Czechoslovak Mathematical Journal

Ivan Chajda; Bohdan Zelinka
 Weakly associative lattices and tolerance relations

Czechoslovak Mathematical Journal, Vol. 26 (1976), No. 2, 259-269

Persistent URL: http://dml.cz/dmlcz/101397

Terms of use:

© Institute of Mathematics AS CR, 1976

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

WEAKLY ASSOCIATIVE LATTICES AND TOLERANCE RELATIONS

Ivan Chajda, Přerov and Bohdan Zelinka, Liberec

(Received October 16, 1974)

The investigation of tolerance relations has been rather expansive in a few last years. A number of results in this theory show its principal role in various branches of algebra and its applications (for example tolerance spaces, graph theory, topology etc.). In the paper [10] some results on the existence of non-trivial compatible tolerance relations on lattices were derived. Some of them can be generalized to weakly associative lattices and these "generalized" lattices offer a new view of these problems. A weakly associative lattice is obtained, roughly speaking, if the transitivity of the lattice ordering is omitted. These algebraic structures have very interesting properties and many of their applications play a principal role in algebra as is shown in the papers [1], [2], [3], [4], [5]. The purpose of this paper is to establish some results on the existence and basic properties of tolerance relations compatible with weakly associative lattices and tournaments.

1. PRELIMINARIES

Definition 1. A non-empty set A with two binary operations denoted by the symbols \vee and \wedge is called a weakly associative lattice (briefly $W A$-lattice), if for arbitrary a, b, c of A the following identities are fulfilled:

```
\(1^{\circ} a \vee a=a, a \wedge a=a \quad\) (idempotency);
\(2^{\circ} a \vee b=b \vee a, a \wedge b=b \wedge a \quad\) (commutativity);
\(3^{\circ} a \vee(b \wedge a)=a, a \wedge(b \vee a)=a \quad\) (absorption);
\(4^{\circ}[(a \wedge c) \vee(b \wedge c)] \vee c=c,[(a \vee c) \wedge(b \vee c)] \wedge c=c \quad\) (weak
```

 associativity).
 Further, if for arbitrary a, b of A either $a \vee b=a$ or $a \vee b=b$, then (A, \vee, \wedge) is called a tournament.

In the papers [1] and [3] a relation \leqq on a $W A$-lattice A is introduced so that $a \leqq b$ if and only if $a \vee b$. This relation is reflexive and antisymmetric and evidently
it is uniquely determined by the operation \vee. It is also uniquely determined by the operation \wedge; we have $a \leqq b$ if and only if $a \wedge b=a$. Conversely, the operations \vee and \wedge are uniquely determined by the relation \wp. For any two elements a, b of A there exists a unique element c such that $c \geqq a, c \geqq b$ and $c \leqq c^{\prime}$ for each $c^{\prime} \in A$ such that $c^{\prime} \geqq a, c^{\prime} \geqq b$; this element $c=a \vee b$. There exists also a unique element d such $d \leqq a, d \leqq b$ and $d \geqq d^{\prime}$ for each $d^{\prime} \in A$ such that $d^{\prime} \leqq a, d^{\prime} \leqq b$; this element $d=a \wedge b$. For any a, b of A the equality $a \vee b=b$ is equivalent to $a \wedge b=a$. If A is a tournament, then \leqq is a complete relation, i.e. for any a, b we have either $a \leqq b$ or $b \leqq a$ (and not both simultaneously). If \leqq is also transitive, then a $W A-$ lattice A is an ordinary lattice and a tournament A is a chain. (Note that in general $W A$-lattices are not lattices and \leqq need not be an ordering.)
$W A$-lattices which are subdirectly irreducible and satisfy Congruence Extension Property are very important for investigating the structure of $W A$-lattices. In [4] it is proved that the class of all $W A$-lattices which are subdirectly irreducible and satisfy Congruence Extension Property is equal to the class of all $W A$-lattices with Unique Bound Property (briefly UBP), i.e. with the property that to any two elements of A there is exactly one element greater and exactly one element less than they both. In [4] it is proved that the class of WA-lattices satisfying UBP is decomposed into two (non-disjoint) subclasses, the so-called singular and regular $W U$-systems (Theorem 1 in [4]) and that there exists exactly one $W A$-lattice satisfying UBP which is simultaneously regular and singular.

We can give an exact definition of these concepts.
Definition 2. A $W A$-lattice W_{A} is called a singular $W U$-system, if $W_{A}=A \cup\{0,1\}$ for $A \neq \emptyset, A \cap\{0,1\}=\emptyset$ and the $W A$-lattice ordering is defined by the relations

$$
1 \prec 0, \quad 0 \prec a \prec 1 \text { for all } a \in A
$$

where $x \leqq y$ if and only if $x \prec y$ or $x=y$.
Let W be a $W A$-lattice, $a \in W$ and $U(a)=\{x \in W \mid a \leqq x\}, L(a)=\{y \in W \mid y \leqq$ $\leqq a\}$. If card $U(x)=\operatorname{card} U(y)=\operatorname{card} L(y)$ for arbitrary two elements x, y of W, then W is called a regular $W U$-system.

For singular $W \dot{U}$-systems the non-existence of a non-trivial compatible tolerance will be proved.

Definition 3. Let S be a set and T a binary relation on S. The relation T is said to be a tolerance, if it is reflexive and symmetric. Let W be a $W A$-lattice and T a tolerance on W. The tolerance T is called compatible with W, if the following implication is true:

$$
a_{1}, a_{2}, b_{1}, b_{2} \in W, \quad a_{1} T b_{1}, a_{2} T b_{2} \Rightarrow a_{1} \vee a_{2} T b_{1} \vee b_{2}, \quad a_{1} \wedge a_{2} T b_{1} \wedge b_{2}
$$

This is a special case of the definition of a tolerance compatible with an algebra; this definition can be found in [9]. Tolerances on algebras are studied in [8], [9], [10].

For the sake of brevity we shall introduce the following concepts.

Definition 4. Let W be a $W A$-lattice, $a \in W, b \in W$. The set $\{x \in W \mid a \leqq x \leqq b$ or $b \leqq x \leqq a\}$ is said to be a segment of W and is denoted by $S(a, b)$.

Definition 5. Let S be a set. By the identical relation on S we mean the relation I fulfilling $a I b$ if and only if $a=b$ for all $a \in S, b \in S$. By the universal relation on S we mean the binary relation U fulfilling $a U b$ for arbitrary two elements a, b of S. Let R be a binary relation on S. We say that R is complete, if for arbitrary two elements a, b of S either $a R b$ or $b R a$ is true.

2. SIMPLE CHARACTERISTICS OF TOLERANCES ON WA-LATTICES

Let S be a set and let ϱ be a binary relation on S. We say that a binary relation ϱ_{S} on S is the symmetric hull of ϱ, if for arbitrary a, b of S we have $a \varrho_{S} b$ if and only if $a \varrho b$ or $b \varrho a$. It is clear that for a reflexive relation ϱ the symmetric hull ϱ_{S} is a tolerance.

Proposition 1. Let S be a non-empty set with an antisymmetric binary relation ϱ. Then (S, ϱ) is a tournament, if and only if the symmetric hull ϱ_{S} of ϱ is the universal relation on S.

Proof. If (S, ϱ) is a tournament, then for any a, b of S we have $a \varrho b$ or $b \varrho a$, therefore $a \varrho_{S} b$. On the other hand, if $a \varrho_{S} b$ for any two elements a, b of S, then for any two elements a, b of S either $a \varrho b$, or $b \varrho a$. As ϱ is antisymmetric, for $a \neq b$ only one of these two possibilities can occur, thus (S, ϱ) is a tournament.

Proposition 2. Let S be a non-empty set with an antisymmetric acyclic binary relation ϱ. Then (S, ϱ) is a chain, if and only if the symmetric hull ϱ_{S} of ϱ is the universal relation on S.

Proof follows from Proposition 1, because a chain is an acyclic tournament.
Theorem 1. Let W be a W A-lattice and let T be a tolerance compatible with W. Then for arbitrary two elements a, b of W

$$
a T b \Rightarrow x T y \text { for arbitrary } x, y \in S(a \wedge b, a \vee b) .
$$

Proof. Let $a T b$. From the reflexivity of T we have $b T b$ and by the compatibility of T we obtain: $a T b, b T b \Rightarrow a \wedge b T b, a \vee b T b$. Analogously $a \wedge b T a, a \vee b T a$. Further, $a \wedge b T a, a \wedge b T b \Rightarrow(a \wedge b) \vee(a \wedge b) T a \vee b$, i.e. $a \wedge b T a \vee b$. Let x and y be in $S(a \wedge b, a \vee b)$. From $a \wedge b T a \vee b, x T x$ we obtain $(a \wedge b) \vee$ $\vee x T(a \vee b) \vee x,(a \wedge b) \wedge x T(a \vee b) \wedge x$. If $a \wedge b \leqq x \leqq a \vee b$, then $(a \wedge b) \wedge x=x,(a \vee b) \vee x=a \vee b$, thus $x T a \vee b$. If $a \vee b \leqq x \leqq a \wedge b$, then $(a \wedge b) \vee x=x,(a \vee b) \wedge x=a \vee b$, thus also $x T a \vee b$. Analogously
$y T a \vee b, y T a \wedge b, x T a \wedge b$. Let $a \wedge b \leqq x \leqq a \vee b, a \wedge b \leqq y \leqq a \vee b$; then $x T a \vee b$ and $a \vee b T y$ imply $x \wedge(a \vee b) T(a \vee b) \wedge y$, i.e. $x T y$. Dually $a \vee b \leqq$ $\leqq x \leqq a \wedge b, a \vee b \leqq y \leqq a \wedge b$ imply $x T y$. If $a \vee b \leqq x \leqq a \wedge b, a \wedge b \leqq$ $\leqq y \leqq a \vee b$, then $a \wedge b T x, y T a \vee b$ yields $(a \wedge b) \vee y T x \vee(a \wedge b)$, i.e. again $x T y$.

3. EXISTENCE OF COMPATIBLE TOLERANCES ON $W A$-LATTICES

In this item we shall study compatible tolerances on $W A$-lattices. Evidently, on any $W A$-lattice (with more than one element) there exist at least two compatible tolerances, namely the identical relation and the universal relation. Also each congruence on a $W A$-lattice is a compatible tolerance on it. We are interested mainly in compatible tolerances which are not congruences.

Definition 6. Let W be a $W A$-lattice, let A be a subset of W. The set A is called a cycle in W, if $A=S(a, b)$ for arbitrary two distinct elements a, b of A.

Lemma 1. Let W be a WA-lattice. Then each cycle of W is a tournament with at most three elements.

Proof. If a, b are two distinct elements of A, then $a \in A=S(a, b)$, thus either $a \leqq a \leqq b$ or $b \leqq a \leqq a$. As a, b are distinct, we have either $a \prec b$ or $b<a$ and A is a tournament. Suppose that there exists a cycle A of W with more than threc elements. Let a, b, c, d be some four of them. We have $A=S(a, b)$, therefore either $a \prec c \prec b$ or $b \prec c \prec a$; without loss of generality let $a \prec c \prec d$. If $a \prec b$, then $a \notin S(b, c)$ and $A \neq S(b, c)$, which is a contradiction. Thus $b \prec a$. The element d must satisfy either $a<d<b$ or $b \prec d \prec a$. In the first case $a \prec c$, $a \prec d$, thus $a \notin S(c, d)$ and $A \neq S(c, d)$; in the second case $b \prec a, b \prec d$ and thus $b \notin S(a, d)$; both these cases lead to contradictions.

Theorem 2. Let W be a WA-lattice, let A be a cycle of W and let T be a tolerance compatible with W. Then the restriction T^{\prime} of T onto A is either the identical relation or the universal relation on A.

Proof. According to Lemma $1 A$ cannot have more than three elements. If it has less than three elements, then any tolerance on A is either the identical relation or the universal relation. Let A have three elements a, b, c and $a \prec b \prec c \prec a$. If T^{\prime} is not the identical relation, then there exist two distinct elements of A which are in T^{\prime}; without loss of generality let $a T^{\prime} b$. From $a T^{\prime} b$ and $c T^{\prime} c$ we have $a=a \vee c T^{\prime} b \vee$ $\vee c=c, b=b \wedge c T^{\prime} a \wedge c=c$ and T^{\prime} is the universal relation.

Lemma 2. Each three-element WA-lattice is a cycle or a chain.
This assertion is evident.

Lemma 3. Each tolerance compatible with a three-element or a four-element singular $W U$-system is either the identical relation I or the universal relation U on the system.

Proof. Let W_{A} be a three-element singular $W U$-system. Then W_{A} is a cycle and according to Theorem 2 each tolerance compatible with it is I or U. If W_{A} is a fourelement singular $W U$-system, then $A=\{a, b\}$ and $\{a, 0,1\}$ is a cycle of W_{A}. This means that the restriction T^{\prime} of T onto $\{a, 0,1\}$ is either the identical relation or the universal relation. Analogously the restriction $T^{\prime \prime}$ onto $\{b, 0,1\}$ is either the identical relation or the universal relation. Let both T^{\prime} and $T^{\prime \prime}$ be identical relations. Then either $T=I$, or $a T b$. If $a T b$, then $a T b, b T b$ imply $a \vee b T b \vee b$, which means $1 T b$ and $1 T^{\prime \prime} b$, which is a contradiction with the assumption that $T^{\prime \prime}$ is the identical relation. Now let T^{\prime} be the universal relation on $\{a, 0,1\}$. Then $0 T 1$ and according to Theorem 1 we have $x T y$ for any two elements x, y of W_{A} and $T=U$. Analogously if $T^{\prime \prime}$ is the universal relation on $\{b, 0,1\}$.

Lemma 4. Let W be an at least five-element singular $W U$-system. Then each tolerance compatible with W is either the identical relation I, or the universal relation U.

Proof. Let W be an at least five-element singular $W U$-system and let T be a tolerance compatible with W. Further let $T \neq I$. Then there exist two distinct elements a, b or W such that $a T b$. If $a=0, b=1$, then $T=U$ according to Theorem 1 . If $a \neq 0, a \neq 1, b \neq 0, b \neq 1$, then $a \wedge b T a \vee b$ according to Theorem 1, thus $0 T 1$ and $T=U$. Let $a=0, b \neq 1$. As W has at least five elements, there exist $c \in W$, $d \in W$ which are pairwise distinct and distinct from 0,1 and b. As T is reflexive, $c T c, d T d$. From $a T b$ and $a=0$ we have $0 T b$. Then $c T c, 0 T b \Rightarrow c=c \vee 0 T c \vee b=$ $=1$. Thus $c T 1$ and analogously $d T 1$. This implies $0=c \wedge d T 1 \wedge 1=1$, thus $0 T 1$ and the situation is the same as in the preceding case. If $a=1, b \neq 0$, the proof is dual.

Theorem 3. On each singular $W U$-system there exist only two compatible tolerances, namely the identical relation and the universal relation.

Proof follows directly from Lemmas 3 and 4.

4. SUB-WA-LATTICES AND COMPATIBLE TOLERANCES

If can we prove the existence of a compatible tolerance which is not a congruence on a special sub- $W A$-lattice of a $W A$-lattice, we can extend this result onto the whole $W A$-lattice. We formulate this exactly in the following theorem.

Theorem 4. Let W be a WA-lattice. A necessary and sufficient condition for the existence of a tolerance T compatible with W which is not a congruence is the
following: there exists a sub-WA-lattice W_{0} of W, a tolerance T_{0} compatible with W_{0} which is not a congruence and a homomorphism φ of W onto a WA-lattice W_{1} such that $\varphi(x)=\varphi(y)$ if and only if either $x=y$ or both x and y belong to W_{0}.

Proof. The necessity is obvious; if the required tolerance T exists, we may put $W_{0}=W, T_{0}=T$ and φ equal to the mapping of W onto a one-element $W A$-lattice. Let us prove the sufficiency. First we prove that if $a \in W_{0}, b \in W-W_{0}, a \vee b \in W_{0}$, then $a \vee b=a$. Suppose that it is not so. Then $a \wedge b \neq b$. But $\varphi(a)=\varphi(a \vee b)$ in W_{1}, thus $\varphi(a) \wedge \varphi(b)=\varphi(a \vee b) \wedge \varphi(b) \neq \varphi(b)$ in W_{1}, because $b \in W-W_{0}$ and thus $\varphi(b)$ is the image of only one element of W in φ. But $(a \vee b) \wedge b=b$ in W, thus $\varphi(a \vee b) \wedge \varphi(b)=\varphi(b)$ in W_{1}, because φ is a homomorphism. We have a contradiction. Dually we can prove that if $a \in W_{0}, b \in W-W_{0}, a \wedge b \in W_{0}$, then $a \wedge b=a$. Now let T be a tolerance on W defined so that $x T y$ if and only if either $x=y$, or $x \in W_{0}, y \in W_{0}, x T_{0} y$. Let $x_{1}, x_{2}, y_{1}, y_{2}$ be elements of W and $x_{1} T y_{1}, x_{2} T y_{2}$. If $x_{1}=y_{1}, x_{2}=y_{2}$, then $x_{1} \vee x_{2}=y_{1} \vee y_{2}, x_{1} \wedge x_{2}=y_{1} \wedge y_{2}$ and thus $x_{1} \vee x_{2} T y_{1} \vee y_{2}, x_{1} \wedge x_{2} T y_{1} \wedge y_{2}$. If all the elements $x_{1}, x_{2}, y_{1}, y_{2}$ are in W_{0} and $x_{1} T_{0} y_{1}, x_{2} T_{0} y_{2}$, then $x_{1} \vee x_{2}, y_{1} \vee y_{2}, x_{1} \wedge x_{2}, y_{1} \wedge y_{2}$ are all in W_{0} and $x_{1} \vee x_{2} T_{0} y_{1} \vee y_{2}, x_{1} \wedge x_{2} T_{0} y_{1} \wedge y_{2}$, which means $x_{1} \vee x_{2} T y_{1} \vee y_{2}, x_{1} \wedge$ $\wedge x_{2} T y_{1} \wedge y_{2}$. Now if $x_{1}=y_{1} \in W-W_{0}$ and x_{2}, y_{2} are in W_{0} and $x_{2} T_{0} y_{2}$, we have $\varphi\left(x_{1}\right) \vee \varphi\left(x_{2}\right)=\varphi\left(y_{1}\right) \vee \varphi\left(y_{2}\right)$ in W_{1}. This means that either $x_{1} \vee x_{2}=y_{1} \vee y_{2}$ or $x_{1} \vee x_{2}, y_{1} \vee y_{2}$ are both in W_{0}. In the first case evidently $x_{1} \vee x_{2} T y_{1} \vee y_{2}$. In the second case $x_{1} \vee x_{2}=x_{2}, y_{1} \vee y_{2}=y_{2}$ (as proved above), thus again $x_{1} \vee x_{2} T y_{1} \vee y_{2}$. Dually we prove $x_{1} \wedge x_{2} T y_{1} \wedge y_{2}$.

Lemma 5. Let W be a WA-lattice and let W_{0} be a sub-WA-lattice of W. The necessary and sufficient condition for the existence of a homomorphism φ of W into a WA-lattice W_{1} such that $\varphi(x)=\varphi(y)$ for $x \neq y$ if and only if $x \in W_{0}, y \in W_{0}$ is the following: for each $x \in W-W_{0}$ either $x \prec y$ for each $y \in W_{0}$ or $y \prec x$ for each $y \in W_{0}$ or none of the cases $x \prec y, y \prec x$ occurs for any $y \in W_{0}$.

Proof. Necessity. Let $w \in W_{0}, x \in W-W_{0}$. In W_{1} we have either $\varphi(x) \prec \varphi(w)$ of $\varphi(w) \succ \varphi(x)$, or none of the cases $\varphi(x) \leqq \varphi(w), \varphi(w) \geqq \varphi(x)$ occurs. In the first case $\varphi(x) \wedge \varphi(w)=\varphi(x)$ in W_{1} and we must have $x \wedge y=x$ for any $y \in W_{0}$, which means $x<y$ for each $y \in W_{0}$. In the second case dually $y \prec x$ for each $y \in W_{0}$. In the third case $\varphi(x) \vee \varphi(w)$ and $\varphi(x) \wedge \varphi(w)$ are both distinct from both $\varphi(x), \varphi(w)$. As they are distinct from $\varphi(w)$, the elements $u=\varphi^{-1}(\varphi(x) \vee \varphi(w))$, $v=\varphi^{-1}(\varphi(x) \wedge \varphi(w))$ are determined uniquely and are in $W-W_{0}$. But $\varphi(y)=\varphi(w)$ for each $y \in W_{0}$, thus $\varphi(u)=\varphi(x) \vee \varphi(y), \varphi(v)=\varphi(x) \wedge \varphi(y)$ for each $y \in W_{0}$, which means $u=x \vee y, v=x \wedge y$ for each $y \in W_{0}$. As u, v are distinct from x, none of the cases $x \prec y, y \prec x$ occurs for any $y \in W_{0}$.

Sufficiency. If $x \in W-W_{0}, y \prec x$ for each $y \in W_{0}$, then $x \vee y=x, x \wedge y=$ $=y \in W_{0}$ for each $y \in W_{0}$. If $x \in W-W_{0}, x \prec y$ for each $y \in W_{0}$, then $x \vee y=$ $=y \in W_{0}, x \wedge y=x$. Let $x \in W-W_{0}$ and neither $x \prec y$ nor $y \prec x$ for any
$y \in W_{0}$. Choose $w \in W_{0}$. Then $x \vee w \succ w$ and thus $x \vee w \succ y$ for each $y \in W_{0}$. Suppose that for some $y_{0} \in W_{0}$ there exists $z \prec \mathrm{x} \vee w$ such that $x \leqq z, y_{0} \leqq z$. Then $y_{0} \prec z$ and $y \prec z$ for each $y \in W_{0}$, in particular $w \prec z$ and thus we have $w \prec z$, $x \prec z, z \prec x \vee w$, which is a contradiction. We have proved that $x \vee y=x \vee w$ for each $y \in W_{0}$. Dually we can prove $x \wedge y=x \wedge w$ for each $y \in W_{0}$. Thus we have proved that the mapping φ of W into W_{1} such that $\varphi(x)=\varphi(y)$ for $x \neq y$ if and only if $x \in W_{0}, y \in W_{0}$ is a homomorphism.

Theorem 5. Let W be a WA-lattice and let C be a sub-WA-lattice of W which is a chain with at least three elements. Let any element $x \in W-C$ be either greater than all elements of C or less than all elements of C, or such that neither $x \prec y$ nor $y \prec x$ for any element $y \in C$. Then there exists a tolerance compatible with W which is not a congruence.

Proof. By Theorem 4 from [10] there exists a compatible tolerance which is not a congruence on each chain with at least three elements. By Lemma 5 the assumptions of Theorem 4 are fulfilled, thus according to Theorem 4 the assertion holds.

5. TOURNAMENTS

The algebraic definition of a tournament was given in $\S 1$. Nonetheless as is wellknown, a tournament can be defined also graph-theoretically.

A tournament is a directed graph without loops in which any two distinct vertices are joined exactly by one directed edge.

The two definitions of a tournament represent two different view-points from which this concept can be considered. Substantially they express the same thing. We can take a tournament W according to the algebraic definition and for any two its distinct elements a, b for which $a \vee b=b$ we join a and b by a directed edge outgoing from a and coming into b. Then we obtain a tournament according to the graph-theoretical definition. For any two distinct elements a, b either $a \vee b=b$ or $a \vee b=a$ and not both simultaneously; thus any two distinct elements are joined exactly by one directed edge and the set of elements of W can be viewed as the set of vertices of a tournament according to the graph-theoretical definition. On the other hand, let W be a tournament according to the graph-theoretical definition. For any two distinct elements a and b we put $a \vee b, a \wedge b=a$, if and only if there exists a directed edge from a into b; we obtain a tournament according to the algebraic definition.

This enables us to consider tournaments from the two view-points. We shall always use the view-point which will be more convenient for our considerations.

Now we shall prove some theorems concerning tolerances on tournaments.
Theorem 6. Let W be a tournament which is not strongly connected [6] and which has at least three vertices. Then there exists a tolerance T compatible with W which is neither the identical relation nor the universal relation.

Proof. As W is not strongly connected, it has at least two quasicomponents. For two quasicomponents C_{1}, C_{2} of W let $C_{1}<C_{2}$ if and only if $C_{1} \neq C_{2}$ and each edge joining a vertex from C_{1} with a vertex of C_{2} has its terminal vertex in C_{2}. As is wellknown from the graph theory, this ordering is complete. Let C be a quasicomponent of W which is not minimal in this ordering. Let W_{1} (or W_{2}) be a subtournament of W induced by the vertices of all quasicomponents C^{\prime} for which $C^{\prime}<C$ (or $C^{\prime}>C$, respectively). The vertex sets of W_{1} and W_{2} are disjoint, non-empty and each edge joining a vertex of W_{1} with a vertex of W_{2} has its terminal vertex in W_{2}. Now let T be a tolerance on W such that two elements are in T if and only if they are both in W_{1} or both in W_{2}. Evidently T is neither the identical relation, nor the universal relation. Now let $x_{1} T y_{1}, x_{2} T y_{2}$. If all the elements $x_{1}, y_{1}, x_{2}, y_{2}$ are in W_{1}, then also $x_{1} \vee x_{2}, x_{1} \wedge x_{2}, y_{1} \vee y_{2}, y_{1} \wedge y_{2}$ are all in W_{1} and $x_{1} \vee x_{2} T y_{1} \vee y_{2}, x_{1} \wedge$ $\wedge x_{2} T y_{1} \wedge y_{2}$. Analogously if all the elements $x_{1}, y_{1}, x_{2}, y_{2}$ are in W_{2}. Now let x_{1}, y_{1} be in W_{1} and let x_{2}, y_{2} be in W_{2}. We have $x_{1} \vee x_{2}=x_{2}, x_{1} \wedge x_{2}=x_{1}$, $y_{1} \vee y_{2}=y_{2}, y_{1} \wedge y_{2}=y_{1}$ and thus $x_{1} \vee x_{2}=x_{2} T y_{2}=y_{1} \vee y_{2}, x_{1} \wedge x_{2}=$ $=x_{1} T y_{1}=y_{1} \wedge y_{2}$. Analogously if x_{1}, y_{1} are in W_{2} and x_{2}, y_{2} are in W_{1}.

Theorem 7. Let W be a tournament having at least three quasicomponents. Then there exists a tolerance Tcompatible with W which is not a congruence.

Proof. Let C_{0} be a quasicomponent of W which is neither minimal nor maximal in the ordering described in the proof of Theorem 6. Let W_{1} (or W_{2}) be a subtournament of W induced by the vertices of all quasicomponents C^{\prime} of W for which $C^{\prime}<C_{0}$ (or $C^{\prime}>C_{0}$, respectively). The subtournaments W_{1}, W_{2}, C_{0} are pairwise disjoint and all non-empty. Now let T be a tolerance on W such that two elements are in T if and only if they are both in $W_{1} \cup C_{0}$ or both in $W_{2} \cup C_{0}$. Any edge joining a vertex of $W_{1} \cup C_{0}$ with a vertex of $W_{2} \cup C_{0}$ has its terminal vertex in $W_{2} \cup C_{0}$. Thus the proof of the compatibility of T is analogous to the proof of Theorem 6. Now if a is in W_{1}, b in C_{0} and c in W_{2}, we have $a T b$, because both a, b are in $W_{1} \cup C_{0}$, $b T c$, because both b, c are in $W_{2} \cup C_{0}$, but a and c are not in T, because a is not in $W_{2} \cup C_{0}$ and c is not in $W_{1} \cup C_{0}$. The tolerance T is not transitive, therefore it is not a congruence.

Remark. We speak about vertices rather than about elements, because elements of a tournament in the graph theory are also edges.

Theorem 8. If W is a strongly connected tournament with three vertices, then any tolerance compatible with it is either the identical relation or the universal relation. If W is a strongly connected tournament with four vertices, then there exists exactly one tolerance compatible with it which is neither the identical relation nor the universal relation.

Proof. There exists only one (up to isomorphism) strongly connected tournament with three vertices, namely the cycle with three vertices. For it the assertion follows
from Theorem 2 . Now let W be a strongly connected tournament with four vertices. The tournament W cannot be acyclic. As is well-known, a tournament which is not acyclic contains at least one cycle with three vertices. Thus let $\{a, b, c\}$ be such a cycle, $a \prec b \prec c \prec a$. The fourth element d is neither greater than all a, b, c nor less than all a, b, c; otherwise W would not be strongly connected. Without loss of generality two cases may occur; either $d \succ a, d \succ b, d \prec c$ or $d \prec a, d \prec b, d \succ c$. The latter case is obtained from the former by the isomorphism induced by the permutation $(a b c d) \rightarrow(c a b d)$. Therefore there exists only one strongly connected tournament W with four vertices up to isomorphism; this tournament has vertices a, b, c, d and $a \prec b, a \succ c, a \prec d, b \prec c, b \prec d, c \succ d$. Let T be a tolerance on W consisting of the pairs $(b, d),(d, b)$ and all pairs (x, x) for all vertices x of W. This tolerance is compatible with W; this can be easily proved. This tolerance T is a congruence and is neither the identical relation nor the universal relation. Let T^{\prime} be a tolerance compatible with W which is neither the identical relation nor equal to T. Then T^{\prime} must contain a pair of distinct elements other than (b, d) or (d, b). Both elements of such a pair either belong to $\{a, b, c\}$ or to $\{a, d, c\}$. Both these sets are cycles. If such a pair belongs to $\{a, b, c\}$, then the restriction of T^{\prime} onto $\{a, b, c\}$ must be the universal relation according to Theorem 2. But then $a T^{\prime} c$, both the elements a, c belong to the cycle $\{a, d, c\}$ and the restriction of T^{\prime} onto $\{a, d, c\}$ must be the universal relation. Now from $a T^{\prime} b, d T^{\prime} a$ we obtain $d=a \vee d T^{\prime} b \vee a=b$ and from the symmetry $b T^{\prime} d$. Thus T^{\prime} is the universal relation on W. Analogously if the pair belongs to $\{a, d, c\}$.

Definition 7. Let W be a tournament, let x and y be two of its vertices such that $x \prec z \prec y \prec x$ for each $z \in W-\{x, y\}$. Then we say that W is reducible and can be reduced onto $W_{0}=W-\{x, y\}$ by deleting x and y.

This concept was defined in [7].
Lemma 6. Let W be a reducible tournament which can be reduced onto a tournament W_{0} by deleting its vertices x, y. Let T_{0} be a tolerance compatible with W_{0} which is not a congruence. Then there exists a tolerance compatible with W which is not a congruence.

Proof follows from Lemma 5 and Theorem 4.
Theorem 9. For each $n \geqq 5$ there exists a strongly connected tournament W with n vertices on which there exists a tolerance compatible with it which is not a congruence.

Proof. If $n \geqq 5$, then $n-2 \geqq 3$ and there exists a tournament W_{0} with $n-2$ vertices on which a compatible tolerance exists which is not a congruence; for example, a chain [10]. Let W be a tournament which can be reduced onto W_{0} (in the sense of Definition 7). Then W is evidently strongly connected and has n vertices. According to Lemma 6 the assertion holds.

6. A REMARK ON LATTICES

Here we shall give two theorems concerning tolerance relations on lattices. This is an addition to the paper [10].

Theorem 10. Let Lbe a lattice. Let there exist a proper ideal J of Land a proper filter F of L such that $J \cup F=L, J \cap F \neq \emptyset$. Then there exists a tolerance T compatible with L which is not a congruence.

Proof. Let T be a tolerance on L such that $x T y$ if and only if x and y either both belong to J, or both belong to F. We shall prove that T is compatible with L. Let p, q, r, s be elements of L and $p T q, r T s$. This means that at least one of these cases occurs:
(i) $p \in J, q \in J, r \in J, s \in J$;
(ii) $p \in J, q \in J, r \in F, s \in F$;
(iii) $p \in F, q \in F, r \in J, s \in J$;
(iv) $p \in F, q \in F, r \in F, s \in F$.

In the case (i) the elements $p \wedge r, q \wedge s, p \vee r, q \vee s$ are all in J, because J is a sublattice of L. Thus $p \wedge r T q \wedge s, p \vee r T q \vee s$. In the case (ii) we have $p \wedge r \in J$, $q \wedge s \in J$, because J is an ideal, and $p \vee r \in F, q \vee s \in F$, because F is a filter; thus again $p \wedge r T q \wedge s, p \vee r T q \vee s$. The case (iii) is dual to the case (ii), the case (iv) is dual to (i). As J is a proper ideal of L, we have an element $a \in L-J$; as $J \vee F=L$, we have $a \in F$. As F is a proper filter of L, we have an element $b \in L-F$; as $J \cup F=L$, we have $b \in J$. As $J \cap F \neq \emptyset$, we have an element $c \in J \cap F$. Now $a T c$, because both a and c are in F, and $b T c$, because both b and c are in J. But the elements a and b are not in T, because $a \notin J, b \notin F$. The tolerance T is not transitive and is not a congruence.

Theorem 11. Let L be a complete infinitely distributive non-complementary lattice. Let L be atomic and dually atomic. Then there exists a tolerance T compatible with L which is not a congruence.

Proof. As L is non-complementary, there exists an element $a \in L$ to which no complement exists. This means that $a \wedge x=O$ implies $a \vee x \prec I$ for each $x \in L$. (The symbols O and I denote the least and the greatest element of L, respectively. These elements exist, because L is atomic and dually atomic.) Let $B=\{x \in L \mid a \wedge$ $\wedge x=0\}$. Denote $b=\bigvee_{x \in B} x$; this element exists, because L is complete. We have $a \wedge b=a \wedge \bigvee_{x \in \boldsymbol{B}} x=\bigvee_{x \in \boldsymbol{B}} a \wedge x=O$, because L is infinitely distributive. Let $c=$ $=a \vee b$; we have $c \prec I$. Further, let d be a dual atom of L such that $d \geqq c$. Denote $J=\langle O, d\rangle$; this is a proper ideal of L. As d is a dual atom, we have either $x \leqq d$
or $x \vee d=I$ for each $x \in L$. Let $E=\{x \in L \mid x \vee d=I\}$. Denote $e=\bigwedge_{x \in E} x$; we have $d \vee e=d \vee \bigwedge_{x \in E} x=\bigwedge_{x \in E} d \vee x=I$. Thus $e \in E$. From the definition of E we see that $E=\langle e, I\rangle$ and further $J \cap E=\emptyset, J \cup E=L$. Let f be an atom of L such that $f \leqq e$. As f is an atom, we have either $x \geqq f$ or $x \wedge f=O$ for each $x \in \boldsymbol{L}$. Both these cases mean that $f \in J$. Let $F=\langle f, I\rangle$; this is a proper filter in \boldsymbol{L}. As $E \subset F$ and $J \cup E=L$, we have $J \cup F=L$. Now according to Theorem 10 there exists a compatible tolerance on L which is not a congruence.

7. PROBLEMS

Problem 1. For which regular $W U$-systems is any compatible tolerance equal either to the identical relation or to the universal relation? For which regular $W U$ systems is any compatible tolerance a congruence?

Problem 2. According to Theorem 10 in [10] the set of all compatible tolerances of an algebra forms a lattice. For which WA-lattices is this lattice distributive (or modular, complementary etc.)?

References

[1] E. Fried: Tournaments and non-associative lattices. Ann. Univ. Sci. Budapest., Sect. Math. 13 (1970), 151-164.
[2] E. Fried: Subdirectly irreducible wekkly associative lattices with Congruence Extension Property. Ann. Univ. Sci. Budapest., Sect. Math. (to appear).
[3] E. Fried and G. Grätzer: Some examples of weakly associative lattices. Colloq. Math. 27 (1973), 215-221.
[4] E. Fried and V. Turán-Sós: Weakly associative lattices and projective planes. Ann. Univ. Sci. Budapest., Sect. Math. (to appear).
[5] E. Fried: Equational classes which cover the class of distributive lattices. Ann. Univ. Sci. Budapest., Sect. Math. (to appear).
[6] O. Ore: Theory of Graphs. Providence 1962.
[7] J. Plesnik: Diametrically critical tournaments. Časop. pěst. mat. 100 (1975), 361-370.
[8] B. Zelinka: Tolerance in algebraic structures. Czech. Math. J. 20 (1970), 179-183.
[9] B. Zelinka: Tolerance in algebraic structures II. Czech. Math. J. 25 (1975), 175-178.
[10] I. Chajda and B. Zelinka: Tolerance relations on lattices. Čas. pěstov. mat. 99 (1974), 394399.

Authors' addresses: I. Chajda, tř. Lidových milicí 290, 57000 Přerov, ČSSR, B. Zelinka, Komenského 2, 46117 Liberec 1, ČSSR, (Katedra matematiky Vysoké školy strojní a textilní).

