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GENERALIZED WEINGARTEN SURFACES 

M. AFWAT, Cairo 

(Received May 12, 1975) 

We are going to prove the following 

Theorem. Let G be a bounded domain in M^^ dG its boundary and M : G KJ dG -^ 
-^ E^ a surface such that M[dG) consists of umbilical points. Let there exist 
functions i?i : M -> ^ ; Ï = 1, 2, 3, 4; such that 

(1) R^dH + R2dK + R^^dH + R4.*dK = 0, 

H and К being the mean and Gauss curvatures of M{G) resp. Further, let 

(2) R\-\- Rl-\- 4H{R,R2 + ^3^4) + Щ^1 + Rl)>0. 

Then M(G U dG) is a part of a sphere. 

Proof. (1) Consider a field of orthonormal moving frames {m, v^, V2, v^] associated 
to M = M{G u dG). Then 

(3) dm = œ^i\ 4- co^V2 , 

dv^ = 0)lv2 + o)lv^ , 

(iv2 — —o)\vi + (Jo\v^ , 

di;3 = —œ\v^ — OJ>\V2 

with the usual integrability conditions. From 

(4) cü̂  = 0 , 

we get 

(5) coi = aœ^ + Ью^ , œ\ = Ьш^ + сш^ 

and 

(6) da - 2bœ\ = aœ^ + ßco^ , 

db + {a - c) col = ßoj^ + уш^ , 

de + 2bœl = yco^ + ôco^ . 
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The mean and Gauss curvature are given by 

(7) H = i{a + c). K^ac~b' 

respectively. From this, 

(8) dH = i(a -{- y)œ' + ^{ß + д) со\ 

dK = {ay + ca - 2bß) œ^ + (aô + сД - 2by) œ^ . 

The *-operator is given (as usually) by 

(9) * : т == рсо^ + qo)^ --̂  *т = -qco^ + рсо^- . 

Taking in regard another field [m; w ,̂ W2, VV3} of moving frames with 

(10) ^1 = ei(cos (p ,o)i - sin (p . Wj), 

V2 = sin cp . Wi + cos <p . W2 , 

Г3 = e2W3 , si = el = I , 

we get 

(11) dm = Q^w^ + ß^w^ 

with 
ß^ = £1 cos (p . cô  + sin ф . ш^ , ß^ = — г̂  sin ф . cô  + cos (p . co^ 

and, for T = Pß^ + ô ß ^ 

(12) p = ei(P cos (/? — 2 sin ф) , (? = P sin Ф + 2 cos (p . 

From this, 

(13) *T = £ , ( - е ^ ^ + Pß^) 

so that the *-operator depends just on the orientation of M. For further use, let us 
choose one of the orientations of M; the result is, of course, independent of the chosen 
orientation. 

(2) We have 

(14) *dM = -i{ß + Ô) со' + i(a + 7) 0)^ , 

*dK = -{aô + cß - 2by) Ù)' + {ay Ч- ca - 2bß) œ^ 

so that the equation (l) yields 

(15) R,{(x + 7) + 2^2(^7 + *̂^ - 2b/?) -

- R^{ß + (5) - 2R^{aô -\- cß - 2by) = 0 , 

^liß + ^) + 2R2{aô + cß - 2by) + 

+ Рз(а + у) + 2^4(^7 + са - 2bß) = О . 
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On M, choose a coordinate system (u, v) such that 

(16) I = r^ dw^ + 5̂  dv^ , i.e., ш^ = r dt/ , cô  = 5 dt;, Г5 Ф 0 . 

From dco^ = — cô  л œ], dco^ = cô  л co ,̂ we get 

(17) (o\ = —5~Vydw + r'^s^dv. 

We have, from (6), 

(18) d(a - c) = 4fea;? + (a - y) ш^ + (j^ - 5) o? , 

db = - ( a - c) û)i + jSa)̂  + уш^ , 
i.e., 

(19) {a - c\ + 4 b ^ = (a - y ) r , b„ - (a - c ) ^ = j9r , 

(a - c), - 4 fo^ = (iß - (5)5, Ь, + (a - c ) ^ = ys. 
r r 

Finally, 

(20) аг5 = s(a ~ c)„ + rb^ + (•) (a - c) + (•) b , 

/̂ Г5 = 5b„ + (•)(« - c) + ( • ) b , 

yrs = rb^ + (•) (a - c) + (•) b , 

^Г5 = -r{a - c)t, + 5b„ + (•) (fl - c) 4- (•) Ь . 

The system (15) becomes 

(21) ai i (a - c\ + ai.2(« - c\ + Ь^Ь« + b^2bv = Cii(« - ^) + ^12* , 

Ö2l(« - С)м + «22(« - ^)t; + ^21^1, + b22b^ = ^21(0 " c) + ^22^ 

with 

(22) а ц = s(i?i + 2СЯ2), 

^12 = K^3 + 2a^4) , 

Ьц = -25(2bi?2 + i^3 + 4ЯЯ4) , 

bi2 = 2r(JRi + тК2 + 2b^4) , 

«21 = 5(^3 + 2ci^4) , 

«22 = ~"K^i + 2aR2) , 

^21 = 25(1^1 + 2ЯЯ2 ~ ^bR^) , 

^22 = 2r(-2bi?2 + ^3 + 2ЯА4) . 
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Recall that the system (21) is called elhptic if the form 

(23) Ф = (ai2b22 - 022^12)/^^ - (^11^22 - «2lbl2 + 

+ a^2b2i - «22^11)/iv + (011^21 - «21^11) v̂  

is definite. In our case, 

«i2b22 - «22^12 = 2г2[2(Я + a){R^R2 + R3R4) + 

+ 2b{R,R^ - R2R3) + 4Ha{Rl + RI) + RI + RI] , 

aub22 - ^21^12 + ^12^21 ~ 022*11 = 4Г5[-2b(i^l^2 + ^3^4) + 

+ (a-c) (R,R^ - R2RS) - 4bH(Rl + Rl)] , 

^11^21 - ^21^11 == 2s\Rl + Rl+ 2(H + c)(RiR2 + R3R4) + 

+ 2b{R2R3 - Ri^R^) + ^cH{Rl + Rl)] . 

Denoting by A the discriminant of Ф, we get 

(24) - 4 ^ = [{R, + 2HR2y + {R, + 2HR^y] x 

X [Rl + Rl+ 4H{R,R2 + R3R4) + Щ^1 + ^4)] . 

The first term of the product cannot be equal to zero; indeed, let us suppose, on the 
contrary, Ri + 2HR2 = JR3 + 2HR4, = 0. Then the second term would be 
-4{H^ - K){RI + Rl) ^ 0, which is a contradiction to (2). This means that (2) 
induces the system (21) to be elliptic. On the boundary dG, a — с — b = 0 according 
to the supposition. From this, a - - c = b = O o n G , i.e., 4(Я^ — К) = [a — c)^ + 
+ 4^2 _ Q Qn Q ^^^ M is a part of a sphere. QED. 

From our Theorem, we get immediately the following 

Corollary. Let G be a bounded domain in M^, dG its boundary and M : G и dG -^ 
-^ E^ be a surface such that M(ôG) consists of umbilical points and there exists 
a function f{x, y) on G such that 

(25) / ( Я , Х ) = 0 , / i = 4Я/«/к + 4/c/i > 0 

on G. Then M is a part of a sphere. 

The p r o o f is trivial, because / ( Я , K) implies / д dЯ + fjr dK = 0, and we are in 
the situation of our Theorem for R^ = / ^ , JR2 = /x» R3 = R4. = 0. This Corollary 
has been proved by A. Svec, for ovaloids, in his paper [ l ] . 
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