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Czechoslovak Mathematical Journal, 26 (101) 1976, Praha 

NONSINGULAR SEMILATTICES AND SEMIGROUPS 

С S. JOHNSON, JR. and F. R. MCMORRIS, Bowling Green 
(Received November 20, 1974) 

1. INTRODUCTION 

For a ring R, the condition that every large right ideal is dense (R nonsingular) 
implies that 6 (^ ) ' the maximal ring of quotients of R, is a regular ring, self-injective 
as a Q-module, and the jR-injective hull of R. If S is a nonsingular semigroup, its 
maximal quotient semigroup Q{S) need not be regular (see [5]), but C. V. HINKLE, JR. 
in [2] showed that Q{S) is the injective hull of S and Q[S) is self-injective as a Q-
system. Hinkle [3] has also shown that if 5 is a semilattice E of groups, then Q{S) 
is a semilattice Q{E) of groups. 

These considerations lead to the investigation of nonsingular semilattices and 
nonsingular semigroups that are semilattices of groups. We characteri2:e nonsingular 
semilattices as disjunctive semilattices and point out an alternate description of Q{S) 
for these semilattices. We then give a description of nonsingular semigroups that are 
semilattices of groups and simphfy this description in two special cases. 

2. NONSINGULAR SEMILATTICES 

Throughout this paper all semilattices and semigroups will have a zero. If S is 
a semigroup in which every one-sided ideal is two-sided, we call an ideal D dense if 
and only if X ^ y (x, y e S) imphes that there exists d e D such that xd ф yd. A non
zero ideal L is large if and only if Lhas a nonzero intersection with any other nonzero 
ideal of S, Clearly every dense ideal is large. If S is a semigroup in which every large 
ideal is dense, S is called nonsingular. This terminology corresponds to standard 
usage in ring theory. 

Recall that a semilattice S (with 0) is disjunctive if, whenever x ^ y (x, y e S), 
there exists ue S with 0 < и S x and w л j = 0. It is easy to show that this is 
equivalent to the requirement that every interval [0, x] = {z e S : 0 ^ z ^ x} be 
semicomplemented, i.e., for each y e [0, x) there exists y' e (O, x] with y A y' = 0. 
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Theorem 1. Л semilattice S with О /5 nonsingular if and only if it is disjunctive. 

Proof. Assume S is nonsingular and x ^ y [x, y e S). Set I = {a e S : a л z = 0 
or a ^ z} where z = x A у < x. Now 7 is a large ideal, for if J is a nonzero ideal 
and b E J \ {0} then Ь л z is a nonzero element of I n J unless Ь л z = 0, in 
which case b e I n J. Hence / is dense and there exists del with z A d < x A d. 
We must have d A z = 0, for otherwise del would give d -^ z and then d = 
= zAd<xAd^d. Letting и = x A d we have 0 < и ^ x and и A у = 
= J л z = 0. 

Suppose conversely that S is disjunctive, that / is a large ideal and that x Ф y. 
We may also assume x ^ y, thus getting и e S with 0 < w ^ x and м л >̂  = 0. 
If we now take c/ to be a nonzero element of / n [0, i/], we have xAd = d^O = 
= у A d. 

We remark at this point that if S is a disjunctive semilattice then Q{S), being the 
injective hull of S (in the category of S-systems), is by the main theorem of [4] 
isomorphic to /x)(S), the lattice of all D-ideals of S. 

3. NONSINGULAR SEMIGROUPS THAT ARE SEMILATTICES OF GROUPS 

For this section we let S be a semilattice Y of groups G^ (a G Y) where Y is order 
isomorphic to E(S), the idempotents of S. We assume that the reader is familiar with 
Clifford's result concerning S (Theorem 4.11 of [1]), and we let ф^р : G^ -* Gß 
[ß ^ a) denote the linking homomorphisms. Recall that the idempotents of S are 
central and every one-sided ideal is two-sided while being itself a union of the groups 
it contains. We let e^ denote the identity of G„. 

Theorem 2. S is nonsingular if and only if 

(i) E(S) is nonsingular 

and 

(ii) if L is a large ideal and e^ e E(S) \ E(Ü), then 

n{Ker ф^^р : ер e £ ( L ) , eß < e^} = {e^} . 

Proof. Assume S is nonsingular and let F be a large ideal of E(S) Then L = 
= {}{Gß : eßE F} is easily seen to be a large ideal of S and is therefore dense. If 
â + ^ß (̂ a» ^ß ̂  ^{^)) then there exists XE L such that e^x Ф e^x, and if x 6 G^ we 

have e^ey Ф eßey with CyE F giving F dense in E{S). Now let L be a large ideal of S 
and e^ E E(S) \ E(L), Suppose the condition is not satisfied so that there exists 
X 6 Ĝ  with X Ф ê  and Фa,ß{^) = /̂? for all Cß E E(L) with eß < e^- Let J G L be ar
bitrary where d E Gy. Then e^ey < e^ and e^Cy E E(L). Therefore Фа,ау{^) = ây ^^^ 
we have xd = ф,^,у{х) фy^,y{d) = e,yфy^,y{d) = ф,,М Ф^Л^) = ^«^' ^ contradic
tion to the fact that Lis dense. 
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For the converse, let L be a large ideal of S. Then E ( L ) is a large ideal of E[S) so 
that £ ( L ) is dense in E{S). Let x, y e S with x ф j ' . Assume x e G^ and у e Gß with 
ОС ^ ß. Since £ ( L ) is dense, there exists ^̂  G £ ( L ) such that ê ê  ф ê ê̂  and thus 
Сд̂  n Ĝ y = 0. Since xe^ e G„̂  and ĵ e,̂  e G^̂ , we have x^^ ф ye^. Now suppose 
A', у E G^. If ê  G £ ( L ) we are done, so assume e^ ф E[L). Then there must exist Cß e E[L) 
such that ep < e,, and Фа,р{^) Ф Фа,р{у)^ f^r otherwise x>'~^ Ф ^̂  violates (ii). Now 
we have xeß = Фа,р{^) + Фа,р{у) = Ĵ /̂? '̂ " î the proof is complete. 

Two special kinds of semilattices of groups are given in the following definitions. 
S is said to have trivial multiplication if and only if each ф^ß with ß < ocis the trivial 
homomorphism. S is O-proper if and only if ф^ß is one-to-one whenever ß 4^ 0. 

Corollary. Assume S is 0-proper. Then S is nonsingular if and only if E[S) is 
nonsingular. 

Corollary. Assume S has trivial multiplication. Then S is nonsingular if and 
only if E(^S) is nonsingular and |G^| > 1 implies that e^ is an atom of E{S). 

Proof. Let S be nonsingular, |G„| > 1, and suppose e^ is not an atom. Then there 
exists eß e E[S) with 0 < ê  < e^. Then I = {e e E{S) : ee^ = 0 or e ^ Cp} is large 
in E[S) with e^ ф I, and hence L = U{G,̂  : Cy el} violates (ii) of the theorem. The 
converse follows from the theorem and the observation that a large ideal contains 
all atoms. 

We would like to thank Dr. L. O'CARROLL for comments helpful in the preparation 
of this note. 
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