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In the sequel, a real-valued function / defined on the n-dimensional Euclidean 
space R" is called to be additive if it satisfies the Cauchy functional equation 

/(x + y)=/W+/(y) 
for all л% у E R\ 

R. GER and M. KUCZMA [2] introduced the following set classes: 

A set T cz R" belongs to the class ^ if and only if each additive function upper-
bounded on Tis continuous. 

A set T с jR" belongs to the class ^ if and only if each additive function bounded 
(bilaterally) on Tis continuous. 

It is known that ^ c: ^̂  but ^ ^ ^, see e.g. [2]. M. Kuczma [4] posed the problem 
to find some characterizations of the classes ^ and %\ The class ^ has been charac
terized in [5]. The main aim of the present note is to give a characterization of ^; 
this result is complemented by an example of a strange set belonging to J*. 

Throughout the paper, the set of rational numbers will be denoted by Q. The 
symbols + , — denote always the algebraic operations. 

A set Л с Ĵ " is called Q-radial at a point XQ if for each x e R" there is a real 
c^ > 0 such that XQ Л- ax e A whenever a G g, 0 g a < c^. 

A set У4 с R" is called Q-convex if for each x, y e A, and each a e ß , 0 ^ a ^ 1, 
ax + (1 — a) >' e A. The g-convex hull of a set J3 c: R" (i.e. the minimal Q-convex 
set containing B) will be denoted by Q{B). 

Now we are able to prove the main result. 

Theorem. Let T be a subset of the n-dimensional Euclidean space R". Then each 
additive function f : R"" -^ R upper-bounded on T is continuous if and only if for 
each subset A of R", Q-radial at a certain point, the set Q{T ~ A) contains a sphere. 

In other words. Te ^ if and only if for each subset A of R"*^ Q-radial at a point, 
the Q-convex hull of T — A contains a ball. 
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P r o o f of the theorem is based on the following result of M. E. Kuczma [3]: 
Let С be a Q-convex subset of R", Q-radial at a point; then either С contains a ball 
or there exists a discontinuous additive function upper-bounded on C. 

Let Tcz R" and let Л be a subset of R\ g-radial at XQ such that С = Q{T - A) 
contains no ball. We may without loss of generality assume T Ф 0. Since С is 0-
convex and g-radial (at each point of the set T — x^) the above quoted result of 
M. E. Kuczma implies the existence of a discontinuous additive function / : R" -• R 
upper-bounded on Q{T ~ A). Let a be a fixed point from A. Since T — a a 
с Q(T — A), we conclude that / is upper-bounded on T — a, and consequently, 
by the additivity o f / , / i s upper-bounded on T. Thus Тф J*. 

Now assume that Q{T — A) contains a ball for each subset A of R'\ ß-radial at 
a certain point. L e t / : R" -^ R be an additive function such tha t / (x) < M for each 
xeT. For each v e R" let Ay = {осу, (xe Q, f{ocy) > - 1 } , and put 

A = \JAy, 

Clearly, A is ß-radial at 0. For each и e T, v e A, f{u ~ v) ^ f{u) — f{v) < M + 1, 
thus / is upper-bounded on T — A and consequently, / is bounded on Q{T ~ A) 
(see e.g. [1]). T h u s / i s upper-bounded on a set with positive Lebesgue measure and 
s o / i s continuous (see e.g. [2]), q.e.d. 

Remark . It is easy to verify that in Theorem, the set Q[T — A) can be replaced 
by Q{T) - Q{A), 

A set Л cz R" is called midpoint convex if i{A + A) = A. R. Ger and M. Kuczma 
[2] have proved the following result: Let T с R". If the set J(T) — •^(^) has a posi
tive inner Lebesgue measure then Те ^ (here J(A) denotes the midpoint convex 
hull of A). The authors conjectured that this condition is not necessary for Те ^ . 
In [5] it is stated without proof that this conjecture is true. In the present note we 
give a somewhat stronger result, namely that this condition is not necessary for 
Te^. 

Example . Let Я be a Hamel basis of the reals and let Tbe the set of all numbers 
of the form Yj^ihi (finite sum) where /z,- e Я, and a,- are dyadic rational numbers (i.e. 
a,- = nti. 2"', where m,-, AI,- are integers). 

It is easy to verify that Te J*. Clearly Tis midpoint convex and so J{T) — J(T) = 
= T — T = T Now we show that the inner Lebesgue measure of Tis 0. 

Since H is a Hamel basis, 1 can be written uniquely (up to the order of summands) 
as 

(1) 1 = (x^hi + 0C2h2 + .. . 4- a„/z„ , 

where /î  e H, oCie Q, i = 1, 2 , . . . , n. Assume that aj = ujv, where u, v are relatively 
prime integers. For each prime integer q, q > u, let Aq be the set Г + q~^. We show 
that the sets A^ are pairwise disjoint. Assume, on the contrary, that there are two 
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prime integers p > q greater than и such that Äp n A^ is non-empty. Then p ^ — 
— q~^ = {p - q)\pq e T On the other hand, from (l) we have 

p — q p — q и ^ P — q / , , \ 
pq pq V pq 

This representation of (p — q)lpq is unique so {(p — q)jpq) (м/i;) must be a dyadic 
rational number. But this is impossible since [p — q) и is not divisible by p. Thus 
the sets A^ are pairwise disjoint. Now if the inner Lebesgue measure mi{T) of T is 
positive then there is a finite interval 1 a R and e > 0 such that for each sufficiently 
large prime q, mjij гл A^) > e. But in this case m,(/) = +00 — a contradiction. 
Hence т^^Т) — 0, q.e.d. 
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