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1. Preliminaries. Let M be an ovaloid of class C* in the 3-dimensional Buclidean
space E>. Let {U,} be its covering by domains such that in each U, there is a field
of orthonormal frames (M; vy, v,, v3) With vy, v, € T(M). The orientation of v
be chosen in such a way that the principal curvatures are positive. Then

1) dM =  o'v; + 0?v,, dv, = v, + 0lv,,
2 3
dv, = —wlv, + 03v;, dv; = —0dv, — w3v,;
k

do' =o' A 0}, do]=wfrol; ol+0i=0, &*=0.

Using the well known prolongation procedure, we get the existence of functions
(ineachU,) a, b, c; , ..., ; 4, ..., E such that

(2 o3 = ao' 4+ ba?, ) = bo' + co?;
(3) da — 2bw? = ao! + pw?,
db + (a — ¢) 0} = o' + yo?,
de + 2ba? = yo' + dw?;
4) do — 3w} = Ao + (B — bK) ?,
df + (x — 2y) o} = (B + bK) @' + (C + aK) 0?,
dy + 28 — 8) 0 = (C + cK) ' + (D + bK) 0?,
dé + 3yw? = (D — bK) o' + Ew?.
As always,

(5) K=ac—-b*, 2H=a+c¢
denote the Gauss and mean curvature respectively.
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Let f: M — 2 be a function. The derivatives f;, f;; of its restriction to U, with
respect to the frames (M; vy, v,, v3) are introduced by means of the formulas

(6) df = fio' + f,0% ;

df; — fr07 = fr10" + f,0%, dfy + fio] = 0" + f,07.
It is easy to see that the functions
(7 fr+15, (a=o)(fi1 — f22) + 4bfy,

do not depend on the choice of the moving frames. The domain U, be covered
by coordinates (u, v) such that

(8) o' =r(u,v)du, ©®=s(u,v)dv; rs+0;

such coordinates do exist. We get

) o = —s 'r,du + r s, do
and
(10) fo =, f=5TY

fll = rzfuu - r_arufu + r—ls—lrva ’
f12 = r_ls_lfuv - r—ZS‘IrUfll - r—ls_ZSUfl! ’

22 = s_zfvv + rnzs_lsufu - S—BSva N

Thus we have the following version of the (weak) maximum principle: Let f satisfy,
in U, the equation

(11) ay f11 + 2002012 + a22fay + aift +ayfa +asf =@

with a,-jx‘xi positive, ag £ 0 and ¢ = 0, then f cannot have a positive maximum
inside of U, without being constant; see [1], p. 109.

2. Two generalized H-theorems. On M, consider the function
(12) f=2H*-K)=14a —c)? +2b%;
of course, f = 0, and we have f = 0 in the umbilical points. We get

(13) /1 =(a—c)(a-—y)+4bﬁ, f2=(a“c)(ﬁ—5)+4by;
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(14)  fii=(*—ac+4b)K +(x—y)P* +4p* +(a —c)(4 - C) + 4bB,
fi2=2b(a + )K + (x = y) (B — 8) + 4By + (a — ¢) (B — D) + 4bC,
faz =(a®> —ac + 4b*)K + (B — 6)*> + 49> + (a — ¢)(C — E) + 4bD.

The covariant derivatives of the mean curvature H are given by

(15) 2H, =a+7y,2H, =B+ 9;

(166 =~ 2H,,=cK+ A+C, 2H,=B+D, 2H,,=aK +C +E.

Multiplying the equations (14), (16) successively by 1,0, 1, ¢ — a, —4b, a — ¢ and
adding them, we get

(17)  fi1 + faza — 4Kf =2{(a — ¢)(H,, — H,,) + 4bH,, + H} + H3} +
+2{(2yr — H))* + (28 - H2)*} .
Thus we obtain
Theorem 1. Let M < E® be an ovaloid, and let its mean curvature satisfy

(18) (@ —¢)(Hyy — Hyy) + 4bH,, + H] + H; 2 0.

Then M is a sphere.
Next, we are going to prove the following

Theorem 2. Let M < E* be a part of an ovaloid such that: (i) M has a net of lines
of curvature, (ii) M consists of umbilical points, (iii) v, and v, being the unit
tangent vector fields of the lines of curvature and S : M — & a function satisfying

(19) S? < 57— 40./2,
we have
(20) U1U1H bl vzvzH + S[vlvz] H = 0 .

Then M is a part of a sphere.

The lines of curvature being given by
(21) b(@')? + (c — a) 0'w? — b(w?)?* =0,
we have to suppose
(22) b=0;
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a and c are then the principal curvatures respectively. From (3) and (4),
(23) va=a, v,da=f, vic=7y, v,c=29;

(24) (@a-cvwa=3+@-c)4,
(@a—=c)vwa=2y—-a)B+(a—c)B,
(a — c)vva =3By + (a — ¢) B,
c)vva =2y — )y + (a — ¢)(C + akK),
(@ =c)vwie=(6—2B)B + (a—c)(C + cK),
(@ = ¢)vyvc= =3By + (a —c) D,
(@a—=c)vvic=0—2B)y+(a—-c)D,
(a = c)vave = =3y* + (a - ¢)E.

—
Q
|

The equation (20) implies

(25) B*+ 9y +oay + pé —(a—c) K +
+(a@a—c)(4—E)— S@B + 2By + 95) =0.

The elimination of A4, C, E from (14, ;) and (25) yields

(26) fu + f22 _4Kf=(‘1"%7+%Sﬁ)2+(5“%ﬁ+%s3’)2+
+ 3{(7 — S?) B* + 20SBy + (7 — S?)y*}.

The last term is non-négative for each f# and y because of (19). This concludes the

proof of our theorem.
Let us add the following remark. Let M satisfy (i) and (ii) of Theorem 2. On M,
consider the second order operators of the form

(27) P = S,v,0; + S,0,0, + S3v,05 + S50, ,

Sis...s84 : M - # being functions. Now, our problem is to determine the class
of operators (27) with the following property: The surface M satisfying PH = 0
(and knowing nothing more about it), we are able to prove by means of the maximum
principle using the function H? — K that it is a part of a sphere. It is not difficult
to see that the just defined class of operators is given by (iii) of Theorem 2.

3. A generalization of the K-theorem. We are going to prove a somewhat modified
version of Theorem 1.
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Theorem 3. Let M < E* be an ovaloid satisfying, at each of its points, the
following conditions: (i)

(28) (@ — ¢)(Kyy — Ky,) + 4bK,;, 20,

(ii) k, £ k, being the principal curvatures, we have k, < 3k,. Then M is a sphere.
We have

(29) K, =ay+ ca—2bB, K, =ad + cf — 2by;
(30) Ky = (ac — 2b*)K + 20y — 28* + ¢A — 2bB + aC,
Ky, = =bla+ c)K + ad — fy + ¢B — 2bC + aD,

K,; = (ac — 2b*) K + 2p6 — 2y> + ¢C — 2bD + daE.

Multiplying the equations (14), (30) successively by ¢, —2b, a,c¢ — a, —4b,a — ¢
and adding them together, we get

(31)  ofyy — 2bfy, + af,, — 4HKf = (a — ¢)(Ky; — Kyp) + 46Ky, + T
with
(32) T = a3 + 6> + 29> — 2uy) —

— 2b(x + 7) (B + 8) + c(a? + 3y* + 2> — 2p9).

We have to prove T = 0. The term T being an invariant of the surface (which is
easy to see), it is sufficient to prove the inequality in a generic point m € M using

a convenable field of moving frames around m. Let us choose this field in such a way
that b(m) = 0. Then, at m,

(33) T=c '(cx — ay)* + a*(ad — cB)* +
+ 2H{a " '(3a — ¢) B* + ¢ '(3c — a)¥*};

a(m) and ¢(m) being the principal curvatures at m, we are done.
The classical K-theorem follows easily. Our starting point is the equation (30),

we have to prove that K = const. implies T = 0. Around a generic point me M,
choose the moving frames as above. We have

Ki=ay+ca=0, Ky=ad+cf=0 at m,

and we get the existence of numbers g, ¢ such that
«a=ga, y=—g9c, f=o0ca, 6= —oc at m.
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Then
T(m) = (3a® + 2ac + 3¢?) (ac® + c0*) 2 0.

4. Another generalization of the H-theorem. Consider the invariant 1-form
(34) t=(ap + by — bx — cf) " + (ay + b6 — b — cy) w?
on M; it is easy to see that
(35) dt = =2{* + 9> —ay — B + 2(H> — K)K} o' A 0*.

The following assertion follows: Let M be a surface with M umbilical, then
(36) j{ﬁ2+?2—'x?—ﬁ5+2(Hz—K)K}m‘/\w2=0‘
M

Now, we are in the position to prove

Theorem 4. Let M be a surface with 0M umbilical, and let
(37) 4H? - K)K =z H} + H3.
The point me M being non-umbilical, there exists its neighbourhood U <« M

such that K = 0 in U. (1 do not suppose M to be an ovaloid!)
Because of (15), (36) may be rewritten as

(38) J. {2B — H)> + (2y — H,)* — Hf — H} + 4H*> - K)K} o' A @*=0.

From (37), we obtain 28 = H,, 2y = H,, i.e.,
(39) a=23y, &6=38.

In a suitable neighborhood U of the point m, we may choose the frames in such
a way that b = 0, a #* c; the equations (3) reduce to

(40) da = 3yo' + pu?, (a —c)o? = po' + yo®, dc =yo' + 3pw?.
By exterior differentiation, taking regard of (40,),

(41) 3(dy — i) A o' + (dB + y0l) A @* =0,
(dB + yo}) A o' + (dy — Bwl) A @* = (c — a) aco' A &*,

(dy — Bw?) A ©' + 3(dB + yoi) A @ =0.
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Thus there is a function g such that
(42) dp + yo} = (¢ — ac®) 0*, dy — o = (¢ — a*c) »'

By exterior differentiation,

(43) (do — 3a%w?) A @' =0, (do — 3c*yw') A w? =0,
i.e.,
(44) do = 3c%yow' + 3a*fw® .

A further exterior differentiation yields

(45) (@a—c)py=0.

Suppose f = 0 + y, the case B & 0 = y being symmetric. We have
(46) da = 3y0', dc =yo',

and the equation H + H3 = 4(H* — K) K turns out to be

(47) adc — 2a%c* + ac® = 4> .

We get (taking regard of y + 0!)

(48) a® + 13a%c — 9ac* + 3¢ = 8,
11a% + 30ac — 21¢2 =0, 2a+c¢=0, Ty=0
by a series of successive differentiations; hence a contradiction. Thus we have

B =17 =0,ie.,®? = 0 because of (40,) and a # c. But this means aco' A w? =0,
ie., K =0.

5. General Weingarten surfaces. We are going to prove

Theorem 5. Let M be an ovaloid or a part of it bounded by umbilical points.
Let H,K : M — & be its mean and Gauss curvature respectively. On a domain
D of R* containing H(M) x K(M), be given a function f(x, y) satisfying
(49) F(x, y):=f2 + &ff, + 4f7 > 0

on9. Iff(H, K) = 0, M is a sphere or a part of it.
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We have
(50) 2dH = (« + y) o' + (B + 0) 0?,
dK = (ay + ca — 2bf) o' + (ad + cff — 2by) w?.

Let m € M be a generic point. Around m, choose the moving frames in such a way
that b(m) = 0. The equation f(H, K) = 0 implies

(51) (fu + 2¢fx) @ + (fu + 2afe)y = 0,
(fu + 2¢fx) B+ (fu + 2af )5 =0 at m.

Because of

(fa + 2¢fx) (fu + 2¢fy) = F(H,K) > 0,

« and y as well as § and § have opposite signs at m. Thus B2 +9y> —ay —B5 =0
at m; applying now (36), we are done.
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