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ON n°-REGULAR SEMIGROUPS 

KENNETH M. KAPP, Milwaukee 

(Received February 16, 1972) 

The following is an investigation of the class of n°-regular semigroups. In particular 
we show that for 0-simple semigroups the class of n°-regular (n ^ 2) and 2°-regular 
semigroups coincide. Indeed 0-simple n°-regular semigroups are completely 0-simple. 
It is then shown that each non-null principal factor of a n°-regular semigroup is also 
completely 0-simple. It follows that when 5 = S° is n°-regular then S is regular if 
and only if S is 0-semisimple. 

1. PRELIMINARIES, «̂ -REGULAR SEMIGROUPS 

Throughout this paper we will consider only semigroups with zero, 0, and at least 
one additional element. Following [1] we will designate such semigroups by: S = S°. 

We begin by recalling the following definition from [4] : 

Definition 1.1. Let m and n be nonnegative integers with m 4- n > 1. A semigroup S 
will be in the class of (m, n)°-semigroups, written S e (m, n)°, if and only if for each 
X e S one of the following holds 

(1) m > 0 and x'" = 0, 

(2) n > 0 and x" = 0, 

(3) X = x"^ux" for some ue S where x° is suppressed in the equation when neces
sary. 

We will say that S is (m, n)°-r^ö'w/a r whenever S e (m, n)° and that S is if-regular 
when S e (n, nf. 

Proposition 1.2, Let S = S° be an rf-regular {n ^ 2) semigroup then some power 
of each xe S lies in a subgroup of S, 
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Proof. Let X e 5. If x" = 0 then as {0} is a subgroup of 5 we are done. On the other 
hand if x" Ф 0 there exists a, и e S such that x"wx" = x. Since n ^ 2 we have 
x^(x"~^wx") = (X"MX"~^)X^ = X (suppressing x"~^ if n = 2) so that y} Ж x and 
hence И^ is a subgroup ([1] Theorem 2.16). In either case some power of x belongs 
to a subgroup of S. 

The following corollary is now immediate. 

Corollary 1.3. Let S = S"^ be a semigroup and n ^ 2. Then S is n""-regular if and 
only if for xe S either x" = 0 or H^ is a subgroup. 

We recall that with n ^ 2, n fixed, for any m, 1 ^ m ^ n the classes of (m, п)°, 
(n, my and n'^-regular semigroups coincide ([4] Corollary 1.8). We thus defined the 
class of iV°-regular semigroups as follows. 

Definition 1.4. A semigroup 5 = 5° is said to be N^-regular if S e\J (n, n)°. We 
will write S G iV° if S is iV°-regular. "=^ 

We recall from [1] § 1.6 that a periodic semigroup S is a semigroup in which each 
element generates a subsemigroup of finite order, i.e., for ae S, [a] = {a, a^, a^, ...} 
is a finite set. 

Definition 1.5. A subset Tof a semigroup S is said to be bounded periodic if there 
is an (integral) upper bound on the orders of its elements. 

Proposition 1.6. Let S = 5°. Then S e№ if and only if S is the disjoint union of 
its maximal subgroups and a bounded periodic subset of nilpotent elements. 

Proof. If 5 e iV° then S e (n, nf for some n. Thus by (1.3) for x e S either x" = 0 
or Яд. is a group. Since the c^-classes of <S which contain idempotents are the maximal 
subgroups of S ([1] p. 61 Ex. l) the implication in this direction is easily completed. 

If there is a bound, n, to the order of each nilpotent element then with the converse 
assumption either x is nilpotent and x" = 0 or H^ is a group. Thus by (1.3) S e 
e (n, пУ ^ № and the result follows. 

The following corollary is now immediate. 

Corollary 1.7. Let S = S° be a finite semigroup. Then 5 e № if and only if each 
X e S is either nilpotent or lies in a subgroup of S. 

If for each n ^ 2 we define C„ = {a„, al, ..., a^ = 0} where Ö^ Ф 0 for 1 ^ /c < n 
and for m Ф n define C^C^ = 0 and take S = \J C„ then each x G S is nilpotent but 

S ф iV°. Thus the overall assumption in (1.7) of finiteness is crucial for the converse. 
Again we recall from [1] § 1.6 that when ae Sis of finite order and a* is the smallest 

positive integral power of a repeating a previous positive integral power a*", that r is 
said to be the index of a, while m = s — r called the period of a. It is easy to verify 
the following result. 

172 



Proposition 1.8. Let S be a semigroup and suppose a e S is of finite order. Then 
a belongs to a subgroup of S if and only if the index of a is 1, i.e., a" = a for 
some n > 1. 

If an element a is nilpotent it clearly is of period 1. 

Corollary 1.9. If S = 5° 6 iV° and S is periodic then each ae Sis either of index 1 
or period 1. Conversely if S = 5"" is a bounded periodic semigroup such that each 
ae S is either of index 1 or nilpotent then S e №, 

We recall the following definition and remark from [3, 4] : 

Definition 1.10. A semigroup S = 5° is absorbent if either ab = 0 or ab e R^ n L^ 
for any a, b E S. 

Remark 1.11. An absorbent semigroup is easily seen to be 2°-regular by taking 
X = a = b and observing that the equation in Definition 1.1.3 is solvable in H^ = 
= R^ n L^ which is a subgroup when x^' ф 0. 

Theorem 1.12. Let S = S° be a semigroup. Then S is completely 0-simple if and 
only if S is N^-regular and O-simple. 

Proof. Suppose S is completely O-simple. Then S is regular and absorbent ([3] 
Theorem 2.4) and hence 2°-regular. Thus S e№ and <S is O-simple. 

Conversely suppose S is iV°-regular and O-simple. Then S is n°-regular for some 
n ^ 2 and by (1.2) some power of each element lies in a subgroup of iS. The result now 
follows from [1] Theorem 2.55. 

Corollary 1.13. Let S = S° be a O-simple semigroup. Then S is 2°-regular if and 
only if S is n°-regular (n ^ 2). 

Corollary 1.14. Let S = S° be a regular 0-bisimple semigroup. Then S is completely 
O-simple if and only if S is n^-regular {n ^ 2). 

Proof. The regularity of S is sufficient for S^ + {0} so that S is O-simple and the 
result follows immediately. 

We conclude this section with a theorem which further illuminates (1.12) and which 
is analogous to [4] Theorem 2.7. 

Theorem 1.15. Let S = S° be a n°-regular (n ^ 2) semigroup. Then if we restrict 
the usual ordering, ^ , of the idempotents of S by ^ n ^ the non-zero idempotents 
of S are primitive, i.e., if e ^f and e S f then e = f. 

Proof. Under the restricted partial ordering suppose e S f and e ф 0 where e,f 
are idempotents in some D^, a =j= 0 and ef = fe = e. We must show that f = e. 
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Let X e Rf n L^ ^ 0, Then ([1] Lemma 2.14) since/is idempotent we have/x = x 
so that Qx is a right translation of Lf onto L^ = L̂  ([1] Lemma 2.2) and thus there 
exists an x' e Lf n R^ such that x'x = e. Moreover xx' e R^ n L^, = Rf n Lf = Hf 
since L^ n i?^, = Hg is a group ([1] Theorem 2.17). One readily checks that xx' is 
idempotent and it then follows that xx' = / . 

Since e is a right identity on its „^-class and ef = e by hypothesis we have x = 
= xe = x{ef) = {xe)f = xf. Hence x^x' = x and it follows that x^x' = x^~^ for 
fc ^ 2. Thus if x" = 0 it would follow that x = 0, a contradiction since a e S \ {0} 
and Da Ф {0}. Whence H^ is a subgroup of S by (1.3). 

Now since H^ is a group and L̂  = L ,̂ i?y. = R^ we have efeR^n Lf ([1] Theorem 
2.17). From e = efit follows that ее Lj- and thus ([1] Lemma 2.14)/^ = / . Since we 
assume e = ef = fe it follows that e = f. Thus the idempotents of any non-zero 
^-class of S under this restricted ordering are primitive. 

2. PRINCIPAL FACTORS OF «^-REGULAR SEMIGROUPS 

We give here for the reader's convenience the following definition and lemma, 
modified for S = S°, from [1] § 2.6. 

Definition 2.1. Let S be a semigroup and ae S. The principal factor P(a) of a is 
the Rees quotient: P(a) = J{a)ll{a\ where J{a) = S^aS^ and l{a) = J{a)\ J^. 

Lemma 2.2. ([1] Lemma 2.39). Each principal factor of a semigroup S = S° is 
either O-simple or null. 

It is now easy to prove the following results. 

Lemma 2.3. If S = S° is n^-regular (n ^ 2) then P(a) is n^'-regular for each 
aeS. 

Proof. Let X e P(a) for a ф 0 and suppose x" Ф Ö e P{a), Ö = /(a). Then surely 
x" Ф 0 so that H^ is a subgroup of S by (1.3). Since H^ ^ J^ = Ja we can find a и 
in Уд, and hence in P{a), such that x = x"ux". If x" = Ö there is nothing further to 
show. Thus in either case P{a) is n°-regular according to the definition (l.l). 

We remark that the converse is false. Consider the infinite cyclic semigroup with 
adjoined zero: S = S° = {O, a, a^, a^, . . , } . Here for SG S \0 , since / = A^, each 
principal factor P{s) is null and of order 2. Thus P{s) is 2°-regular for each s e S \ 0 
but S is far from being n°-regular for any n ^ 2. 

Theorem 2.4, Let S = S° be n^'-regular. Then each non-null principal factor of S 
is a completely 0-simple semigroup and hence 2°-regular. 

Proof. If P(a) for a e S is a non-null principal factor of S then P{a) is 0-simple 
by (2.2). By (2.3) it is also n°-regular. The result now follows from (1.12) and (1.13). 
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Definition 2.5. A semigroup S = S^ is said to be O-semisimple if each of its non-zero 
principal factors is 0-simple. 

If one adjoins a zero, 0, to a semisimple ([1] p. 74) semigroup T, then T.u {0} is 
readily seen to be 0-semisimple. Indeed, one sees as in [1] p. 74 that a semigroup 
S = S° is 0-semisimple precisely when 0 is the only null principal factor of S. 

Corollary 2.6. / / S = S° is rf-regular and 0-semisimple then each non-zero 
principal factor is a completely 0-simple semigroup. 

Corollary 2.7. Let M be a 0-minimal ideal of a semigroup S = S° which is 
n°- regular. If M^ Ф 0 then M is itself a completely 0-simple semigroup. 

Proof. Suppose M^ Ф 0. Clearly M = P{m), for each m e M\0, and the result 
now follows directly from (2.4). 

It is easily shown that a regular semigroup, S = S°, is 0-semisimple. There are 
Baer-Levi semigroups ([1] Chap. 8) which are not regular but left simple and hence 
0-semisimple. However with the added assumption of «"-regularity we do have the 
following result. 

Corollary 2.8. / / S is n°-regular and 0-semisimple then ^ = ^ and S is regular. 
Proof. Suppose a / b and a Ф 0. Then clearly P{a) = P{b) = P Ф {0} and a, b 

e P. Since P is completely 0-simple by (2.6) we have a ^ b'mP (solvable in J^ = Jb) 
and hence in S. Since ^ ç / " we have / " = ^ . 

Now each a e iS \ {0} belongs to a principal factor, P{a) which is a completely 
0-simple semigroup and hence surely regular. But P{a), as a Rees quotient, consists 
of the individual elements of J« = D^'and a zero, /(a), so that it readily follows that S 
is itself regular. 

The natural next step in determining the structure of «"-regular semigroups is to 
examine that subclass consisting of those at are 0-semisimple and have a principal 
series. By [1] Theorem 2.40 each factor of such a series is isomorphic to a principal 
factor which when non-zero is completely 0-simple by (2.4). What remains then is an 
extension problem: namely to characterize «"-regular extensions of one completely 
0-simple semigroup by another completely 0-simple semigroup. This will be treated 
elsewhere. 
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