Czechoslovak Mathematical Journal

Charles This

Parameters of distribution of $(n+1)$-dimensional monosystems in the Euclidean space $R^{2 n+1}$

Czechoslovak Mathematical Journal, Vol. 28 (1978), No. 1, 13-24
Persistent URL: http://dml.cz/dmlcz/101510

Terms of use:

© Institute of Mathematics AS CR, 1978

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

PARAMETERS OF DISTRIBUTION OF ($n+1$)-DIMENSIONAL MONOSYSTEMS IN THE EUCLIDEAN SPACE $R^{2 n+1}$

Charles Thas, Gent

(Received November 7, 1975)

1. INTRODUCTION

A monosystem N is a manifold generated by a one-parameter family of linear spaces. If the dimension of N is $n+1$, if $\mathbf{r}(s)$ (s always represents the arc length, while accents mean derivation to s) is a base curve and if $\mathbf{e}_{1}(s), \ldots, \mathbf{e}_{n}(s)$ constitute a base of the generating space $B(s)$ for all $s \in S$ (S is a domain in which the functions we consider are of sufficiently high class), then N can be represented by

$$
\mathbf{R}\left(s, l_{1}, \ldots, l_{n}\right)=\mathbf{r}(s)+\sum_{i=1}^{n} l_{i} \mathbf{e}_{i}(s), \quad s \in S, \quad l_{i} \in R \quad(i=1, \ldots, n) .
$$

Suppose that

$$
\operatorname{rank}\left[\mathbf{r}^{\prime}(s) \mathbf{e}_{1}(s) \ldots \mathbf{e}_{n}(s) \mathbf{e}_{1}^{\prime}(s) \ldots \mathbf{e}_{n}^{\prime}(s)\right]=2 n+1, \quad \forall s \in S
$$

This means that N is non-developable, or, in other words, that for every generating space $B(s)$, the mapping: point \mapsto tangent space, $p \mapsto N_{p}$ is a non-singular projectivity.

There is just one central point in each generating space. The locus H_{φ} of the points p of a generating space $B(s)$, for which the tangent space N_{p} includes a constant angle $\varphi(0<\varphi<\pi / 2)$ with the tangent space N_{a} at the central point a of $B(s)$ is a central hyperquadric with standard equation

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{x_{i}^{2}}{d_{i}^{2}}=\operatorname{tg}^{2} \varphi \tag{1}
\end{equation*}
$$

The (strict positive) half axes d_{1}, \ldots, d_{n} of $H_{\pi / 4}$ are the principal parameters of distribution of $B(s)$. These are the parameters of distribution of the axes of the hyperquadrics H_{φ}, which we call the principal axes of $B(s)$ (see [2.1.], [3], [5]). In fact we can attach a parameter of distribution to an arbitrary (finite) line of a generating space $B(s)$; first we define the central point a_{R} of a line R of $B(s)$ as follow:
a_{R} is the point of R, in which $N_{a_{R}}$ is orthogonal with the tangent space $N_{r_{\infty}}$ at the infinite point r_{∞} of R. To each finite line R of $B(s)$ belongs a strict positive parameter of distribution d, for which holds $a_{R} p=d \operatorname{tg} \theta$, where p is a variable point of R and where θ means the angle $\left(N_{a_{R}}, N_{p}\right)(0 \leqq \theta<\pi / 2)$.

The central point a is also the central point for each line R of $B(s)$ passing through a. If the direction cosines of this line with respect to the principal axes of $B(s)$ are $\cos \theta_{1}, \ldots, \cos \theta_{n}$, one can easely prove (from (1)) that its parameter of distribution d is given by

$$
\frac{1}{d^{2}}=\sum_{i=1}^{n} \frac{\cos ^{2} \theta_{i}}{d_{i}^{2}}
$$

In section 2 we determine the parameter of distribution of an arbitrary line using special submanifolds, for which also some deeper results are proved.

Finally we introduce in section 3 the notion of "dual parameter of distribution" and give in this connection a nice geometrical signification.

2. ORTHOGONAL SUBMANIFOLDS

Through each (finite) point of a generating space of N, there is passing just one orthogonal trajectory of N. The orthogonal trajectories through the points of a k dimensional subspace $(1 \leqq k \leqq n)$ of the generating space $B\left(s_{0}\right)$ generate a $(k+1)$ dimensional monosystem, which we call an orthogonal submanifold of N. Each (finite) line R of $B\left(s_{0}\right)$ determines in particular an orthogonal subsurface O_{R} of N.

Theorem. The central point a_{R} and the parameter of distribution d of a line R of the generating space $B\left(s_{0}\right)$ are also the central point and the parameter of distribution of the generator R of the ruled surface O_{R}.

Proof. Suppose that the base curve $\mathbf{r}(s)$ is the orthogonal trajectory through a point of R and that $\mathbf{e}_{1}(s), \ldots, \mathbf{e}_{n}(s)$ constitute a natural base system (this means that $\mathbf{e}_{i} \mathbf{e}_{j}=\delta_{i j}$ and $\left.\mathbf{e}_{i}^{\prime} \mathbf{e}_{j}=0,(i, j=1, \ldots, n), \forall s \in S\right)$. If $\cos \theta_{1}, \ldots, \cos \theta_{n}$ are direction cosines of R with respect to $\mathbf{e}_{1}\left(s_{0}\right), \ldots, \mathbf{e}_{n}\left(s_{0}\right)$ then O_{R} can be represented by

$$
\mathbf{Z}(s, l)=\mathbf{r}(s)+l \sum_{i=1}^{n} \mathbf{e}_{i}(s) \cos \theta_{i}, \quad l \in R, \quad s \in S
$$

In any point $\mathbf{Z}\left(s_{0}, l\right)$ of R, the vector $\mathbf{r}^{\prime}\left(s_{0}\right)+l_{i} \sum_{i=1}^{n} \mathbf{e}_{i}^{\prime}\left(s_{0}\right) \cos \theta_{i}$ is orthogonal with R and orthogonal with $B\left(s_{0}\right)$. The angle of the tangent spaces of O_{R} at the points $p_{1}\left(s_{0}, l_{1}\right)$ and $p_{2}\left(s_{0}, l_{2}\right)$ of R, consequently is the same as the angle between the vectors $\mathbf{r}^{\prime}\left(s_{0}\right)+l_{1} \sum_{i=1}^{n} \mathbf{e}_{i}^{\prime}\left(s_{0}\right) \cos \theta_{i}$ and $\mathbf{r}^{\prime}\left(s_{0}\right)+l_{2} \sum_{i=1}^{n} \mathbf{e}_{i}^{\prime}\left(s_{0}\right) \cos \theta_{i}$ and thus also the same as the angle between the tangent spaces $N_{p_{1}}$ and $N_{p_{2}}$, which completes the proof.

Corollary. If d is the parameter of distribution of the line R, with central point a_{R}, of $B\left(s_{0}\right)$, if d^{\prime} is the parameter of distribution of the line R^{\prime}, parallel with R, through the central point a of $B\left(s_{0}\right)$ and if $\varphi=$ angle $\left(N_{a_{R}}, N_{a}\right)$, then

$$
d=d^{\prime} / \cos \varphi
$$

Proof. Suppose that $\mathbf{e}_{1}(s), \ldots, \mathbf{e}_{n}(s)$ constitute a natural base system, that the vectors $\mathbf{e}_{1}\left(s_{0}\right), \ldots, \mathbf{e}_{n}\left(s_{0}\right)$ are parallel with the principal axes of $B\left(s_{0}\right)$ (this means $\left.\mathbf{e}_{i}^{\prime}\left(s_{0}\right) \mathbf{e}_{j}^{\prime}\left(s_{0}\right)=0 \quad i \neq j(i, j=1, \ldots, n)\right)$ and that $\mathbf{r}(s)$ is the orthogonal trajectory through the central point a_{R} of R (this means if $\cos \theta_{i}(i=1, \ldots, n)$ are the direction cosines of R with respect to $\mathbf{e}_{1}\left(s_{0}\right), \ldots, \mathbf{e}_{n}\left(s_{0}\right)$, that $\left.\mathbf{r}^{\prime}\left(s_{0}\right) \sum_{i=1}^{n} \mathbf{e}_{i}^{\prime}\left(s_{0}\right) \cos \theta_{i}=0\right)$.

Under these conditions, d will be given by

$$
d^{2}=1 / \sum_{i=1}^{n} \mathbf{e}_{i}^{\prime 2}\left(s_{0}\right) \cos ^{2} \theta_{i},
$$

while the principal parameters of distribution of $B\left(s_{0}\right)$ are given by

$$
d_{i}^{2}=\frac{1-\sum_{j=1}^{n} \frac{\left(\mathbf{r}^{\prime}\left(s_{0}\right) \mathbf{e}_{j}^{\prime}\left(s_{0}\right)\right)^{2}}{\mathbf{e}_{j}^{\prime 2}\left(s_{0}\right)}}{\mathbf{e}_{i}^{\prime 2}\left(s_{0}\right)}(i=1, \ldots, n)
$$

The central points a_{R} and a have respective vector coordinates $\mathbf{r}\left(s_{0}\right)$ and

$$
\mathbf{r}\left(s_{0}\right)-\sum_{i=1}^{n} \frac{\mathbf{r}^{\prime}\left(s_{0}\right) \mathbf{e}_{i}^{\prime}\left(s_{0}\right)}{\mathbf{e}_{i}^{\prime 2}\left(s_{0}\right)} \mathbf{e}_{i}\left(s_{0}\right),
$$

and thus we get

$$
\cos ^{2} \varphi=\frac{\left(\left(\mathbf{r}^{\prime}\left(s_{0}\right)-\sum_{i=1}^{n} \frac{\mathbf{r}^{\prime}\left(s_{0}\right) \mathbf{e}_{i}^{\prime}\left(s_{0}\right)}{\mathbf{e}_{i}^{\prime 2}\left(s_{0}\right)} \mathbf{e}_{i}^{\prime}\left(s_{0}\right)\right) \cdot \mathbf{r}^{\prime}\left(s_{0}\right)\right)^{2}}{\left(\mathbf{r}^{\prime}\left(s_{0}\right)-\sum_{i=1}^{n} \frac{\mathbf{r}^{\prime}\left(s_{0}\right) \mathbf{e}_{i}^{\prime}\left(s_{0}\right)}{\mathbf{e}_{i}^{\prime 2}\left(s_{0}\right)} \mathbf{e}_{i}^{\prime}\left(s_{0}\right)\right)^{2}}=1-\sum_{i=1}^{n} \frac{\left(\mathbf{r}^{\prime}\left(s_{0}\right) \mathbf{e}_{i}^{\prime}\left(s_{0}\right)\right)^{2}}{\mathbf{e}_{i}^{\prime 2}\left(s_{0}\right)} .
$$

And

$$
\frac{1}{d^{2}}=\sum_{i=1}^{n} \mathbf{e}_{i}^{\prime 2}\left(s_{0}\right) \cos ^{2} \theta_{i}=\left(\sum_{i=1}^{n} \frac{\cos ^{2} \theta_{i}}{d_{i}^{2}}\right)\left(1-\sum_{i=1}^{n} \frac{\left(\mathbf{r}^{\prime}\left(s_{0}\right) \mathbf{e}_{i}^{\prime}\left(s_{0}\right)\right)^{2}}{\mathbf{e}_{i}^{\prime 2}\left(s_{0}\right)}\right)=\frac{\cos ^{2} \varphi}{d^{\prime 2}},
$$

which has to be proved (for another method see [5]).
Theorem. Consider the orthogonal submanifold $\mathbf{\Sigma}$ containing the k-dimensional subspace K of the generating space $B\left(s_{0}\right)(1 \leqq k \leqq n)$. In each point of $\boldsymbol{\Sigma}$ and in each two-dimensional direction of $\boldsymbol{\Sigma}_{p}, \mathbf{\Sigma}$ and N have the same sectional curvature.

Proof. We first consider the case $k=1$. We call "normal two-dimensional direction" in a point p of N, a two-dimensional direction of N_{p}, defined by a line R of the
generating space B through p and the normal through p on B in N_{p} (that is the tangent to the orthogonal trajectory through p). Consider a (finite) line R of B, with central point a_{R} and parameter of distribution d. In [5] we proved that the sectional curvature K_{σ} of N in the normal two-dimensional direction determined by R in a variable point p of R, which lies at distance t of a_{R}, is given by

$$
\begin{equation*}
K_{\sigma}=-\frac{d^{2}}{\left(d^{2}+t^{2}\right)^{2}} . \tag{2}
\end{equation*}
$$

But d is the parameter of distribution and a_{R} is the central point of the generator R of the orthogonal submanifold of N containing R, and thus (2) gives also the expression of the Gauss curvature of this ruled surface in the point p of R. This proves our purpose for $k=1$.

Next suppose that $k>1$. The orthogonal subsurface determined by a line R of the subspace K of $B\left(s_{0}\right)$, is also an orthogonal submanifold of $\boldsymbol{\Sigma}$ and thus the theorem holds for any two-dimensional direction in the tangent space $\boldsymbol{\Sigma}_{p}$ in a point p of $\boldsymbol{\Sigma}$, which is a normal two-dimensional direction of N_{p}. In [5], we found the following result: suppose that σ is an arbitrary two-dimensional direction of N_{p}. If $K_{\sigma_{0}}$ is the sectional curvature in the normal two-dimensional direction of N_{p}, passing through the line of intersection $\sigma \cap B$, and if δ_{0} is the angle of σ and the normal through p on the generating space B in N_{p}, then

$$
K_{\sigma}=K_{\sigma_{0}} \cos ^{2} \delta_{0} .
$$

And so, since $K_{\sigma_{0}}$ and δ_{0} are the same for N and for $\boldsymbol{\Sigma}$, the theorem is proved.
Theorem. $A(k+1)$-dimensional orthogonal submanifold $\boldsymbol{\Sigma}$ of N is a total geodesic submanifold of N, iff any k-dimensional generating space $K(s)$ of Σ contains k principal axes of the corresponding generating space $B(s)$ of N.

Proof. Suppose that the base curve $\mathbf{r}(s)$ of N is an orthogonal trajectory of N and of $\boldsymbol{\Sigma}$ and that for $s=s_{0}$ the vectors $\mathbf{e}_{1}\left(s_{0}\right), \ldots, \mathbf{e}_{k}\left(s_{0}\right)$ of the natural base system $\mathbf{e}_{1}(s), \ldots, \mathbf{e}_{n}(s)$ of N, are parallel with the generating space $K\left(s_{0}\right)$ of $\boldsymbol{\Sigma}$ in the generating space $B\left(s_{0}\right)$ of N. Then N and $\boldsymbol{\Sigma}$ can be represented by

$$
\mathbf{R}\left(s, l_{1}, \ldots, l_{n}\right)=\mathbf{r}(s)+\sum_{i=1}^{n} l_{i} \mathbf{e}_{i}(s)
$$

and

$$
\mathbf{Z}\left(s, l_{1}, \ldots, l_{k}\right)=\mathbf{r}(s)+\sum_{j=1}^{k} l_{j} \mathbf{e}_{j}(s), \quad l_{i} \in R(i=1, \ldots, n), \quad s \in S
$$

The $n-k$ vectors $\partial \mathbf{R} / \partial l_{r}=\mathbf{e}_{r}(s)(r=k+1, \ldots, n)$ constitute at each point $p\left(s, l_{1}, \ldots, l_{k}\right)$ of Σ an (orthonormal) basis of the $(n-k)$-dimensional space which
is (total) orthogonal with $\boldsymbol{\Sigma}_{p}$ in N_{p}. Thus, $\boldsymbol{\Sigma}$ is total geodesic iff

$$
\mathbf{r}^{\prime \prime} \mathbf{e}_{r}+\sum_{j=1}^{k} l_{j} \mathbf{e}_{j}^{\prime \prime} \mathbf{e}_{r} \equiv 0 \quad \forall l_{j} \in R \quad(j=1, \ldots, k) \quad \text { and } \quad \forall s \in S \quad(r=k+1, \ldots, n) .
$$

These conditions become

$$
\begin{equation*}
\mathbf{r}^{\prime} \mathbf{e}_{r}^{\prime}=0 \quad \forall s \in S \quad(r=k+1, \ldots, n) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{e}_{j}^{\prime} \mathbf{e}_{r}^{\prime}=0 \quad \forall s \in S \quad(j=1, \ldots, k ; r=k+1, \ldots, n) . \tag{4}
\end{equation*}
$$

The n coordinates of the central point a of a general generating space $B(s)$ of N are the solutions of the system of linear equations:

$$
\begin{equation*}
\mathbf{r}^{\prime} \mathbf{e}_{i}^{\prime}+\sum_{t=1}^{n} l_{t} \mathbf{e}_{t}^{\prime} \mathbf{e}_{i}^{\prime}=0 \quad(i=1, \ldots, n) \tag{5}
\end{equation*}
$$

From (3) and (4), we see that the $n-k$ last coordinates of each central point are zero, which means that the central point of a variable generating space $B(s)$ of N belongs to the corresponding generating space $K(s)$ of $\boldsymbol{\Sigma}$. From the conditions (4), there follows that the vectors $\mathbf{e}_{1}(s), \ldots, \mathbf{e}_{k}(s)$ (resp. $\left.\mathbf{e}_{k+1}(s), \ldots, \mathbf{e}_{n}(s)\right)$ in each generating space $B(s)$ are parallel with the space generated by k principal axes of $B(s)$ (resp. $n-k$ princial axes of $B(s))$. This completes the proof.

Corollary. The line of striction of a total geodesic orthogonal submanifold $\mathbf{\Sigma}$ of N is the same as the line of striction of N.

Proof. From the proof of the last theorem, it follows that the line of striction of N is a curve of $\boldsymbol{\Sigma}$. Moreover, the central point of N is determined by the system (5), while the central point of $\boldsymbol{\Sigma}$ is given by the same system, but with $t, i=1, \ldots, k$.

Remarks. 1. The result of the last corollary remains true for any orthogonal submanifold of N which contains the line of striction of N.
2. Suppose that the line of striction of N is an orthogonal trajectory and that $\boldsymbol{\Sigma}$ is a $(k+1)$-dimensional total geodesic orthogonal submanifold of N, then, in the proof of the last theorem, we can take the line of striction of N (and also of Σ) as the base curve. Under these conditions and, with the same notations, the orthogonal submanifold \boldsymbol{N}, represented by

$$
\mathbf{r}(s)+\sum_{r=k+1}^{n} l_{r} \mathbf{e}_{r}(s) \quad l_{r} \in R \quad(r=k+1, \ldots, n), \quad s \in S,
$$

is also total geodesic (because besides the conditions (3) and (4), there holds now: $\left.\mathbf{r}^{\prime} \mathbf{e}_{\boldsymbol{i}}^{\prime}=0, \forall s \in S(i=1, \ldots, k)\right)$. In this case the line of striction of N (and of $\boldsymbol{\Sigma}$ and $\boldsymbol{\mathfrak { R }}$) is a geodesic line of these three manifolds (cfr. theorem of Bonnet; see [5]).
3. Example. Consider a curve $\mathbf{r}(s)(s \in S)$ in R^{5}. The formules of Frenet are $\left(\mathbf{e}_{1}=\mathrm{dr} / \mathrm{d} s\right)$:

$$
\frac{\mathrm{d} \mathbf{e}_{1}}{\mathrm{~d} s}=\frac{\mathbf{e}_{2}}{\varrho_{1}}, \quad \frac{\mathrm{~d} \mathbf{e}_{k}}{\mathrm{~d} s}=-\frac{\mathbf{e}_{k-1}}{\varrho_{k-1}}+\frac{\mathbf{e}_{k+1}}{\varrho_{k}} \quad(k=2,3,4), \quad \frac{\mathrm{d} \mathbf{e}_{5}}{\mathrm{~d} s}=-\frac{\mathbf{e}_{4}}{\varrho_{4}} .
$$

The manifold N represented by

$$
\mathbf{R}\left(s, l_{1}, l_{2}\right)=\mathbf{r}(s)+l_{1} \mathbf{e}_{2}(s)+l_{2} \mathbf{e}_{5}(s), \quad l_{1}, l_{2} \in R, \quad s \in S,
$$

is non-developable iff $1 / \varrho_{2} \neq 0$ and $1 / \varrho_{4} \neq 0$ at each point of the curve $\mathbf{r}(s)$.
The submanifold represented by

$$
\mathbf{Z}(s, l)=\mathbf{r}(s)+l \mathbf{e}_{2}(s) \quad l \in R, \quad s \in S,
$$

is a total geodesic orthogonal submanifold of N.

3. DUAL PARAMETERS OF DISTRIBUTION

We require that from now on $n \geqq 2$. For each finite ($n-2$)-dimensional subspace of each generating space, we can define a new parameter of distribution, which we call a dual parameter of distribution. Suppose that H is a $(n-2)$-dimensional subspace of the generating space $B\left(s_{0}\right)$. In general, there are just two hyperplanes L_{1} and L_{2} of $B\left(s_{0}\right)$, which contain H, which are orthogonal, in such a manner that the $2 n$-dimensional spaces $T_{L_{1}}$ and $T_{L_{2}}$, generated by the tangent spaces of N at the points of L_{1}, resp. of L_{2}, are orthogonal too. (In $B\left(s_{0}\right)$, we obtain a model of an elliptic geometry by stating: distance $p q=$ angle $\left(N_{p}, N_{q}\right)$, for any two (finite or infinite) points p and q of $B\left(s_{0}\right) . L_{1}$ and L_{2} are the hyperplanes of $B\left(s_{0}\right)$ which contain H and which are euclidean and elliptic orthogonal (see [5]))

Theorem. Suppose that L is a variable hyperplane of $B\left(s_{0}\right)$, containing H, which forms with L_{1} the angle $\theta(0 \leqq \theta \leqq \pi / 2)$, while θ^{\prime} is the angle of the hyperplanes T_{L} and $T_{L_{1}}$ of $R^{2 n+1}\left(0 \leqq \theta^{\prime} \leqq \pi / 2\right)$. Then there exists a strict positive dual parameter of distribution δ, for which

$$
\operatorname{tg} \theta=\delta \operatorname{tg} \theta^{\prime}
$$

(It is clear that $1 / \delta$ is the dual parameter of distribution of H, calculated with respect to the hyperplane L_{2}.)

Proof. Suppose that the base curve $\mathbf{r}(s)$ is the orthogonal trajectory through the central point a of the generating space $B\left(s_{0}\right)$, while $\mathbf{e}_{1}(s), \ldots, \mathbf{e}_{n}(s)$ form a natural base system, in such a way that for $s=s_{0}$ the vectors $\mathbf{e}_{1}\left(s_{0}\right), \ldots, \mathbf{e}_{n}\left(s_{0}\right)$ have the same directions as the principal axes of $B\left(s_{0}\right)$ (this means $\mathbf{e}_{i}^{\prime} \mathbf{e}_{j}^{\prime}=0 i \neq j, i, j=1, \ldots, n$,
$\left.s=s_{0}\right)$. In the space $B\left(s_{0}\right)$, we choose an orthogonal coordinate system with origin a and base $\mathbf{e}_{1}\left(s_{0}\right), \ldots, \mathbf{e}_{n}\left(s_{0}\right)$. Consider the hyperquadric $\boldsymbol{\Gamma}$ of $B\left(s_{0}\right)$, given by the equation $\left(d_{i}(i=1, \ldots, n)\right.$ are the principal parameters of distribution of $\left.B\left(s_{0}\right)\right)$

$$
\sum_{i=1}^{n} \frac{x_{i}^{2}}{d_{i}^{2}}=-1
$$

It can be proved (see [5]) that the hyperplanes (of $R^{2 n+1}$), generated by the tangent spaces of N at the points of two hyperplanes of $B\left(s_{0}\right)$, are orthogonal, iff the two hyperplanes of $B\left(s_{0}\right)$ are conjugated with respect to the hyperquadric $\boldsymbol{\Gamma}$ ($\boldsymbol{\Gamma}$ is the absolute hyperquadric of the earlier mentioned model of the elliptic geometry in $B\left(s_{0}\right)$).

First we consider an arbitrary (finite) ($n-2$)-dimensional subspace H of $B\left(s_{0}\right)$, which does not contain the central point a of $B\left(s_{0}\right)$. Then H is the polar space with respect to the absolute hyperquadric Γ of a finite line R, which does not contain a and which thus can be represented by

$$
x_{i}=l_{i}+t \cos \theta_{i} \quad t \in R \quad(i=1, \ldots, n),
$$

with $\left(l_{1}, \ldots, l_{n}\right) \neq(0,0, \ldots, 0)$ and $\sum_{i=1}^{n} \cos ^{2} \theta_{i}=1$. The equations of H are

$$
\sum_{i=1}^{n} \frac{x_{i} \cos \theta_{i}}{d_{i}^{2}}=0, \quad \sum_{i=1}^{n} \frac{x_{i} l_{i}}{d_{i}^{2}}=-1
$$

A variable hyperplane L through H has an equation of the form

$$
\sum_{i=1}^{n} \frac{x_{i}}{d_{i}^{2}}\left(l_{i}+t \cos \theta_{i}\right)=-1
$$

We now determine the ortogonal hyperplanes L_{1} and L_{2} through H for which $T_{L_{1}}$ and $T_{L_{2}}$ are also orthogonal. Thus we look for the common pair $L_{1} \leftrightarrow L_{2}$ of the orthogonal involution of the hyperplanes of $B\left(s_{0}\right)$ through H and of the involution of the conjugate hyperplanes of $B\left(s_{0}\right)$ through H with respect to Γ. By transition on the polar line R, we become on R a first involution, determined by the equation

$$
\sum_{i=1}^{n} \frac{\left(l_{i}+t \cos \theta_{i}\right)\left(l_{i}+t^{\prime} \cos \theta_{i}\right)}{d_{i}^{4}}=0
$$

and a second involution, namely the involution of the conjugate points of R with respect to Γ, with equation

$$
\sum_{i=1}^{n} \frac{\left(l_{i}+t \cos \theta_{i}\right)\left(l_{i}+t^{\prime} \cos \theta_{i}\right)}{d_{i}^{2}}=-1
$$

The common conjugate pair of points of both involutions on R, correspond to the values t_{1} and t_{2} of the parameter, which are the solutions of the quadratic equation

$$
\begin{aligned}
& t^{2}\left(\sum_{i=1}^{n} \frac{l_{i} \cos \theta_{i}}{d_{i}^{2}} \sum_{i=1}^{n} \frac{\cos ^{2} \theta_{i}}{d_{i}^{4}}-\sum_{i=1}^{n} \frac{l_{i} \cos \theta_{i}}{d_{i}^{4}} \sum_{i=1}^{n} \frac{\cos ^{2} \theta_{i}}{d_{i}^{2}}\right)+ \\
+ & t\left(\sum_{i=1}^{n} \frac{l_{i}^{2}}{d_{i}^{2}} \sum_{i=1}^{n} \frac{\cos ^{2} \theta_{i}}{d_{i}^{4}}-\sum_{i=1}^{n} \frac{l_{i}^{2}}{d_{i}^{4}} \sum_{i=1}^{n} \frac{\cos ^{2} \theta_{i}}{d_{i}^{2}}+\sum_{i=1}^{n} \frac{\cos ^{2} \theta_{i}}{d_{i}^{4}}\right)+ \\
+ & \sum_{i=1}^{n} \frac{l_{i} \cos \theta_{i}}{d_{i}^{4}}+\sum_{i=1}^{n} \frac{l_{i} \cos \theta_{i}}{d_{i}^{4}} \sum_{i=1}^{n} \frac{l_{i}^{2}}{d_{i}^{2}}-\sum_{i=1}^{n} \frac{l_{i}^{2}}{d_{i}^{4}} \sum_{i=1}^{n} \frac{l_{i} \cos \theta_{i}}{d_{i}^{2}}=0 .
\end{aligned}
$$

Suppose that the point $l\left(l_{1}, \ldots, l_{n}\right)$ is one of the two points of R we are looking for, or in other words suppose that this quadratic equation has the solution $t=0$, which means that

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{l_{i} \cos \theta_{i}}{d_{i}^{4}}+\sum_{i=1}^{n} \frac{l_{i}^{2}}{d_{i}^{2}} \sum_{i=1}^{n} \frac{l_{i} \cos \theta_{i}}{d_{i}^{4}}-\sum_{i=1}^{n} \frac{l_{i}^{2}}{d_{i}^{4}} \sum_{i=1}^{n} \frac{l_{i} \cos \theta_{i}}{d_{i}^{2}}=0 . \tag{6}
\end{equation*}
$$

Call L_{1} the hyperplane corresponding with l. We find for the angle θ between the variable hyperplane L and L_{1}

$$
\cos \theta=\frac{\sum_{i=1}^{n} \frac{\left(l_{i}+t \cos \theta_{i}\right) l_{i}}{d_{i}^{4}}}{\sqrt{\left(\left(\sum_{i=1}^{n} \frac{l_{i}^{2}}{d_{i}^{4}}\right)^{2}\left(\sum_{i=1}^{n} \frac{\left(l_{i}+t \cos \theta_{i}\right)^{2}}{d_{i}^{4}}\right)\right)}}
$$

while the angle θ^{\prime}, between the hyperplanes T_{L} and $T_{L_{1}}$, is given by

$$
\begin{aligned}
\cos \theta^{\prime}= & \frac{\mathbf{r}^{\prime}\left(s_{0}\right)+\sum_{i=1}^{n} l_{i} \mathbf{e}_{i}^{\prime}\left(s_{0}\right)}{\sqrt{\left(1+\sum_{i=1}^{n} \frac{l_{i}^{2}}{d_{i}^{2}}\right)} \cdot \frac{\mathbf{r}^{\prime}\left(s_{0}\right)+\sum_{i=1}^{n}\left(l_{i}+t \cos \theta_{i}\right) \mathbf{e}_{i}^{\prime}\left(s_{0}\right)}{\sqrt{\left(1+\sum_{i=1}^{n} \frac{\left(l_{i}+t \cos \theta_{i}\right)^{2}}{d_{i}^{2}}\right)}}=} \\
& =\frac{1+\sum_{i=1}^{n} \frac{l_{i}\left(l_{i}+t \cos \theta_{i}\right)}{d_{i}^{2}}}{\sqrt{\left(\left(1+\sum_{i=1}^{n} \frac{l_{i}^{2}}{d_{i}^{2}}\right)\left(1+\sum_{i=1}^{n} \frac{\left(l_{i}+t \cos \theta_{i}\right)^{2}}{d_{i}^{2}}\right)\right)}} .
\end{aligned}
$$

So we find

$$
\operatorname{tg}^{2} \theta=\frac{\left(\sum_{i=1}^{n} \frac{l_{i}^{2}}{d_{i}^{4}}\right)\left(\sum_{i=1}^{n} \frac{\left(l_{i}+t \cos \theta_{i}\right)^{2}}{d_{i}^{4}}\right)-\left(\sum_{i=1}^{n} \frac{\left(l_{i}+t \cos \theta_{i}\right) l_{i}}{\mathrm{~d}_{i}^{4}}\right)^{2}}{\left(\sum_{i=1}^{n} \frac{\left(l_{i}+t \cos \theta_{i}\right) l_{i}}{d_{i}^{4}}\right)^{2}}
$$

and

$$
\operatorname{tg}^{2} \theta^{\prime}=\frac{\left(1+\sum_{i=1}^{n} \frac{l_{i}^{2}}{d_{i}^{2}}\right)\left(1+\sum_{i=1}^{n} \frac{\left(l_{i}+t \cos \theta_{i}\right)^{2}}{d_{i}^{2}}\right)-\left(1+\sum_{i=1}^{n} \frac{l_{i}\left(l_{i}+t \cos \theta_{i}\right)}{d_{i}^{2}}\right)^{2}}{\left(1+\sum_{i=1}^{n} \frac{l_{i}\left(l_{i}+t \cos \theta_{i}\right)}{d_{i}^{2}}\right)^{2}} .
$$

After some calculations, the numerators of the expressions of $\operatorname{tg}^{2} \theta$ and $\operatorname{tg}^{2} \theta^{\prime}$ become respectively

$$
t^{2}\left(\sum_{i=1}^{n} \frac{l_{i}^{2}}{d_{i}^{4}} \sum_{i=1}^{n} \frac{\cos ^{2} \theta_{i}}{d_{i}^{4}}-\left(\sum_{i=1}^{n} \frac{l_{i} \cos \theta_{i}}{d_{i}^{4}}\right)^{2}\right)
$$

and

$$
t^{2}\left(\sum_{i=1}^{n} \frac{\cos ^{2} \theta_{i}}{d_{i}^{2}}+\sum_{i=1}^{n} \frac{l_{i}^{2}}{d_{i}^{2}} \sum_{i=1}^{n} \frac{\cos ^{2} \theta_{i}}{d_{i}^{2}}-\left(\sum_{i=1}^{n} \frac{l_{i} \cos \theta_{i}}{d_{i}^{2}}\right)^{2}\right) .
$$

Moreover, we find using (6)

$$
\left(\sum_{i=1}^{n} \frac{\left(l_{i}+t \cos \theta_{i}\right) l_{i}}{d_{i}^{4}}\right)\left(\sum_{i=1}^{n} \frac{l_{i} \cos \theta_{i}}{d_{i}^{2}}\right)=\left(1+\sum_{i=1}^{n} \frac{l_{i}\left(l_{i}+t \cos \theta_{i}\right)}{d_{i}^{2}}\right)\left(\sum_{i=1}^{n} \frac{l_{i} \cos \theta_{i}}{d_{i}^{4}}\right) .
$$

And so we obtain $\operatorname{tg} \theta=\delta \operatorname{tg} \theta^{\prime}$, with

$$
\delta^{2}=\frac{\left(\sum_{i=1}^{n} \frac{l_{i}^{2}}{d_{i}^{4}}\right)\left(\sum_{i=1}^{n} \frac{\cos ^{2} \theta_{i}}{d_{i}^{4}}\right)-\left(\sum_{i=1}^{n} \frac{l_{i} \cos \theta_{i}}{d_{i}^{4}}\right)^{2}}{\left(\sum_{i=1}^{n} \frac{l_{i}^{2}}{d_{i}^{2}}\right)\left(\sum_{i=1}^{n} \frac{\cos ^{2} \theta_{i}}{d_{i}^{2}}\right)-\left(\sum_{i=1}^{n} \frac{l_{i} \cos \theta_{i}}{d_{i}^{2}}\right)^{2}+\sum_{i=1}^{n} \frac{\cos ^{2} \theta_{i}}{d_{i}^{2}}} \cdot \frac{\left(\sum_{i=1}^{n} \frac{l_{i} \cos \theta_{i}}{d_{i}^{2}}\right)^{2}}{\left(\sum_{i=1}^{n} \frac{l_{i} \cos \theta_{i}}{d_{i}^{4}}\right)^{2}} .
$$

Next, suppose that H contains the central point a and that H is given by the two equations

$$
\begin{align*}
\sum_{i=1}^{n} b_{i} x_{i} & =0 \tag{7}\\
\sum_{i=1}^{n} c_{i} x_{i} & =0 .
\end{align*}
$$

Moreover we require that the hyperplanes L_{1} and L_{2} have respectively the equations (7) and (8), which means that

$$
\sum_{i=1}^{n} b_{i} c_{i}=0 \quad \text { and } \quad \sum_{i=1}^{n} b_{i} c_{i} d_{i}^{2}=0
$$

A variable hyperplane L through H has an equation of the form

$$
\sum_{i=1}^{n}\left(b_{i}+t c_{i}\right) x_{i}=0 .
$$

The angle θ between L and L_{1} is given by

$$
\cos \theta=\frac{\sum_{i=1}^{n}\left(b_{i}+t c_{i}\right) b_{i}}{\sqrt{ }\left(\left(\sum_{i=1}^{n} b_{i}^{2}\right)\left(\sum_{i=1}^{n}\left(b_{i}+t c_{i}\right)^{2}\right)\right)}=\frac{\sum_{i=1}^{n} b_{i}^{2}}{\sqrt{ }\left(\left(\sum_{i=1}^{n} b_{i}^{2}\right)^{2}+t^{2}\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right)\right)},
$$

while the cosinus of the angle θ^{\prime} of T_{L} and $T_{L_{1}}$ becomes

$$
\cos \theta^{\prime}=\frac{\sum_{i=1}^{n} b_{i} d_{i}^{2} \mathbf{e}_{i}^{\prime}\left(s_{0}\right)}{\sqrt{ }\left(\sum_{i=1}^{n} b_{i}^{2} d_{i}^{2}\right)} \cdot \frac{\sum_{i=1}^{n}\left(b_{i}+t c_{i}\right) d_{i}^{2} \mathbf{e}_{i}^{\prime}\left(s_{0}\right)}{\sqrt{ }\left(\sum_{i=1}^{n} b_{i}^{2} d_{i}^{2}+t^{2} \sum_{i=1}^{n} c_{i}^{2} d_{i}^{2}\right)}
$$

or

$$
\cos \theta^{\prime}=\frac{\sum_{i=1}^{n} b_{i}^{2} d_{i}^{2}}{\sqrt{ }\left(\left(\sum_{i=1}^{n} b_{i}^{2} d_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2} d_{i}^{2}+t^{2} \sum_{i=1}^{n} c_{i}^{2} d_{i}^{2}\right)\right)}
$$

From this, we find

$$
\operatorname{tg}^{2} \theta=t^{2} \frac{\sum_{i=1}^{n} c_{i}^{2}}{\sum_{i=1}^{n} b_{i}^{2}} \text { and } \operatorname{tg}^{2} \theta^{\prime}=t^{2} \frac{\sum_{i=1}^{n} c_{i}^{2} d_{i}^{2}}{\sum_{i=1}^{n} b_{i}^{2} d_{i}^{2}}
$$

and so

$$
\operatorname{tg} \theta=\delta \operatorname{tg} \theta^{\prime}
$$

with

$$
\begin{equation*}
\delta=\sqrt{\left(\frac{\sum_{i=1}^{n} b_{i}^{2} d_{i}^{2}}{\sum_{i=1}^{n} c_{i}^{2} d_{i}^{2}} \cdot \frac{\sum_{i=1}^{n} c_{i}^{2}}{\sum_{i=1}^{n} b_{i}^{2}}\right), \quad \text { which has to be proved } . ~ . ~} \tag{9}
\end{equation*}
$$

Next we define dual principal parameters of distribution in the following way: consider the $\frac{1}{2} n(n-1)(n-2)$-dimensional subspaces through the central point a of the generating space $B\left(s_{0}\right)$, which are generated by $(n-2)$ principal axes of $B\left(s_{0}\right)$. These ($n-2$)-dimensional subspaces have, with respect to the coordinate system used in the proof of the last theorem, the equations

$$
x_{i}=x_{j}=0 \quad i \neq j \quad(i, j=1, \ldots, n),
$$

while the corresponding orthogonal hyperplanes, for which the corresponding hyperplanes of $R^{2 n+1}$ are also orthogonal, are given by $x_{i}=0$ and $x_{j}=0$. A dual parameter of distribution of such a $(n-2)$-dimensional subspace is called a dual principal parameter of distribution, and calculated with respect to $x_{i}=0$, we note
it $\delta_{i j}$ (thus, there are two dual principal parameter of distribution $\delta_{i j}$ and $\delta_{j i}$ both belonging to the subspace $x_{i}=x_{j}=0$, and $\delta_{i j} \delta_{j i}=1$).

Theorem. Suppose that $\theta_{i}(i=1, \ldots, n)$ are the (principal) angles between the generating space $B\left(s_{0}\right)$ and a variable generating space $B(s)$. If $\delta_{i j}$ are the dual principal parameters of distribution of $B\left(s_{0}\right)$, then

$$
\delta_{i j}=\left|\frac{\mathrm{d} \theta_{j}}{\mathrm{~d} \theta_{i}}\right|_{s=s_{0}} \quad i \neq j \quad(i, j=1, \ldots, n)
$$

Proof. Note p the shortest distance between $B\left(s_{0}\right)$ and $B(s)$. If $d_{i}(i=1, \ldots, n)$ are the principal parameters of distribution of $B\left(s_{0}\right)$, then one can proof that (see [2.1.])

$$
d_{i}=\left|\frac{\mathrm{d} p}{\mathrm{~d} \theta_{i}}\right|_{s=s_{0}} \quad(i=1, \ldots, n) .
$$

From (9), we get

$$
\delta_{i j}=\frac{d_{i}}{d_{j}},
$$

and thus

$$
\delta_{i j}=\frac{\left|\frac{\mathrm{d} p}{\mathrm{~d} \theta_{i}}\right|_{s=s_{0}}}{\left|\frac{\mathrm{~d} p}{\mathrm{~d} \theta_{j}}\right|_{s=s_{0}}}=\left|\frac{\mathrm{d} \theta_{j}}{\mathrm{~d} \theta_{i}}\right|_{s=s_{0}},
$$

which completes the proof.
Remarks. 1. The dual principal parameters of distribution are not all independent; for instance

$$
\delta_{i j} \delta_{j k}=\delta_{i k} \quad i \neq j \neq k \neq i \quad(i, j, k=1, \ldots, n) .
$$

2. The results of sections 1 and 2 remain true for $(n+1)$-dimensional monosystems N in R^{k} with $k \geqq 2 n+1$. This holds also for the theorems of section 3 if we change some details: for instance, if L is any hyperplane of a generating space B, then T_{L} is now a hyperplane of the $(2 n+1)$-dimensional space generated by the tangent spaces of N at the points of B. Moreover, two general n-dimensional spaces in $R^{k}(k \geqq 2 n+1)$ generate a $(2 n+1)$-dimensional space and in this space we calculate now the shortest distance p and the principal angles θ_{i}.

Bibliography

[1] Gerretsen, J. C. H.: Lectures on Tensor Calculus and Differential Geometry, P. Noordhoff, Groningen, 1962, 202 pp.
[2.1.] Granát, L.: Metrické vlastnosti nerozvinutelných monosystémů V_{n+1} v eukleidovském prostoru $E_{2 n+1}$. Čas. pro pěst. mat., 1966, 91, p. 412-422.
[2.2.] Granát, L.: Metrische Eigenschaften der einparametrigen Systeme von linearen Räumen der Dimension k im Euklidischen Räum E_{n}. Čas. pro pěst. mat., 1968, 93, p. 32-45.
[3] Jůza, M.: Ligne de striction sur une généralisation à plusieurs dimensions d'une surface réglée. Czech. Math. J., 1962, 12 (87), p. 243-250.
[4] Kreyszig, E.: Introduction to Differential Geometry and Riemannian Geometry. Univ. of Toronto press., 1968, 370 pp .
[5] Thas, C.: Een (lokale) studie van de ($m+1$)-dimensionale variëteiten van de n-dimensionale euklidische ruimte $R^{n}(n \geqq 2 m+1$ en $m \geqq 1)$, beschreven door een ééndimensionale familie van m-dimensionale lineaire ruimten. Meded. Kon. Acad. Wet., Lett., Sch. K. van België, jaargang $X X X V I, 1974$, nr. 4, 83 pp.
[6] Vitner, C.: O úhlech lineárních podprostorů v E_{n}. Čas. pro pěst. mat. 87 (1962), p. 415-422.

Author's address: Seminar of Higher Geometry, University of Ghent, Krijgslaan 271 -Gebouw S9, 9000 Gent, Belgium.

