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CzechosloTak Mathematical Journal, 24 (99) 1974, Praha 

CIRCULANT BOOLEAN RELATION MATRICES 

KIM KI-HANG BUTLER and JAMES RICHARD KRABILL, Pembroke 

(Received November 23, 1972) 

Let M^ be the semigroup of all binary relations on a set of n elements. Let ^„ be the 
subset of ^„ consisting of all circulants. Then ^„ is shown to be a maximal abelian 
subsemigroup of J'„, and for С e ^„, necessary and sufficient conditions are obtained 
for the existence of a positive integer j? such that C^ = J„, all of whose entries are 1. 
Related problems are investigated by §. SCHWARZ (see [7], [8], and [9]). 

B. M. SCHEIN [6] asked in his sixth question for the maximal abelian subsemigroup 
of M^. We represent the elements of J'„ as n x n matrices over the Boolean algebra 
of order 2. It is well known that ^„ is a semigroup under matrix multiplication. 
Let ^„ be the subset of J*« consisting of all the circulants. Thus for С e ^^, CQ^ = Cjj„ 
whenever j + к = m (modulo n) (0 g j , /c, m ^ n — l). We have 

С = ^и-1 ^0 ^1 • • • ^n-3 ^n-2 

and completely specify С by giving the first row. We now write С = (CQ, ..., c„_i). 
\X\ denotes the cardinality of a set X. 

Remark 1. \C„\ = 2\ 

We now give a partial solution to Schein's question in terms of ^ „ . In this paper 
the term "maximal" as applied to an abelian subsemigroup of J*„ means that the 
abelian subsemigroup is not properly contained in any abelian subsemigroup of ^ „ . 

Theorem 1. ^„ is a maximal abelian subsemigroup of ^ „ . 

Proof. First, if A, Be^„ and ^ = («o,. . . , «„-i) and Б = (bo, •••, b„_i) then 

AB = { X ^i^P Z ^ibp ..., I a^bj). 
ij = 0 i,j = 0 i,j = 0 

i + j = 0 (modn) i + j = l (modn) i +j = n-1 (mod n) 
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„ . ^ „ ..-tYinlv from commutativity of multi-
Thus, ÄB belongs to ^„, and ÄB = В A follows simpiy , . . ^ 

,. . . 1 ^ 1 1 t rr, . û + (̂  is not properly contamed m any plication m the Boolean algebra. To show that ^„ î  ^̂ ^ F F J 
u 1- u • ^ л i. AU ич^о^ч/plement of J*„\^„ and demonstrate 

abelian subsemigroup ^„ , we let A be an arbitrary eicuivxi „ „ 
a С in ^„ such that AC Ф CA. Since A ф ̂ „, there exist j , к,0й]Леп-1 such 
that ao,k + «i,m where m = j + к (mod n) and 0 ^ m ^ n - 1. Let С = (CQ, ... 
..., c„_i) be such that Cj = 1 and ĉ  = 0 if i Ф J- Let ^10 = /) = (J,,) and CA = 
= F = Ifij). We have do,^ = «0,^ and/o,^ = a,-,^. Hence ЛС Ф CA and the proof 
is completed. 

Remark 2. Т/гг n x n circulants whose entries belong to any commutative ring 
form an abelian semigroup under matrix multiplication. 

We now turn to the problem of determining which matrices A have the property 
A^ = J„ for some positive integer p where J„ is the n x n matrix all of whose entries 
are 1. N. DE BRUIJN [3], I. GOOD [4], N. S. MENDELSOHN [5] each described a specific 
class of graphs with the unique path property of order n. The incidence matrix A 
of a graph with this property satisfies the equation A^ = J„ for some positive integer p. 
For the definition of unique path property and its graph theoretic significance, see 
Mendelsohn [5]. These authors obtained partial solutions with matrices over the real 
numbers while we obtain a partial solution in terms of ^„ for Boolean relation 
matrices. The problem of finding Boolean relation matrices for which A^ = J„ is 
related to a problem in matrices over the real field. Namely, if Л is a matrix over the 
reals all of whose entries are nonnegative, then is there a positive integer p such that A^ 
has all entries strictly positive? The relationship is established by constructing a homo-
morphism from the nonegative real numbers to this Boolean algebra such that 0 is 
mapped to 0 and all positive real numbers are mapped to 1. 

We now set up some notation and make a few remarks about certain circulants. 
We defined J„ in an earlier paragraph as J„ = (1, ..., 1). We now define P„ = 
= (0, 1, 0, ..., 0), the permutation matrix with Pi = 1 and Pi = 0 for i ф 1. Let 
^^ = {PI 0 ^ Ï ^ n - 1}, A{C) = {i : Co J = 1, С G ^„}, and let a{C) be the greatest 
common divisor of the elements of Л[С). 

Remark 3. First, ^„ is a cyclic subgroup of ^„, and hence of J*„. Next, |^„ | = n. 
ï^inally, every circulant С can be written exactly one way as a sum of distinct elements 
o f^„ . 

Remark 4. An element of ^„, P^, is a generator of ^„ iff (f, n) = L In particular, 
Pl^ is a generator of ^„ if n is prime and i Ф 0. 

Remark 5. For every divisor dofn there is a cyclic subgroup of ^„, and hence of J^„, 
which is of order d. It consists of all С e^„ for which A{C) = {i : i = к (mod d)}, 
/c = 0, 1, ..., d - 1. 
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We now consider the theorem which gives a partial solution to the Mendelsohn 
problem. 

Theorem 2. Let С e^„, n > 1. There exists a positive integer p such that C^ = J„ 
ijj{o{C), n) = 1 and for every divisor d of n, d > 1, there exist i,j e A(C) such that 
i Ф j (mod d). If p exists, then p ^ n — 1. 

We need a lemma to estabhsh the sufficiency. 

Lemma. If C, D e ^„, С = (CQ, ..., c„_ i), D = (Jo, •. -, d^. j), there exists aj,0£ 
й j й n — 1 such that d^ = c^ whenever r ~ i ~ j (mod n), C^ = («o, ..., Ö„_I ) , 
and D^ = (bo, ..., b„_i), then b^ = ^i whenever r = i — pj (mod n). 

Proo f (of Lemma). Herezl(C^) = (s = z'o + I'l + ... + ip-i (mod n) : /^ e A{C)}, 
Here and in the following i„, and i„ are not necessarily distinct. Also A{DP) = (S = 
= '̂ o + ^1 + ••• + ' 'p-i (modn) : r^e A{D)}, But r^ e J(D) iff i^eA{C) where 
'̂m = im - j (mod n). Thus A{DP) = {S = TQ + r^ + . . . + r^,_i - J?/ (mod n) : i^e 
e A{C)}. Therefore we have b^ = «j whenever r = i — pj (mod n) and the lemma is 
proved. 

P r o o f (of Theorem 2). Necessity: The proof of the necessity is by contradiction. 
Let С = (co, ..., c„_i) and C^ = (bo, ..., b„-i). If (Ö'(C), n) = q > 1, then for all p, 
bi = 0 whenever (/, q) = 1. Hence, for all p, C^ Ф J„. If (cr(C), n) = 1, but for some d 
a divisor of n, d > 1, we have Ï, j e A{C), m = i = j (mod d). Here b̂  = 0 for each i 
such that Ï Ф pm (mod J), and for all p, С Ф J„. This establishes the necessity of 
the conditions. 

Sufficiency: If \A{C)\ = 0, then C^ = С = (0 , . . . , 0) for all p. Also if |zl(C)| == 1 
and {i} = A{C), then {j} = A(C^) where j = pi (mod n). Thus, if p exists such that 
CP = J„, we must have \A{C)\ ^ 2. We now assume \A{C)\ ^ 2. When С and D 
satisfy the hypotheses of the lemma, the lemma shows C^ = J„ iff D^ = J„, and we 
may reduce the problem to that of finding all circulants D such that D^ = J„ and 
0 e A(D). The two hypotheses together for С are equivalent to the two hypotheses 
together for D. It should be noted however, that the common divisor condition alone 
for С does not imply the common divisor condition for D. Since 0 e A{D), we have 
the containment relation 

A{D) Ç A(D^) Ç .. . Ç A{DP) Ç A^DP"-^) ç ... 

Let {0, il, ..., f j = A(D). Then {(T{D), n) = 1 may be written (i^, 1*2, ..., /5, n) = 1. 
It is well known that (i^, 1*2, • • -, h> n) = 1 iff there is a solution in integers Xi, X2, • • • 
..., Xs, x„ of the equation 

^ih + ^ih + ..• + ^sh + x„n = 1 . 
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Let x[ = X,- (mod n) and 0 ^ х[ ^ n — 1. Then we have 

^'ih + ^'zh + .. . + x'Js = 1 (mod n) 
Therefore, 

t = i 
implies 1 e A{D^). Since 

s 

X x[ S s{n - 1) , 
i = l 

we conclude 1 e A{D^^"~^^). NOW 0 also belongs to ^(0*^""^^), and we obtain 

{0, 1 , 2 } 6 J ( D 2 ^ < " - ^ > ) , 
{0, 1,2, 3}eJ(Z)^^^"~^>), 

{0, 1, . . . , n - 1}EA{D'^'*-'^"), 

This completes the proof of the sufficiency and we may write A{D^^"~^^^) = J„. 
We now establish a smaller value of p, when it exists, since p = s(n — 1)^ is in 

general much larger then necessary. We observed earher that for 0 e A[D), 

A{D) Ç A{D^) Ç ... Ç A(DP) ç ... 

Also 
A{D')=:A{D'^') 

implies 
A{D') = A{D'^') 

for all positive integers i. If p is minimal such that D^ == J„, 

2è\A{D)\<\AiD^)\<...<\A{D'')\ = n. 

Hence p ^ n — 1 whenever p exists, and the entire proof is complete. 

Remark 6. An equivalent statement of Theorem 2 is obtained by replacing the word 
"divisor" with the phrase "prime divisor". 

Remark 7. If \Л{С)\ = 2 and there exists a p such that C^ = J„, then p = n — i. 
Thus, the upper bound on p in the theorem is best possible, when p exists. 

Remark 8. Given С e ^„, there exists a positive integer p such that 

1 = 0 

if and only if (Ö-(C), n) = 1. The incongruence condition of Theorem 2 does not apply. 
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Remark 9. Given С e ^„, the sequence {C} becomes periodic with period greater 
than one eventually under two sets of conditions. That is, there exist positive in
tegers m and /c, к minimal and /c > 1, such that C-̂ "̂ '̂  = О whenever j > m and 
i = 0. First, from Remark 8, if (Ö-(C), n) = 1 but for some divisor d of n, d > I, 
d maximal, i = j (mod d) whenever / , ; e A{C), the sequence has period d. Also, if 
{a{C), n) = q and for every i,j e A{C), i = j (mod d), q\ d, q < d, d \ n, then the 
sequence is periodic with period djq. 

Added in proof : Recently the authors learned of a shorter proof of Theorem 2 
by Professor S. Schwarz [10]. 
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