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LINEAR FUNCTIONALS IN INDUCTIVE LIMITS OF NORMED SPACES 

S. K. KRANZLER, T . S. MCDERMOTT, Honolulu 

(Received June 8, 1973; in revised form April 1, 1974) 

INTRODUCTION 

Let E be the inductive limit of a sequence E„ of nor med linear spaces. Let M 
00 

be a linear subspace of £ = U ^и and consider M as the inductive Hmit of the 
« = 1 

sequence M„ = E„ n M of subspaces of M. It is well known that it is not always 
possible to extend every continuous linear functional on M to a continuous hnear 
functional on E (see [7] and [8] for example). When it is possible, we say M has 
the Hahn-Banach Property (H.B.P.). If for^each n, M„ is closed in E„, M is said to be 
a sequentially closed subspace of E. In 1965, FoiAS and MARINESCU, [1], showed that 
every sequentially closed subspace of E has the H.B.P. if each E„ is a reflexive Banach 
space. This result has been extended to spaces with boundedness structures [2], 
[14]. In the case that the inductive limit is strict and each £„ is Banach, PTAK [7] 
has given a necessary and sufficient condition for a sequentially closed subspace M 
to have the H.B.P. He calls a subspace satisfying the condition semiorthogonal. 

In § 1 of this paper, we define the notion of a compressive subspace M of £ and 
show that unless M fails in a trivial way to have the H.B.P., it has the H.B.P. if 
and only if it is compressive. Ptak's assumptions of completeness and sequential 
closure are not required in his proof [7]. However, our result improves that of Ptak 
by removing the necessity of assuming the strictness of the inductive limit. Our 
Lemma 3.1 shows that a subspace is compressive if and only if it is semiorthogonal, 
whenever the inductive limit is strict. Hence, the notion of compressive may be 
regarded as an extension of that of semiorthogonality to the non-strict environment. 

In § 2, we derive some "concrete" conditions under which a subspace M will be 
compressive. For example, it is shown that if the spaces E„ are Banach spaces, and 
the inductive limit is strict, then a sequentially closed subspace is compressive if 
for each n, either M„ or M° is reflexive (M° the polar of M„ in £^). 

In § 3, some examples and remarks are given relating to developments in the first 
two sections. Here, we mention only that an example is given there in which every E„ 
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may be non-reflexive, but every sequentially closed subspace M of £ has the H.B.P. 
Though this situation has been studied before [2], the simple proof given here shows 
the potential utility of the theory presented. 

1. A NECESSARY AND SUFFICIENT CONDITION FOR THE H.B.P. 

Let E„ be a sequence of normed linear spaces such that Ej ^ £2 ^ ^з — •••' 
where the natural injections /'„ : £„ -> £„ + i are continuous. First observe that the 
norm on En +1 may always be changed to an equivalent one so that 

(1.1) l|j„ll й 1. 
00 

We shall therefore assume (1.1) holds. Let £ = (J £„ be endowed with the inductive 

limit topology T, the finest locally convex topology under which the canonical 
injections j ; , : E^-^ E are continuous. For each n, denote by i* : E'„+i -> E'„ the trans­
pose of i„ and by j * the transpose of j„. If £„^ is a subsequence of E„, we will denote 
by I„^ the map f„^^,_i о i„j,^,-2 о . . . оЧ„^. We see then, that ||i*|| й 1 and ||/*J| й 1. 
If M is a subspace of £, denote M n £„ by M„. We will denote the polar of M„ 
in E ; by M° and by Ml the polar of M„ in E'„ intersected with ;*(£')• Notice that 
in case the inductive limit is strict, J* is surjective and so M° = M^. 

It is clear that every subspace M of £ that has the H.B.P. must have the property 
that every linear functional on M continuous for the norm on each M„ is also con­
tinuous on each M„ regarded as a topological subspace of (£, T). Hence, only 
subspaces with this property are of interest for the problem under consideration. 
We shall refer to such subspaces as compatible subspaces. Moreover, for convenience, 
we shall call sequentially continuous any Hnear functional on M whose restriction 
to each M„ is norm continuous. We observe in passing that in case the inductive Hmit £ 
is strict, every subspace is compatible. Subsequently, whenever an inductive limit 
of normed spaces is being considered, we shall adhere to the notations and termino­
logy just introduced. 

Definition 1.1. Let M be a subspace of an inductive hmit £ of normed spaces £„. 
M is said to be compressive if there exists a subsequence E„^ of E„ such that for each 
/c ^ 1, itj^oI^^^X^l^^i) is dense in /* (̂M,̂ ^^ )̂ as subspaces of £;^. If M is not 
compressive it will be called noncompressive. When the condition that M is com­
pressive holds with Ml^^^ and M^^^^ replaced by M°^^, and M°^^^ respectively, 
we say that M is strictly compressive. 

Lemma 1.1. Ä subspace M of E is noncompressive only if 

(1.2) 3 a subsequence £„^ of E„ such that V /c ^ 1, /* о . . . о/*^^^(M^^^^) /5 not 
norm dense in /*^ о . . . о /*^(М^^^^) as subspaces of E'„^, 
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Proof. Suppose M does not satisfy the condition (1.2) of the Lemma. Then we 
can show that 

(1.3) for each n, 3N(n)>n such that С о .. . о i*(„)+,+ i(M^(„)+,+2) is dense 
in С о . . . о i*(n)+fc«(.)+,+ i) for all /c ^ 0. 

If this is not the case, then 3 n so that for every m > n 3 k{m) such that С ° ..^ 
••• о C+fc (m)+ l (M^ + fc(m) + 2) is n o t dCUSC i u Z* о . . . о i* + fe(m)(M,^ + fe(m)+l)- B u t if Ŵ  = П, 
^2 = («1 + 1) + /c(ni + 1) , . . . , fij + i = Hj. + 1 + /с(пу + 1), the sequence E„. is 
seen to satisfy the condition of the lemma. Indeed, suppose to the contrary, I^.o... 
• • o/*,(M2,, ,) isdensein/* о . . . о/* .^M^.) for some/. Then, 

Il о... о/*(М;., ,) = /* о ... о/* _, о f* о f*,,_, о ... о /*.,,_, (М:,, ,) ^ 

^ /п* о . . . о / * . ^ о / „ % i ( M „ V , ) Ç / * о . . . о / * _ ^ о С / М ; , , ) ^ / * о . . . о ll._XMl) . 

Thus i* о . . . о i*+i(^«, + 2) is dense in i* о . . . о i*(M^^.^^), a contradiction. Now, 
then, let rii = 1, Пу+i = N(nj) + 2 where N(nj) is chosen according to (1.3). 
The sequence E„. satisfies the condition for M to be compressive. For, /*. о /*.+ДМ^ .̂̂ ^) 
is by definition i* о C,+ i о . . . о it.,, о C,,, + i о . . . о С, . . -1(М^,.Л which is dense 
in г*- о . . . о i*M.i + i о ••• о î*^2-2(^^n,+2-i)' which in turn is dense in i^ о . . . 
••• ° Cj + i + i ° ••• о Cj+2-3(^«, + 2-2)- Continuing in this manner and using the fact 
that a dense subspace of a dense subspace is dense, we obtain /*^ о ^*^+i(^ni+2) 
is dense in /* .̂(М^ .̂̂ )̂. We see then that M noncompressive implies the condition of 
the Lemma. • 

In fact, the converse of the above Lemma is true as we shall see at the end of 
this section, providing that M is compatible. 

Lemma 1.2. Let F be a normed linear space and F^ ^ F2 3 . . . ö decreasing 
sequence of subspaces of F such that for all fc ^ 1, F^+i ф Fj,. Then there exists 
a sequence x^ in F^ such that 

(1) XfceFfe\Ffe+i, 
and 

(2) \\Y^i-y\\ ^ k - 1 \fyeF,^,. 

Proof. For each к ^ 1, let G^+i = F^+i n Fk, and note that G^+i 3 Fk+i-
By Riesz' Lemma, there is x^ eF^\G2 such that Цх̂ Ц = 2, and ||xi — j ; | | ^ f 
for all з;е G2. Suppose x^, . . . , x„ have been chosen so that (1) and (2) hold for 
fe = 1, 2, ..., n. Again, by Riesz' Lemma, let x^+i e Fk+i\Gk+2 be such that 

к к 
Ы-^Л =21И\ and \\х,^, - у\\ ^ î l M for all y€G,^,. Then 

t = 1 t = 1 

{^x, - y\\ ^ \Ыг - y\ - \ÏA ^ i i ll̂ .-ll - i î .-ll = i i ll̂ 'll ^ fc 
" i t " ! i = l i - 1 i==l i = l 

for all )̂  e GÄ + 2- The result follows by induction. • 
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Theorem 1.1. If M is a noncompressive subspace of E, then there exists a sequen­
tially continuous linear functional f on M which for each n is continuous on M„ 
for the topology induced by T but which has no continuous linear extension to E; 
that is, M non-trivially does not have the H.B.P. 

Proof. By Lemma 1.1, we may assume that the defining sequence F„ for E is such 
that it о . . . о C+i(^n + 2) is not dense in i* о . . . о i'^iMl+J by considering E„ to be 
itself the subsequence whose existence is asserted there. Let F„ = /* о. . . о i*_i(M^), 
n = 2, 3 , . . . , and Fl = М\. Applying Lemma 1.2 to F„ with F = E[, there is 

n 

a sequence x/, of functional in М\ so that x'^ e F„ \ F„+^ and || ^ x- -- y'\\ > n - 1 

for all y' EF„+I. NOW, since Ml = M° n 7*(F'), for each m ^ 2 there is a /i^ +1 e F ' 
such that x ; = i t o . . . o C _ , o j : ( / i , „ + i ) and jl{h^^,)eMl, where xl = ^(^2)-
Let / i (x) = 0 and 

n - l 

/nW = Z -/«(̂ m +1) W , ^ e F„. 
m = l 

It is immediate to verify that if x e M , „ /„+i(x) = fix) since M„ с M„ + i and 
Л?+ i(^n+1) e M°. For each n, it is manifest that/„ is continuous for the norm topology 
as well as the topology induced by T on M„. Define the Hnear functional / on M 
by fix) = f„(x), X e M„. Suppose cp were a sequentially continuous extension of / 
to E and let (p„ = cpĵ .̂ Then, noting that <j9„ = ((p„ ~ / J + /„ and that (p„ - fn^ M >̂ 
we have 

n-l 

<Pi = it о ... о it-iiçn - / J + it о ... о i*>i(/„) = J + X < ' where у eF„. 

But then, 

\Wi\\ = II E ^m + y|| ^ n - 2 for all n . 

This contradicts the assumption that ç is sequentially continuous. Thus, the func­
tional / satisfies the conclusion of the Theorem. • 

The essential content of the following lemma is found in Proposition 1.1 of [7]. 
In addition, the construction used in Theorem 1.2 closely parallels that of Theorem 
2.1 of [7]. However, we will include the proofs here for completeness since there 
are considerable notational changes. 

Lemma 1.3. Let F3 ^ F2 3 F^ be locally convex linear topological spaces, 
N2 a subspace of F3, and N1 = F^ n N3, i = 1, 2. Let the canonical injections 
ij : Fj -> Fy+i, j = 1, 2, be continuous and denote by Щ the polar of N1 in F'i, 
i = 1, 2, 3. Suppose F^ is normed. Then it о i^iN^) is a norm-dense subspace of 
iliNl) in F[ if and only if V/e F2, (p ̂  N'^ and e > 0 such that f\f^^ = (p\j^^, there 
exists ф e F 3 such that ф\,^^ =• cp and j|it о i t W — it(/)l | < ^• 
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Proof. First, assume i% i^iNl) is dense in it(Nl). If geF'^ is an extension 
of (p to F3, then / - Î2g is in N1, and therefore there exists h e Щ such that 
| |^î(/ - it(g)) - it о it(h)\\ < s. That is, \\f,(f) - f, о it(g + h)\\ < a. Set ф = 
— g Л- h. Conversely, iî feNl, let (̂  = 0 on N^. Then there exists ф e F^ such 
that (/r|iV3 = (p = 0 (hence lA eiV°) and \\i* о zt('A) - ^t(/)ii < £• Thus, i j о itĈ N̂ D 
is dense in ï'tC^D- • 

Theorem 1.2. Le^ (£, T) be an inductive limit ofnormed spaces. Then a subspace M 
of E has the H.B.P, if etiher 

a) M is compatible and compressive 

or 

b) M is strictly compressive. 

Proof. In the proof, E'„ denotes the dual of E„ under the norm topology as usual. 
Suppose M is compressive and compatible, and / is a sequentially continujpi|is linear 
functional on M. There is no loss in assuming that the subsequence in the definition 
of compressive (Definition 1.1) is E„ itself. Set /„ = / |м„ - Consider the spaces E„ 
and M„ with their inherited topologies TĴ ^ and Т[д̂ ^ denoted both by T„. Let (pieE[ 
be a Ti-continuous extension o f / i , and ^2 ^ ^ 2 ^ T2-continuous extension of Д . 
Set Ф1 = iti^i)- ßy Lemma 1.3, choose cp^eE'^ such that (Рз\мз = /з» Фз is Г3-
continuous and ||i* о г|((^з) — it(<P2)!| = jl^î ° ^2(< з̂) ~ ^ i | | ^ i- ^^^^ w = 2, 3, 
4 , . . . , set 

Ф« = C(^«+i) 

and choose ^„+2 e£^+2 such that (р„ + 2\мп+2 = fn + 2> Я>п + 2 is r„+2-continuous, and 

| | C o C + l ( ^ n H - 2 ) - Фп|| < ( i r . 

Consider the sequence hj in £^ given by 

We have 

III* о . . . о i*+j+l (^ /c+7 + 2) - Ï* ° ••• ° ï*+j(^fc + j + l ) | | = 

= ll̂ 'fc о . . . о i^j,j о i*+ .̂̂ .i о it+j+ii^k+j+s) - г* ° ••• ° ^к+](Фк+] + 1)\\ й 

й \\it о . . . о i*^ , | | . | | /*^ . ^ , о it^j^2(cPlc^J^3) - 0k^J^l\\ й аГ^'"-' , 

recalling that ||f„|| = ||/*|| g l for all п. Thus 
m - 1 m - 1 

1=0 1=0 

which implies hj is Cauchy. Since Ej, is complete, /t̂  converges to a linear functional 
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gfc e El Let g be defined on E by g(x) = ĝ Cx) if x e £;̂ . Since 

gk = 1™ ^* ° ••• ° ï'*+j+l(#fc + j + 2) = '̂fcO™ '̂/c+l о . . . о /*+ .̂+ i((Pfe + j^.2)) = it(gk+l) » 

it is clear that g is well defined. Thus, g is a continuous linear functional on E. 
Moreover if x e Mj^, 

gW = gki^) = Hm [ïj о . . . о /*+/^fc+j+i)] (x) = 

= lim [i* о ... о ï*+j+i(^fc+y+2)] W = 

= lim l(pk+j + 2 о î/c+y + i о ... о ifc(x)] = 
j 

= lim (pk+j+ii^) = lim^+^.+2W = ИтЛ(х) = Л(х) . 
J J J 

Hence g extends / . The proof of b) is essentially identical, the only change being to 
omit the conclusion that the choices of the functional (p„ will be T„-continuous. We 
leave this modification to the reader. • 

We remark that in Theorem 1.1, it is actually proved that the condition (1.2) 
impHes that M does not have the H.B.P. By Theorem 1.2, it is therefore evident 
that M being noncompressive is, in fact, equivalent to (1.2) for compatible subspaces 
M. Combining the results of Theorem 1.1 and Theorem 1.2, we have 

Theorem 1.3. Ä subspace M of an inductive limit E of normed spaces E„ has the 
H.B.P. if and only if 

i) M is compatible 

and 

ii) M is compressive. 

Corollary 1.3.1. / / M is a subspace of a strict inductive limit of normed spaces, 
then M has the H.B.P. if and only if M is strictly compressive. 

Proof. The assertion follows from the Theorem with the observation that in 
a strict inductive limit every subspace is compatible, and compressive is equivalent 
to strictly compressive. • 

2. VERY COMPRESSIVE SUBSPACES 

We begin by defining a condition somewhat stronger than strictly compressive, 
but easier to deal with. 

Definition 2.1. Let M be a subspace of an inductive limit E of normed spaces. 
M is said to be very compressive if there exists a subsequence E„^ of E„ such that for 
each к ^ 1, lUK,,,) is dense in M^, 
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Clearly, a very compressive subspace is strictly compressive. The theorem of 
Foias and Marinescu [1] hinges on the fact proved in that paper as a lemma that if 
each E„ is reflexive and each M„ is closed, then M is very compressive. An example of 
a compressive but not very compressive subspace will be given in § 3. The relationship 
of the notions of strictly compressive and very compressive to the extension results 
of Ptak ([6], Corollary 2.2, and [7]) in the case the spaces £„ are Banach, is revealed 
in Lemma 1.3. When F^ = F2, we see thereby that M is very compressive if and only 
if there is a subsequence £„^ of £„ so that for each /c ^ 1, if / e £^^, (p e M^^^^ and 
e > 0 are given, then there exists an extension ф e E'^^^^ of cp so that ||/*^^ — / | | < г. 
Stated in this way, it is easy to compare the condition of every compressive subspace 
with the stronger condition of orthogonal subspace as stated in 1° of Proposition 1.1 
of [6]. On the other hand, from Lemma 1.3 as stated, it is immediate that the 
property of being compressive is equivalent to the condition of semiorthogonality 
given in [7] when the inductive limit is strict. 

It is the primary purpose of this section to provide interesting sufficient con­
ditions on M under which it is very compressive regardless of whether or not the 
underlying spaces £„ are reflexive. 

If F is a locally convex Hnear topological space, and Л is a subset of F or F\ 
A° denotes its polar in the system (F, F'). If Л is a subset of F ' or F'\ A' denotes it-
polar in the system (F\ F"), where F" is the strong dual of F ' . Beyond this convention, 
we will notationally follow HORVATH [3]. 

Before proceeding, we present the following useful lemma. The proof is elementary 
and is left to the reader. 

Lemma 2.1. Let E and F be two locally convex linear topological spaces, and 
J : E -> F a continuous linear mapping. Let^^ be a subspace of E and N a closed 
subspace of F such that J~\N) Я M. Then J*[iV°] is (7{E\ E) dense in M°, where J* 
denotes the transpose of J. 

00 

Theorem 2.1. Let E = \J E^ be an inductive limit of normed spaces. Then a sub-

space M of E is very compressive if for each n, (т{Е'„, F'̂ ) and cr(F^, E„) coincide 
on M°, and M„ is closed in E„. 

Proof. The above Lemma implies that i*(M°+i) is (7(F^, F„)-dense in M°. But, 
since (T{E'„, E„) and (j{E'„, E^) coincide on M°, i*(^«+i) is strongly dense in M°, 
That is, M is very compressive, я 

In the following discussion, we call a locally convex topological vector space, F, 
semi-reflexive if the natural injection from F into its double dual F" is a surjection. 
We also make use of the fact that F is semi-reflexive if and only if every a{F, F')-
bounded set is a{F, F')-relatively compact. 

Theorem 2.2. Let F a Fréchet space, F' its dual, and F" its strong double dual. 
If N is a subspace of F, the following are equivalent: 
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(1) № is a semireflexive subspace of F\ 

(2) a(F\F) and cr{F\ F'') coincide on the G{F\F'yclosed, G{F\ F"ybounded 
subsets of №, 

(3) The (j(F\ F)-closed, convex subsets and the a(F\ F"yclosed, convex subsets 
of N^ coincide, 

(4) G{F\ F) and a{F\ F") coincide on N\ 

Proof. We will prove (1) => (2) => (3) => (4) => (1). Suppose iV° is semireflexive. 
On iV° the topology cr(F', F") coincides with the topology G{N'', №'). Thus, if В 
is any o(F', F')-closed, bounded subset of iV"", it is G{F\ F'')"Compact. Since the iden­
tity map i from В under a(F\ F") to В under G{F\ F) is clearly continuous, and 
o{F\ F) is Hasudorff', i is a homeomorphism. That is, (1) => (2). Suppose now A 
is a G{F\ F'O-closed and convex subset of № . Let В be any balanced, convex, G{F', F)-
closed, equicontinuous subset of F ' . В and iV° are surely G{F\ F'')-closed, and so 
У4 n Б is a G{F\ F'')-closed set. Moreover, since В is equicontinuous, it is G{F\ F")-
bounded, and hence G{F\ F") and G{F\ F) coincide on J5 n № . Since Л n Б ^ 
Ç Б n N"", it is then G{F\ F)-closed. By the Krein-Smulian Theorem, A is G{F\ F ) -
closed. Hence (2) => (3). Now assume (3). Under either topology, № has the same 
closed subspaces, hence the same continuous linear functional. It follows that 
(3) => (4). To show (4) => (1), let Л be a G{N\ №0-closed and bounded set of № . 
Since G{F\ F ) and G{F\ F") coincide on № and G(N\ №' ) = G(F\ F")]^^., A is 
G(F\ F)-closed and bounded. But F is barrelled, and hence A is equicontinuous. 
It follows that A is G{F\ F)-compact and therefore G(F\ F'')-compact. Since 
G(F\ F%O = (T(№, №') , A is (T(№, №')"Compact. Thus, № is semireflexive. • 

The following corollary is immediate. 

Corollary 2.2.1. Let F be a Fréchet space, and N a subspace of F. If N has a refle­
xive topological direct summand, then G(F\ F ) and G{F\ F") coincide on № . 

Theorem 2.3. Let F be a locally convex linear topological space with dual F' 
and strong double dual F'\ andN a subspace of F'. Then F + N' = F" algebraically 
if and only if G{F\ F ) and G{F\ F") coincide on N, 

Proof. Assume first that F + N' = F" algebraically. Then \ï xeF", x =^ y + z, 
where y eF and z eN\ For rach w eN, <^y + z, vv> = (y, w> + <z, w> = (y, w>. 
Thus {xY and {yY coincide on N. 

Now suppose G{F\ F)\^ = G{F\ F")\^, Let x e F\ Then x\^ is G{F\ F)\^ con­
tinuous and thus there exists y eF such that x\^ = y\f^. But then x -- y eN\ Hence 
F'' = F + N' algebraically. • 

The following theorem provides an equivalent way of viewing compressive and 
very compressive subspaces and is very useful in distinguishing between the two 
types. 
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Theorem 2.4. Let F^ ^ F2 ^ F^ be locally convex linear topological vector 
spaces with duals F^ and strong double duals Fl, к = 1,2, 3. Let N^ be a subspace 
of F3, and Nf^ = Ff^ n N^, к = 1,2. Denote by i and j the canonical injections 
of Fl into F2 and F2 into F3 respectively, and i and j the unique weakly continuous 
extensions of i and j to Fl and F2 respectively. Then Ï* oj\Nl) is strongly dense 
in i%Nl) if and only ifT^Nl') = (y о 0"^ ( '̂з*X ^hich we will write asNl' n Г; = 
= NV n Fl 

Proof. i*oj*(iV°) is strongly dense in i^N^) if and only if (i* о j*(iV°))- = 
= (i^N'i))'' But, z e (i* of(Nl)y if and only if |<z, j;>| й 1 for all у in i* о j*(iV°) 
if and only if |</о i(z), w>| ^ 1 for all weN^, Thus, (i* о j*(iV°))' = iV°- n Fl 
Similarly, (i*(iV2))' = Nl' n Fl and the result follows. • 

Corollary 2.4.1. Under the same hypotheses as Theorem 2.4, j*(A^3) is strongly 
dense in N2 if and only if j ~ ^(N1') = N^'. We write this last equality as N^' n F^' = 
= N1'. . -:.̂ -.""' 

Proof. Set Fl = F2 in Theorem 2.4. • 

Corollary 2.4.2. Let F^ ^F2 be Banach spaces with duals Fl к = 1,2, and 
suppose the canonical injection i : F^ -^ F2 is continuous. Let F^ be weakly closed 
in F2, and N^,N2 be reflexive subspaces of F^ and F2 respectively such that 
N2 r\ Fl = N1. Then i*(iV2) is strongly dense in N1 

Proof. Let Fl and F2 denote the double duals of F^ and F2 respectively, and 
consider F^ and F2 as subspaces of Fl Fl is also considered as a subspace of F2 
via the extension i of i to Fl Let x e F2 r\ Fl If x ф F^, there exists cp e F2 such 
that FjL Ç ker (p and (p(x) = 1. Thus (р\р^ = 0, and since F^ is weakly dense in Fl 
(p\p^^ = 0. This implies (p(x) = 0, a contradiction. Thus, F2 n Fl a F^. This fact 
combined with the reflexivity of N^ and N2 yields 

N1' n Fl = М2П Fl = N2nFi == Ni = NI. 

Here, we use the fact that N1' = i(Nl) in Fl к = 1,2. m 
00 

Theorem 2.5. Let E = \J E„ be a strict inductive limit of Banach spaces. A sub-
n=l 

space M of E is very compressive if for each n, M„ = M n E^ is closed in E„, and 
either M° is reflexive or M„ is reflexive. 

Proof. It follows immediately from the hypotheses that there exists a defining sub­
sequence E„^ such that either M„^ is reflexive for all к or M°^ is reflexive for all k. 
The result now follows from Corollary 2.4.2, Theorem 2.1, and Theorem 2.2. • 

In [5], we have defined the notion of a nearly closed subspace of a convergence 
vector space. For the purposes of this paper, we give the following simplified 
version. 
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Definition 2.2. Let £ = (J £„ be a strict inductive limit of Banach spaces. A sub-

space M of £ is said to be nearly closed if for each n there exists N such that 
00 

( и Ml) ri E„ cz M^ n £„. Here, M^ denotes the closure of M^ in Ej,. 
k=i 

00 

Tlieorem 2.6. Let E = \J E„ be a strict inductive limit of Banach spaces. A sub-
n=l 

space M of E has the H.B.P. if 

(1) M is nearly closed, and 
(2) for each n, either MJJ is reflexive, or M^ is reflexive. 

Proof. In [5] we showed that if M is nearly closed, then every sequentially con­
tinuous linear functional has a sequentially continuous linear extension to M = 

OD 

= (J Ml, and M n £„ is closed in £„ for all и. As a consequence of (2), we may 
k=l 

assume (by passing to a subsequence if necessary) that either Ml is reflexive for all n, 
or Ml is reflexive for all n. Suppose first that all M^ are reflexive. Since (M)„ = 
= M n E„ = M^ n E„ for some N ^ n, and since E^ induces the original topology 
on £„, it follows that (M)„ is a closed subspace of the reflexive space M^. Thus (M)« 
is reflexive for all n, and the result now follows from Theorem 2.5. 

Now suppose that all M° are reflexive. Since M„ с (M),„ we have M° =э (M)°. 
Thus, (M)° is a closed subspace of a reflexive space, and hence, is reflexive. Again 

the result follows via Theorem 2.5. • 

3. REMARKS AND EXAMPLES 
00 

We first observe that if E = \J E^is an inductive limit of reflexive Banach spaces, 

and M is a subspace of E such that for all n М„ = M n E„ is closed in each E„, 
then M is very compressive as a result of Theorems 2.1 and 2.2, and hence by 
Theorem L2 has the H.B.P. This is the theorem of Foias and Marinescu [1]. We 
remark that the fact that M„ is closed in E„ is not explicitly stated in [1] but is used 
in the proof given there. 

00 

Theorem 2.6 shows readily that i{ E = \J E^ is a strict inductive Hmit of Banach 

spaces and M is a nearly closed subspace of E such that for each n, M^ is of finite 
codimension in £„, then M has the H.B.P. Hence, in particular if M„ itself is closed 
and of finite codimension in £„, M has the H.B.P. Moreover, if M is of countable 
codimension in E and nearly closed, then it must have the H.B.P., since a simple 
appMcation of the Baire Category Theorem then shows that MJJ is of finite codimension 
in E„ for each n. In addition to these more or less immediate examples, since reflexive 
subspaces of non-reflexive Banach spaces are not unusual. Theorem 2.6 should 
apply to many situations where previous results would not. 
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The examples indicated above are based on criteria for a subspace M to very 
compressive. One might wonder if every compressive subspace is very compressive 
(the converse being obvious). Indeed this is not the case, as we now show. 

Let E be the inductive hmit of a sequence £„ of normed spaces and M a subspace 
of E such that for all и M„ = M n E„ is closed in £„. For each n, let v„ be the canonical 
homomorphism of £„ onto EJM„. The map j„ : EJM„ -^ E„ + ^IM„+i defined by 
Jn(W) = [ïfiW] is readily verified to be continuous and injective. With this notation, 
we have the following commutative diagram for each n. 

к 
t 

{EjM„y. 

I 

EJM, 
Jn 

-> E. И+1 

^n+1 

(E,^JM„^J 

Since V* is a homeomorphism of (EJM„y onto M° ^ E'^, each under the norm topo­
logies, it is evident that i*(M°+i) is norm dense in M° if and only if7*((^n+i/^« + i)') 
is norm dense in (EJM„y. 

With this notation, we can state: 

Proposition 3.1. / / M is a sequentially closed subspace of E, then the trivial 
subspace, 0, is a very compressive subspace of E/M if and only if M is a very 
compressive subspace of E, 

Proof. The proof is an immediate consequence of the above observation and 
Definition 2.1. • 

Ptak [7] has given an example of a sequentially closed subspace, M, of an inductive 
limit of Banach spaces which is not compressive, and hence is not very compressive. 
For his example, by the above proposition, we see that the subspace {0} is not very 
compressive in E/M. However, by Theorem 1.1, it is compressive. Thus we have an 
example of a sequentially closed subspace which is compressive, but not very com­
pressive. 

As an example where the criterion of very compressive does not seem to be 
adequate, while that of compressive does, we give a new proof of the known result 
(HOGBE-NLEND [2]): 
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Let E be an inductive limit of a sequence £„ of normed spaces, and i„ : E„ -^ £,, + 1 

be the natural injections. If for each n, the image /'„(ß„) of the unit ball is relatively 

CF(E„+I, E'„+^ycompact in E„ + i, then every sequentially closed subspace of E has 

the H.B.P, 

Proof. Since M„ + 2 = M n E„ + 2 is closed in £„ + 2. it follows that i*+i(^« + 2) 

is ö-(£;,+ i ,£„ + i)-dense in M°+i. Thus, the T(£^ + I, £„ + j)-closure of i*+i(M°+2) 

contains M°+i. But i„{B„) being relatively cr(£:„ + i, £^+1) compact implies i* is 

T(£^4.I, £ „ + I ) , ß(E'„, £„)-continuous. Thus, with т and ß referring to these topologies, 

C(M„%i) с i * [ i * + i ( M ^ ) l с C o C + i ( K + 2 ) ^ and the result follows from 
Theorem 1.2. 
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