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ON MAPPINGS OF A MANIFOLD INTO A LIE GROUP 

ALOIS SVEC, Praha 

(Received June 11, 1973) 

In what follows I am concerned with the following problem: Let G be a Lie group, 
g its Lie algebra, M a manifold and (p a ^-valued 1-form over M; under what con
ditions is there a mapping Ф : M -> G such that cp = Ф^а>, œ being the Maurer-
Cartan form of Gl I study just the formal aspects of this question using the cohomo-
logy language; see, p. ex., V. GUILLEMIN and S. STERNBERG, Deformation Theory 

of Pseudogroup Structures (Memoirs of the AMS, No 64, 1966). 
The paper has been written during my stay at the State University and the Peda

gogical Institute at Vilnius, USSR. 
Let g he a. Lie algebra over ^ and M a differentiable manifold of class C°^, Denote 

by a^ (p = 0, 1,...) the sheaf of ^f-valued p-forms on M, let Ä^ = Г{а^, М) be the 
^-module of the sections of a^ over M. Further, be given cp e A^ satisfying 

(1) d<p(X,y)= -[<р(Х),ф(У)] 

for arbitrary vector fields X, Y on M. We are going to use the following definition of 
the exterior differential: for œe a^, dœe a^'^^ is given by 

(2) d(o{X„ . . . ,X,+ i) = n - i y ^ i X , c o ( X i , . . . , 1 , , ...,X,^,) + 

Definition 1. The operator 

(3) ô^ = ô:aP~>a'^' 

be defined by 

(4) M ^ i . - > ^ P + i ) = 

= dcoiX,, ...,X,,,)+ H-1) ' -+1 [ç,(Z,), (о{Х„ ...,î, X,,0] • 
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Proposition 1. We have 

(5) ^ ^ 2 ^ 0 . 

Proof. Let œ e a^, the form Q e QP+I be defined by 

(6) Q{x„ ...,Xp^i) = n-iy+i i^pix^, <o{x„..., t, z,+i)] • 
Then 

(7) àQ{X„ ...,X,^,) = X ( - l ) ' [ç,(Xi), dco(Zi,..., 1. , ..., JCp+2)] + 

and (5(0 = dct) + ß, i.e., 

о^ф{Х„...,Х^^2) = àQ{X„...,X^^^) + 

+ I (-1)' '^' [9)(Z,),dœ(Xi,..., 1;, ...,Z,+2) + ß(^i , •••. ̂ . , •••, ̂ p+2)] = 

i<S 

= !.(--1)'"^' [[<p(^0' <p{x;)l œ{x,,..., ^,,..., 1;, ...,x,^2)] + 
+ Z {-ly^'"-' Ы^^^ [̂ (̂ A œ(Xi,..., 1, , . . . 1,, ...,x,,2)]] + 

i<j 

+ I (-1) '̂" '̂ [ф(^/)^ Ы^^^ <^1^ • • •' ^Ь .. ., ^,, . . ., X,.2)]] = 0 . 
i<j 

The details of the proof are omitted. 

Proposition 2. (Poincaré lemma.) Let ca e â  (p ^ 1) be defined in a neighborhood 
и cz M of the point meM, and let ôœ = 0. Then there is a neighborhood U^ cz U 
of m and т e a^~^ defined on U^ such that от = œ on U^. 

Proof. Write again ôœ = dœ -{• Q, Q being defined by (6). The proposition follows 
from the Poincaré lemma for d if dO = 0 is a consequence of da> + Q = 0. But this 
follows from (7). 

Thus we get 

Theorem 1. Let У^ cz a^ be the sheaf of the solutions of the equation 

(8) ôs = ds + [cp, s] = 0 ; 

then 

(9) 0 - > ^ ^ - > а ^ Д а ^ Л . . . 

is the resolution of 6^^,, 
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Definition 2. Denote by Б^(М, g) {p = 1,2, ...) the vector space of the forms of 
the type 00) with œ G A^'^i let Zl{M, g) {p = 0, 1, • ••) be the vector space of the 
forms 0)' e A^ satisfying do)' = 0. The cohomological groups be defined by 

(10) ЖЦМ, g) = Zl{M, g)lBl{M, g) for p = 1, 2, . . . ; 

.#°(M, g) = Zl{M, g) . 

Definition 3. The form œ^ e A^ is called an infinitesimal deformation of (p if 
o)i e Z]p{M, g). A deformation of ф is a mapping ш, : J -> A^, where (i) J cz M is 
a neighborhood of 0G ^ , (ii) OQ = cp, (iii) for each te J,WQ have 

(11) do),{X, Y)= - [o)lX\ a>,(r)] , 

(iv) the mapping œ^ is analytic in t. 

The form coj may be written, in a suitable neighborhood J' <= J of 0 e ^ , as 

(12) o)t = cp + œ^^t + o)2t^ 4- ... , o)ie A^ ; 

from (U), we get 

(13) ôœ^X, Y) = - t [colX), œ^_ ̂ (У)] for p = 1, 2, . . . 

Thus, the form œ^ = {do)ildt)t=o is an infinitesimal deformation of cp. 

Proposition 3. Let the forms œ^, ..., ш _̂1 G Л^ satisfy 

(14) йсоДХ, У) = - ' 'Ё [ш,(Х), ш,_ ,(7)] for î  = 1, ..., ^ - 1 . 

T/î̂ n the form 

(15) •Р^(Х,У)=С[ш,(Х),ш,_,(У)] 
i = 1 

/5 contained in Z^{M, g). 

Proof. We have 

ОЧ'ЛХ, Y,Z)^X 4'lY, Z)-Y WjiX, Z) + Z T^X, Y) - WJ^X, Y], Z) + 
+ <p,([x, z], y) - •p,([y, z], z) + ЫХ), 44Y, z)] - [<p(y), wix, z)] + 
+ [ç,(Z),ï',(X,y)] = 

=''S {[X coiY), «,_,(Z)] + [ш.(Г), X co,_ i(Z)] - [y ca,(X), ш,_i(Z)] -

' - \so{X), УCÜ,- i(Z)] + [Z co,.(Z), «,_ ;(y)] + [щ{Х), Z co^^ ;(У)] -
- \pi{X,Y-\),œ^.iZ)\ + [co,([X,Z]),co,_,(y)] - \miiZZ-\),œ^^iX)-\ + 

+ [<p(X), [o>..(y), ca,_;(Z)]] - ['P(î')' [« .W' »«-î(Z)]] + 

+ [9)(Z),[«,.(X),co,_,.(F)]]} = 
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= 'Z {ià<X, Y), co^-iZ)] - [dcö,(Z, Z), ю,-,(У)] + [dco,.(r, Z), со,_;(Х)] -
i = l 

- [œlY), [(0,-iZ), (p{X)-J] - [ffl,-,(Z), [cp{X), «;(y)]] + 

+ [œ,(Z), [ш,- .(Z), <p(F)]] + [«,_ ..(Z), [,p(y), œlY)J] -

- [œlX), [ш,-,(Г), <p(Z)]] - [co,_i(y), [<?>(Z), cü,(Z)]]} = 

= i {[ЫХ, Y), œ,_i(Z)] - [ôco:{X, Z), u),_,(y)] + [<5со,(У; Z), Û>,_;(Z)]} = 
i = l 

= -1 "E{[KW'«i-.W]>»«-.(Z)] - [K.(^),ü),_XZ)],a;,_,(y)] + 

+ [K.(y),û,,_XZ)],co,_,(X)]} = 0. 

Definition 4. A series of the type (12) is called a formal deformation of (p if the 
forms Wp satisfy (13). 

Proposition 4. Let Ж'^{М, g) = О, and let œ^ be an infinitesimal deformation of (p. 
Then there exists a formal deformation a>t — (p + œ^t + Ш2̂^ + ... of ср. 

Proof. Suppose that we have already constructed the forms Ш2, ..., Û>^_I; we 
have to prove the existence of œ^ satisfying ôœ^ = — W^. Because of !Fg G ZI(M, g) 
and Ж^{М, g) — О, we have T^ G Б^(М, g) and the existence of the form cô  follows. 

Be given a Lie group G with the corresponding Lie algebra g. To make the cal
culations more simple, suppose that G cz GL (iV, ̂ ) for a convenable iV; this sup
position does not restrict the generality of our considerations. Further, let Ф : M -^ G 
be a mapping such that 

(16) (p = g~^ dg ; 

of course, here I do suppose the existence of such a mapping. The precise meaning 
of (16) is as follows: Let me M, X e Т„^{М), then 

(17) ф(Z) = Ф(m)-^dФ,Д) . 

Because of (p{X) = g~^ . Xg, we have g (p{X) = Xg and 

Yg . (p(X) + g , Yq>{X) = YXg , i.e., Y(p{X) = g'KYXg - (p{Y) (p{X). 

Thus the form (16) satisfies (l). This is also obvious from the fact that (16) is the 
restriction of the Maurer-Cartan form. 

Definition 5. The formal deformations (12) and 

(18) T, = (/? + Ti^ + T2t^ + . . . 

of cp are said to be p-equivalent (p = 1, 2, ...) if there is a mapping h : M x J -^ G 
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(with J с: ^ a neighborhood of 0 e ^ and h{m, 0) = e) and forms ij/p+u ФР+2У • • • ^ 
e Ä^ such that 

(19) CD, = h-hji + h-' d^h + ^,^^t'^' + ^p-.it'"'^ + ... > 

djvf denoting the differential satisfying à^t = 0. The formal deformations of (p are 
formally equivalent if they are p-equivalent for p = 1, 2, . . . 

Proposition 5. Let Ф : M -^ G be a mapping inducing the form (p. Let Ж1{М, g) = 
= О, and let the formal deformations ш ,̂ т̂  ofcp satisfy o), — T^E ZI{M, g). Then о)^ 
and Tj are formally equivalent. 

Proof. Obviously, it is sufficient to prove the following assertion: Let 

(20) œ, = (p + œj + ... + 0)ptP + co^+î ^""^ + . . . , 

T, = cp + œ^t + . . . + œptP + Tp+^fP-^'^ + . . . 

be formal deformations of cp with ôo)p+^ = отр+i and Ж1{М,д) = 0; then ш̂  
and Tt are (]? + l)-equivalent. On M, choose a coordinate neighborhood 17 with the 
local coordinates u' (i = 1, . . . , dim M). On 17, we have 

(21) — = hXi, — = hx 
du' dt 

with Xi,x:U x ^ -> g'- The integrability conditions of (21) are 

(22) 5-f^ = [x,.], ^^-^=[.„.,]. 
5f 5M* du^ du' 

From /i(w, 0) = e, we get х^(и, 0) = 0. Let us write, in 17, 

(23) coj = Äi{u, t) du', T, = Б,(м, r) dŵ  ; 

we have 

(24) ^X-J—l = ^XJ—l for q = 0, ...,p , 

^ ^ ' df dt^ 

Consider the mappings h : M x J -^ G such that 

/^.4 d^h{u,0) _ _ . 
(25) —^^ ^ = 0 for a = l, ..., p , I.e., 

df 
— ^ ^ = 0 for a == 0, . . . , p - 1 . 

of 
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Further, consider the equation 

(26) h{u, t) Ai{u, t) = ß((w, () h{u, t) + к{и, t) . 

We get 
'^^ /p + 1\ 3" ' "+ '%, t) d'Ajju, t) _ 
^=o\ a ) df-^^"- df 

i.e., taking regard of (24) and (25), 

(27) ^ ! : ^ ^ Л . ( . , 0 ) 4 - ^ ^ ^ 

dfP' dt^ dt^ 

From (212) and (221), we obtain 

+ 1 ~ A. ar̂  = o\a/ of df-'-

d^-'-'x. d^'-^K d^Xi d^ ^^x 

and 
df^'^ df du' « = о\а> 

a^ ' -^^ , 0) _ д^к{и, 0) ^Р+^х,<ц, 0) __ д^^^х{и, 0) 
а̂ ^ ' f̂̂ -̂ ^ ~ df die df^^ df df^^ 

The equation (27) may be rewritten as 

^ ^ df-^^ df"^ du'df 
Alu, 0) dPx{u, 0)" 

df 

I.e., 

(29) a> > + i 

valid now over all of M; here, 

(30) 

T^+i = dv.{p + 1)1 

d^xju, 0) 
df 

From o{ojp+ ^ - Tp+i) == 0 and c^^(M, ö') = 0 there follows the existence of a ?; e Л^ 
satisfying (29); obviously, there is a mapping h : M x J -^ G satisfying h{u, 0) = e, 
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(25) and (30). By means of this mapping, we substitute r̂  by a formally equivalent 
deformation 

(31) T; = ф + ш^г + . . . + Op+.t^"-' + T'p+2t'^' + . . . 

using (26). Clearly, oa)t = (5т̂ . 
Now, it is easy to see the validity of the following 

Theorem 2. Let Ф : M -^ G be a mapping inducing the form cp, and let Ж^^М, g) = 
= 0. Then Ж\(М^ g) is the parameter space of the set of formally non-equivalent 

formal deformations of cp. If Ж]р{М, g) = О, then each formal deformation of cp is 
formally equivalent to (p, cp being considered as the formal deformation r̂  = (/> 
of itself. 

Author's address: 118 00 Praha 1, Malostranské nam. 25, CSSR (Matematicko-fyzikalni fakulta 
UK). 
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