorphism of a lattice ordered group G into a linearly 
ordered group Я. Let a , Xjj X2 6 G such that 

(2) (xi + a — Xi) л (̂ 2 + a — X2) = 0 . 

Then (p{a) = 0. 

Proof. From (2) it follows 

(p{xi + a — Xi) A cp{x2 Л- a — X2) = 0 

and since Я is linearly ordered we have either (p{xi + a — x^) = 0 or cp{x2 + a — 
— X2) = 0; because (p(a) is conjugate of ф(х,- + a — x^) we infer that (p(a) = 0. 

Let Z be the additive group of all integers with the natural linear order. Let 

F = UZi (iel) 

be the complete direct product of /-groups Z,- = Z for each i e I where / is the set of 
all integers. The elements/e F are written in the form/ = (...,/(i), ...) (i^I). For 
any integer n put 

pj=(...,b(0,...)0e/) 
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with b(ï) = /(г — n). Let m be a fixed positive inger, m > 1. We denote by F,„ the 
set of all / G F such that for any i, j , kel satisfying i — j = Jan we have / ( i ) = f(j). 
Let G be the set of all pairs (n , / ) , ne Z,fe F„^. We put (n i , / i ) < (^29/2) if either 
Wi < «25 01" '^i = ^2 a n d / i < /2 . We define the operation + in G by the rule 

(3) ( « b / i ) + (nzJi) = (^1 + "2. P.2/1 + / 2 ) • 

Then G is a lattice ordered group that is generated by two elements (cf. [8]). Let 
j EI,0 ^ j < m. Let О and О be neutral element of F,,, and of G, respectively. Further 
let fj e F^ such that /y(i) = 1 when i -- j = km for some kel and /,(i) = 0 other
wise. Put üj = {^,fj)> ^1 = O, X2 = (1, 5). Then we have 

(Xj + üj — Xi ) л (X2 + of J- — X2) = 0 . 

According to Lemma 1 and (*) we obtain aj e Kg. Since KQ is an /-ideal of G (cf. [1]) 
we infer that the element a = Y,^j (j "= 0, 1,..., m — 1) belongstoi^o» hence a ^ Ж 
For each x e G, 

X + a — X = a , 

thus a fulfils (1) and soaeW^. Therefore W^ ф W. 

3. CONSTRUCTION OF KQ 

Let G be a lattice ordered group. We define by induction subsets K„ and K„ cz G 
(n = 1, 2, . . . ) as follows. We put K^ = K^ = {O}. If i^„_i and K„- i are already 
defined we define K„ to be the set of all elements 0 ^ a e G such that 

(4) (xi + a ~ Xi) A {x2 + a - X2) e K„^^ 

for some x^, X2 e G. Further let K„ be the subsemigroup of G generated by K„; 
i.e., K„ is the set of all elements of G that can be written in the form Ь = ^i + . . . + â ^ 
for some ai, ..., а^еК„ and some positive integer m. 

00 

Lemma 2. \J K„ с KQ. 

Proof. Obviously K^ cz XQ; assume that X„_i cz i^Q. Let аеК^. Then 

(xi 4- a - Xi) л (x2 + a - X2) = ai + . . . + a^ 

for some elements Xi, X2 e G, a^,..., a„ e X„>i. If a e F for some normal prime 
filter F of G, then some â  belongs to F and hence UIGW, which is a contradiction. 
Hence a e KQ, Since KQ is a subgroup of G we infer that K„ cz KQ. 
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Lemma 3. For each positive integer n,K„ and K„ are convex subsets of G con
taining 0. 

Proof. The assertion is obviously valid for n = 1; assume that the assertion holds 
for n — 1. Let a, b, Xi, X2 e G, 0 ^ b S a and let (4) hold. Then we have 

0 g (xi + b —^i) A {x2 + b — X2) S {^1 + ci — Xi) A (x2 + a — X2) . 

Because Ж„_1 is convex by the assumption, we obtain 

(xi + b — Xi) л (x2 + b — X2)eX„^i 

and therefore b e K^. Thus K„ is a convex subset of G. Let у e K„, z e G,0 ^ z S У-
Then there are elements j i , . . , , y^eK^ with y^ + ... + Уп = У- Further there are 
elements z^,..., z„ with 0 ^ ẑ - ̂  ji, z = Zi + ... + z„ (cf. [3]). Thus z^eKn and 
hence z 6 X„. Therefore Ж„ is convex in G. 

Lemma 4. For each positive integer n, K„ and K„ are normal subsets of G. 

Proof. Obviously КI = КI = {0} is normal. Assume that i^„_i and X„_i are 
normal for some n > 1, Let a e K„, x^, X2 e G such that (4) holds and let b e G. By 
putting X3 = b + Xi — b, X4 = b + X2 — b, a' = b + a — b we obtain from (4) 

(хз + a' - X3) л (x4 + a' - X4) e K„_i, 

thus b + a — bGK„. Hence K„ is a normal subset of G. From this it follows im
mediately that Kn is a normal subset of G as well. 

From Lemma 2 and Lemma 3 we obtain that К = [JK^ (и = 1, 2, 3, ...) is a convex 
normal subset of G containing 0; since each K„ is a subsemigroup of G, the set К is 
a subsemigroup of G. 

It is easy to verify that if Л is a convex subsemigroup of G containing 0 then the set 

Б = {x G G : —a g X ̂  a for some a e A} — {x e G : |x| e A} 

is a convex /-subgroup of G; if, moreover, A is normal in G, then Б is an /-ideal of G. 
Thus we have the assertion: 

00 

Lemma 5. The set К = {хв G : |x| e (J K„] is an l-ideal of G. 
n=l 

Lemma 6. Each polar of the factor l-group GJK is normal. 

Proof. Let 

С cz GJK, D = {Ye GJK : Z л 7 = К for each X e C} , 

Z e GJK. Assume that Y^ = Z + Y - Z ф D for some 7e D. Then there is Z e С 
such that 7i л Z = l/i > X. Letx e Z , у e 7, z e Z. Thus y^^ z + у - zeY^ 
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and Ui = У1 A xe Ui, u^ фК. Denote и = — z 4- Wi 4- z. From 

0 < Wi g j i = z + j ; - z 

we obtain 0 < и ^ y and hence 

Ui + К й X + K, и + К S У + К , 
Therefore 

К й {ui А и) + К = {и^ + К) А {и + К) ^ {х + К) А (у +К) = К 

and so Ml л и е К. Since м̂  л м ^ О, we have и^ л и е К„ for some positive in
teger n and hence, according to the definition of K„+i, we obtain t/j бК„+1 <= K. 
Thus (7i = X, a contradiction. 

Proof. From Lemma 7 and (**) it follows that GJK is a subdirect product of 
linearly ordered groups. Since GJKQ is the largest quotient group of G that can be 
represented as a subdirect product of linearly ordered groups (cf. [1]) we obtain 
Ko с: К. 

According to Lemma 2 and Lemma 8, KQ = K. Hence we have the following in
ternal characterization of the sets WSLUUKQ: 

Theorem. Ko = {xe G:\x\e \JK„ {n = 1, 2, 3, . . . )}, W = P - KQ. 

4. MEETS OF CONJUGATE ELEMENTS 

Let G be a lattice ordered group that is a subdirect product of linearly ordered 
groups. From the results of Banaschewski [1] (cf. also the Introduction) it follows that 
for each 0 < ae Wand any finite set X = {xj, ..., x j с G, 

Л (xf + a - x,)>0, 
XiéX 

We show by an example, that for an infinite set Z c: G we can have 

A (xf + a - Xi) = 0 . 
xteX 

Let Z, F, and p„ be as in §2. We denote by FQ the set of a l l / e F such that the set 

s(/) = { ie / : / (0 + O} 

is finite. Let G be the set of all pairs (n, / ) with ne Z, f e FQ, We define the opera
tion + in G by (3), §2. Then G is a group. Further we put (n , / ) > 0 if either (i) n > 0, 
or (ii) n = 0, 5(/) Ф 0 and /(г'о) > 0 where i^ is the least element of s(/). Then G 
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turns out to be a linearly ordered group. Let neZ,f,Pe FQ such that /O(Ï) = 0 for 
each Ï G /, /"(i) = 0 for each i e /, i Ф n and /"(«) = 1. Put a = (0, f% x„ - (л Jo)-
We have — x„ = {—ttyfo) and 

x„ + f l - x „ = ( 0 , / ' " ) , 
hence 

A{xi + a - X,) = 0, 

where i runs over the set of all positive integers. 
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