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Czechoslovak Mathematical Journal, 25 (100) 1975, Praha 

NOTE ON FUNCTIONAL-DIFFERENTIAL EQUATIONS 
WITH INITIAL FUNCTIONS OF BOUNDED VARIATION 

MILAN TVRDY, Praha 

(Received January 10, 1974) 

In this note we shall deal with the standard functional-differential equation of 
retarded type 

(1) x{t) = f [d,P(r, S)] x{t + 5) + / ( 0 a.e. on [a, b] , 

(2) x{t) = u(t) on [a — r, a] , 

where — o o < a < b < +oo and the initial functions u(t) are of bounded variation 
on [a — r, fl]. We assume that P(t, 9) is a Borel measurable in (r, 3) e [a, b] x 
X (—00, +oo) n X w-matrix function such that p(t) = var^^P(f, •) < oo for all 
t e [a, b] and 

I jp (r) d^ < 00 , 

f(t) is an n-vector function Lebesgue integrable on [a, b] (f(t) e ^„{a, b)). We shall 
suppose also P(t, S) = P{t, - r) for ^ ^ - r and P{t, S) = P{t, 0) for ^ ^ 0. Without 
any loss of generahty we may suppose furthermore that P{t, •) is right continuous 
on (-Г, 0) and P{t, 0) = 0 for all t e [a, b]. 

Let ^i^n{a — r, a) denote the space of (column) n-vector functions with bounded 
variation on \a — r, a]. sé^J^a^ b) is the space of n-vector functions which are 
absolutely continuous on [a, b]. The introduced spaces are equipped with the 
usual norms 

и 6 ̂ i^„{a — r, a) -> \\u\\^^ = \\u{a)\\ + var̂ _^ и , 

X e j/^„(a, b) -* \\x\\j^^ = ||x(a)|| + var^ x , 

fe^la,b) ^\\f\\^ =Г | | / (0 | | d(. 
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Proposition 1. There exists a unique n x n-matrix function Y(t, s) defined on 
[a, b] X [a, b] and such that 

(3) 
y/ \ _ j ^ - I ^{U (^) P{<y. s - o)da for a й t й b , a S s ^ t , 

[l ÎOÏ a St üb, t й s üb. 

where I is the identity n x n-matrix. Given t e [a, b], Y(t, •) is of bounded variation 
on [a, b] a/irf given s e [a, b], 7(% s) fs absolutely continuous on [a, fo]. 

(For the proof of a slightly modified assertion see J. K. HALE [2], Theorem 32,2.) 
The following representation of solutions of the system (1), (2) is well known (cf. 

H. T. BANKS [1] or J. K. Hale [2], Theorems 16,1 and 32,2): 

Proposition 2. Given и e ^i^J^a — r, a), there exists a unique n-vector function 
x[t) defined on [a — r, fo] and absolutely continuous on [a, b] and such that (l) 
and (2) hold. This function x{t) is on [a, b] given by 
(4) х-^Фи + Wf, 
where 

Ф:ие ^^„{a ~ r, a) -> Y{t, a) u{a) + \ d j Y{t, a) P{(7, s - cr)da\ u{s) e 

ej/^„(a,b), 

Wife se la, b) -^ ^Y{t, s)f{s) ds e sé^la, b) 

and Y(t, s) is defined by Proposition 1. 
The operators Ф, T in (4) are obviously Hnear and bounded. The aim of this note 

is to show that Ф is even completely continuous. By Theorem 3,1 of ST. SCHWABIK [5] 
it suffices to show that the function 

(5) K{t, s) = Y{t, a) P{a, s - G) da , (t, s) e [a, b] x [a - r, a] 

is of bounded two-dimensional variation (according to Vitah) on [a, b] x [a — r, a] 
(v(X) < oo) and var^_^K(a, •) + var^i^(', a) < oo. Such functions are said to be of 
strongly bounded variation on [a, b] x [a — r, a]. (For the definition and basic pro
perties of functions of bounded two-dimensional variation see T. H. HILDEBRANDT [4].) 

Lemma 1. The fundamental matrix solution Y(t, s) defined by Proposition 1 
is of strongly bounded variation on [a, b] x [a, b]. 

Proof. Analogously to J. K. Hale in the proof of Theorem 32,2 in [2] we shall 
introduce the function W(t, s) fulfilling the matrix Volterra integral equation 

. s _ j - P(t, s - t) - I W(t, a) P{G, S - (T) do" for a S t й b, a й s й t, 

[ О fox aSt üb, t SsSb , 
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The existence of such a function W{t, s) follows from the contraction mapping prin
ciple. Moreover, given t e [0, b], the function W(t, •) is of bounded variation on 
[a, b]. Now, let s, te [a, b], s ^ t and let {5 = So < 5̂  < .. . < 5̂ , = t} be an 
arbitrary subdivision of the interval [s, ?]. Then 

X 1|ж(с5,) - w{t, 5,_o|| ^ E ||^(^, s J - 0 - p(^ ^.-1 - oil + 

+ Z i II ^(^' )̂ll ll^(^' ^J - Ö-) - P(ö', 5,._i - cr)|| da + 
J'=^ Usj 

+ Г \\W{t, a) P{a, sj., - a)\\ аЛ ^ p{t) + 2 f^var^ W{t, •)) K^) der . 

< 00 

where p(t) = var^^ P(t, •) for ^ G [a, b]. Gronwall's inequality yields 

(6) II W{t, 5)1 ^ var^ W{t, •) g ])(0 exp fl Сp{cj) da\ 

for all t,sE [a, b], ? ̂  s. It is easy to verify (cf [2], proof of Theorem 32,2) that for 
all t, s E [a, b] 

Y{t, s)=I + W{r, s) dr . 

Furthermore, let v = {a = 0̂ < 1̂ < ••• < P̂ = b; a = SQ < s^ < .,, < s^ = b} 
be an arbitrary net type subdivision of [a, b] x [a, b]. Then according to (6) 

£ i ^ . J = i i \\Y{tj, s,) - Y{tj.„ s,) - Y{tj, 5,_0 + Y{tj_„ 5,_,)|| ^ 
J = l f e = l j=l k=l 

P Ч ^z z ( F ( T , S , ) - ^(T,s,_i))dT Y^\\W(,,s,)-W{x,s,.,)\\àTU 

й \ var^ Ж(т, •) dT = Г p{x) exp (2 j p{a) dtr J di = M 
Ja Ja \ J a J 

= M < 00 . 

Thus 

v(F) = sup X E АА,.дУ ^ M < 00 

which completes the proof. 

Corollary 1. Т/геге exists M < oo such that for all t, s e [a, fo] 

||y(r, 5)11 + varj Y{t, •) + var^ У(-, 5) + v(y) ^ M . 

Lemma 2. T/i^ function K{t, s) defined by (5) f5 0/ strongly bounded variation 
on [a, b] X [a — r, a ] . 
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Proof. a)/C(a, •) = 0 on [a — r, a]. 

b) Let {a = ÎQ < ti < ... < t^ = b} be an arbitrary subdivision of [a, b]. 
Then by Corollary 1 

j:\\K{tj,a)-K{tj_„a)\\ = 1 
J = l 

y(r^., a) P{(T, a - Ö-) d(T + 
O - i 

+ Г \Y{tj, a) - y(f,._i, a)) P{(T, а-(т)аа1йМ { p{<j) da 
Ja II J a 

< 00 

Hence varji<^(*, a) < oo. 
c) Given a net type subdivision {a = ÎQ < t^^ < ... < tp = b; a •- r = SQ < 

< 5i < .. . < ŝ  = a} of [a, b] X [a — r, of], we have by Corollary 1 

Z i \\Щ^ 'k) - Щ-и Su) - K{tj, s,_i) + K{tj_,, s,_,)\\ = 
j = i f c = i 

= t i l l r~\Y{tp ^) " Y{tj-u ^)) № , 5. - ^) - P(^, 5,_, - cr)) da + 

+ j ' y(f,-, a) (P((7, 5fc - (T) - P((7, s,_i "- (T)) da 

b i*b 
(var^y(-, (T) + sup,,f,,,3 |У(т, (j)||) var^,P((T, •) dd ^ M р((т) der < oo < 

Consequently, v(X) < oo and this completes the proof of Lemma 2. 
The following theorem is a direct consequence of Theorem 3,1 from [5] and of 

Lemma 2. 

Theorem. The Cauchy operator Ф in the variation — of — constants formula (4) 
is completely continuous. 
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