Czechoslovak Mathematical Journal

Jiří Rachůnek

Riesz groups with a finite number of disjoint elements

Czechoslovak Mathematical Journal, Vol. 28 (1978), No. 1, 102-107
Persistent URL: http://dml.cz/dmlcz/101516

Terms of use:

© Institute of Mathematics AS CR, 1978

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

RIESZ GROUPS WITH A FINITE NUMBER OF DISJOINT ELEMENTS

Jiří Rachůnek, Olomouc

(Received January 6, 1976)

Let $G=(G,+, \leqq)$ be an ordered group (henceforth po-group). Two elements $a_{1}, a_{2} \in G$ are disjoint if $a_{1}>0, a_{2}>0, a_{1} \wedge a_{2}=0$, where $a_{1} \wedge a_{2}$ denotes $\inf _{G}\left(a_{1}, a_{2}\right) . A=\left\{a_{1}, \ldots, a_{n}\right\}$ is called a disjoint subset of G if $A \cong G^{+} \backslash\{0\}$ and any two elements $a_{i}, a_{j} \in A, i \neq j$ are disjoint.
P. Conrad in [1] has studied the structure of a lattice-ordered group G satisfying the following condition:
(c) G contains an n-element disjoint subset but does not contain an $(n+1)$ element disjoint subset.
l-groups with the property $\left(\mathrm{c}_{2}\right)$ had been studied by P. Conrad and A. Clifford in [2] and by F. Šik in [8].

Similarly J. Jakubí in [4] has studied a po-group G having the property:
$\left(\mathrm{q}_{2}\right)$ There exist two m-disjoint elements $x, y \in G$ such that if $A \cong G$ is an m disjoint subset and card $A>1$, then $A=\{x, y\}$.
($x, y \in G$ will be called m-disjoint if $0 \in x \wedge y$, where $x \wedge y$ is a multilattice operation in G.)

In this paper, Riesz groups with the property $\left(\mathrm{c}_{n}\right)$ are investigated.
0. Let $G=(G,+, \leqq)$ be a po-group. G will be called an interpolation group if to any $a_{1}, a_{2}, b_{1}, b_{2} \in G$ satisfying $a_{i} \leqq b_{j}(i=1,2 ; j=1,2)$, there exists $c \in G$ such that $a_{i} \leqq c \leqq b_{j}(i=1,2 ; j=1,2)$ (i.e. the ordered set (po-set) (G, \leqq) satisfies the interpolation property). A directed interpolation group is said to be a Riesz group. A po-set S satisfying the interpolation property is said to be an antilatticeordered set if it holds: If $a \wedge b[a \vee b]$ exists in S, then $a \wedge b=a$ or $a \wedge b=$ $=b[a \vee b=a$ or $a \vee b=b]$. A Riesz group $G=(G,+, \leqq)$ is said to be an antilattice if the po-set (G, \leqq) is an antilattice-ordered set. A Riesz group G is an antilattice if and only if it holds: If $a \wedge b=0(a, b \in G)$, then $a=0$ or $b=0$
(See [3, Lemma 7.1].) A po-group G is said to be regular if the existence of $\inf _{G^{+}}(x, y)$ implies the existence of $\inf _{G}(x, y)$ for $x, y \in G^{+} .\left(G^{+}\right.$denotes the positive cone of G.) If G is regular, then $c=\inf _{G^{+}}(x, y)$ implies $c=\inf _{G}(x, y)$.

If $\emptyset \neq A$ is a subset of a group G, then $\langle A\rangle$ will always denote the subgroup of G that is generated by A.

1. Any interpolation group is regular. (See [6].)
2. Let G be a Riesz group satisfying the property $\left(\mathrm{c}_{n}\right)(n \geqq 2)$ and let $\left\{a_{1}, \ldots, a_{n}\right\}$ be an n-element disjoint subset of G. Then

$$
H_{i}=\left\{x \in G: x \wedge a_{j}=0 \text { for all } j \neq i\right\}
$$

is an antilattice-ordered convex subsemigroup with 0 of G^{+}and $G_{i}=\left\langle H_{i}\right\rangle$ is an antilattice-ordered directed convex subgroup of G.

Proof. a) Let $x, y \in H_{i}$, i.e. $x \wedge a_{j}=y \wedge a_{j}=0$ for all $j \neq i$. Then, by [7, Hilfssatz 2], $(x+y) \wedge a_{j}=0$ for all $j \neq i$, and hence H_{i} is a subsemigroup with 0 of G^{+}. It is evident that H_{i} contains with each element x the whole interval $[0, x]$, therefore H_{i} is convex.
b) By a) and by [5, Theorem 2.1], $G_{i}=\left\langle H_{i}\right\rangle$ is a directed convex subgroup of G and $G_{i}^{+}=H_{i}$. Since G_{i} is convex and G is an interpolation group, it follows that also G_{i} is an interpolation group. Let us show that G_{i} is antilattice-ordered. Let $0 \leqq x, y \in G_{i}$ (hence $x, y \in H_{i}$) and let $x \wedge y=0$. Then $x=0$ or $y=0$, for otherwise $\left\{x, y, a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n}\right\}$ would be an $(n+1)$-element disjoint subset of G.
c) From b) and from the regularity of G it follows that H_{i} is antilattice-ordered.
3. Let G be a group, H_{1}, \ldots, H_{n} subsemigroups of G, and let A be the subsemigroup of G that is generated by H_{1}, \ldots, H_{n}. Then $A=H_{1} \oplus \ldots \oplus H_{n}$ (see also [1, p. 173]) will mean that
(1) $A=H_{1}+\ldots+H_{n}$,
(2) $H_{i} \cap\left(H_{1}+\ldots+H_{i-1}+H_{i+1}+\ldots+H_{n}\right)=\{0\}$ for all $i=1, \ldots, n$,
(3) $x_{i}+x_{j}=x_{j}+x_{i}$ for all $x_{i} \in H_{i}, x_{j} \in H_{j}, i \neq j$.
4. Let G be a Riesz group, $H_{1}, \ldots, H_{n}(n \geqq 2)$ convex subsemigroups with 0 of G^{+} such that $H_{i} \cap H_{j}=\{0\}$ for all $i \neq j$, and let A be the subsemigroup of G that is generated by H_{1}, \ldots, H_{n}. Then
a) $A=H_{1} \oplus \ldots \oplus H_{n}$;
b) if $x=x_{1}+\ldots+x_{n}$ where $x_{i} \in H_{i}(i=1, \ldots, n)$, then $x=x_{1} \vee \ldots \vee x_{n}$;
c) A is convex.

Proof．a）Let $x \in H_{i}, y \in H_{j}, i \neq j$ ．If $0 \leqq z \leqq x, y$ ，then the convexity of the subsemigroups H_{i}, H_{j} implies $z \in H_{i} \cap H_{j}$ ，hence $z=0$ ．Since（by 1）any Riesz group is regular，it is $x \wedge y=0$ ．Hence by［7，Hilfssatz 2］it holds $x+y=x \vee y=$ $=y+x$ ，therefore $A=H_{1}+\ldots+H_{n}$ ．

Let $x_{i} \in H_{i} \cap\left(H_{1}+\ldots+H_{i-1}+H_{i+1}+\ldots+H_{n}\right)$ ．Then $x_{i}=x_{1}+\ldots+x_{i-1}+$ $+x_{i+1}+\ldots+x_{n}$ ，where $x_{k} \in H_{k}, k \in\{1, \ldots, n\} \backslash\{i\}$ ．Thus the preceding part implies $x_{i}=x_{1} \vee \ldots \vee x_{i-1} \vee x_{i+1} \vee \ldots \vee x_{n}$ ．

Let further $x_{i} \in H_{i}, x_{j} \in H_{j}, i \neq j$ ．Then $x_{j} \in\left\{x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right\}$ implies $0=x_{i} \wedge x_{j}=\left(x_{1} \vee \ldots \vee x_{i-1} \vee x_{i+1} \vee \ldots \vee x_{n}\right) \wedge x_{j}=x_{j}$ ．Hence $0=x_{j}$ for all $j \neq i$ and thus also $x_{i}=0$ ．Therefore $A=H_{1} \oplus \ldots \oplus H_{n}$ ．
b）The assertion b）is now evident．
c）Let $0 \leqq y \leqq x, x \in A$ ．Then $0 \leqq y \leqq x_{1}+\ldots+x_{n}$ ，where $x_{i} \in H_{i}, i=$ $=1, \ldots, n . G$ is a Riesz group，hence there exist $0 \leqq x_{i}^{\prime} \leqq x_{i}(i=1, \ldots, n)$ such that $y=x_{1}^{\prime}+\ldots+x_{n}^{\prime}$ ．The subsemigroups H_{1}, \ldots, H_{n} are convex，therefore $x_{i}^{\prime} \in H_{i}$ $(i=1, \ldots, n)$ ，i．e．$y \in A$ ．

If G is a po－group，then $G=G_{1} \boxplus \ldots \boxplus G_{n}$ means that G is an o－direct sum of its o－ideals（i．e．normal directed convex subgroups）G_{i} ．

5．Let G be a Riesz group satisfying the property $\left(\mathrm{c}_{n}\right)(n \geqq 2),\left\{a_{1}, \ldots, a_{n}\right\}$ an n－element disjoint subset of $G, H_{i}=\left\{x \in G ; x \wedge a_{j}=0\right.$ for all $\left.j \neq i\right\} \quad(i=$ $=1, \ldots, n), A$ the subsemigroup of G generated by H_{1}, \ldots, H_{n} ．Then $\langle A\rangle=$ $=\left\langle H_{1}\right\rangle ⿴ 囗 十$ 田 $\left\langle H_{n}\right\rangle$ ．

Proof．First let us show that $\langle A\rangle$ is the direct sum $\left\langle H_{1}\right\rangle \oplus \ldots \oplus\left\langle H_{n}\right\rangle$ of the subgroups $\left\langle H_{1}\right\rangle, \ldots,\left\langle H_{n}\right\rangle$ ．Let us prove that for $i \neq j$ it is $H_{i} \cap H_{j}=\{0\}$ ．Let $x \in H_{i} \cap H_{j}$ ．But then $x \wedge a_{k}=0$ for all $k=1, \ldots, n$ and since G has the property $\left(\mathrm{c}_{n}\right), x=0$ ．Hence（by 4）it holds $A=H_{1} \oplus \ldots \oplus H_{n}$ and A is convex with 0 ． Therefore（by［5，Theorem 2．1］）$\langle A\rangle$ is a directed convex subgroup of G and $\langle A\rangle^{+}=A$ ．
Now let us show that $H_{i}(i=1, \ldots, n)$ is invariant in A ．Let $y \in A, y=h_{1}+\ldots$ $\ldots+h_{n}, h_{i} \in H_{i}(i=1, \ldots, n), x \in H_{i}$ ．Then

$$
-y+x+y=-h_{n}-\ldots-h_{1}+x+h_{1}+\ldots+h_{n},
$$

hence by 4

$$
\begin{gathered}
-y+x+y=-h_{i}-h_{n}-\ldots-h_{i+1}-h_{i-1}-\ldots-h_{1}+h_{1}+\ldots \\
\ldots+h_{i-1}+h_{i+1}+\ldots+h_{n}+x+h_{i}=-h_{i}+x+h_{i}
\end{gathered}
$$

Let $j \neq i$ ．Then $0=x \wedge a_{j}=-h_{i}+\left(x \wedge a_{j}\right)+h_{i}$ ，therefore by［7，Hilfssatz 2］

$$
\begin{gathered}
0=\left(-h_{i}+x+h_{i}\right) \wedge\left(-h_{i}+a_{j}+h_{i}\right)= \\
=\left(-h_{i}+x+h_{i}\right) \wedge\left(-h_{i}+h_{i}+a_{j}\right)=\left(-h_{i}+x+h_{i}\right) \wedge a_{j}
\end{gathered}
$$

Hence $-h_{i}+x+h_{i} \in H_{i}$. This implies by [5, Theorem 3.1] that $\left\langle H_{i}\right\rangle(i=1, \ldots, n)$ is a normal subgroup of $\langle A\rangle$.

Now let us prove that $\langle A\rangle=\left\langle H_{1}\right\rangle+\ldots+\left\langle H_{n}\right\rangle$. Let $z \in\langle A\rangle$. Then $z=$ $=x-y$, where $x, y \in A$, i.e. $x=h_{1}^{(x)}+\ldots+h_{n}^{(x)}, y=h_{1}^{(y)}+\ldots+h_{n}^{(y)}, h_{i}^{(x)}, h_{i}^{(y)} \in$ $\in H_{i}, \quad i=1, \ldots, n$. Thus $z=h_{1}^{(x)}+\ldots+h_{n}^{(x)}-h_{n}^{(y)}-\ldots-h_{1}^{(y)} \in\left\langle\left\langle H_{1}\right\rangle, \ldots\right.$ $\left.\ldots,\left\langle H_{n}\right\rangle\right\rangle$. Since $\left\langle H_{i}\right\rangle=H_{i}-H_{i}(i=1, \ldots, n)$ and since all elements of distinct subsemigroups H_{i}, H_{j} commute, it holds also that all elements of $\left\langle H_{i}\right\rangle,\left\langle H_{j}\right\rangle$ commute. Hence $\left\langle\left\langle H_{1}\right\rangle, \ldots,\left\langle H_{n}\right\rangle\right\rangle=\left\langle H_{1}\right\rangle+\ldots+\left\langle H_{n}\right\rangle$, and so $\langle A\rangle \cong$ $\cong\left\langle H_{1}\right\rangle+\ldots+\left\langle H_{n}\right\rangle$. The converse inclusion is evident.
Let now $x \in\left\langle H_{1}\right\rangle+\ldots+\left\langle H_{i-1}\right\rangle+\left\langle H_{i+1}\right\rangle+\ldots+\left\langle H_{n}\right\rangle$. Then

$$
x=h_{1}-h_{1}^{\prime}+\ldots+h_{i-1}-h_{i-1}^{\prime}+h_{i+1}-h_{i+1}^{\prime}+\ldots+h_{n}-h_{n}^{\prime},
$$

where $h_{j}, h_{j}^{\prime} \in H_{j}(j=1, \ldots, i-1, i+1, \ldots, n)$, and thus

$$
\begin{gathered}
x=h_{1}+\ldots+h_{i-1}+h_{i+1}+\ldots+h_{n}-h_{n}^{\prime}-\ldots-h_{i+1}^{\prime}-h_{i-1}^{\prime}-\ldots-h_{1}^{\prime}= \\
\\
=\left(h_{1}+\ldots+h_{i-1}+h_{i+1}+\ldots+h_{n}\right)- \\
\\
-\left(h_{1}^{\prime}+\ldots+h_{i-1}^{\prime}+h_{i+1}^{\prime}+\ldots+h_{n}^{\prime}\right) .
\end{gathered}
$$

Hence $x \in\left\langle H_{1}+\ldots+H_{i-1}+H_{i+1}+\ldots+H_{n}\right\rangle$. Therefore $\left\langle H_{1}\right\rangle+\ldots+$ $+\left\langle H_{i-1}\right\rangle+\left\langle H_{i+1}\right\rangle+\ldots+\left\langle H_{n}\right\rangle=\left\langle H_{1}+\ldots+H_{i-1}+H_{i+1}+\ldots+H_{n}\right\rangle$.
It is clear that $B^{(i)}=H_{1}+\ldots+H_{i-1}+H_{i+1}+\ldots+H_{n}$ is a subsemigroup with 0 of G^{+}. Indeed, all elements from any distinct summands commute. Let us show that $B^{(i)}$ is convex. Let $0 \leqq y \leqq h_{1}+\ldots+h_{i-1}+h_{i+1}+\ldots+h_{n}, h_{j} \in H_{j}$, $j=1, \ldots, i-1, i+1, \ldots, n$. Since G is a Riesz group, $y=\bar{h}_{1}+\ldots+\bar{h}_{i-1}+$ $+\bar{h}_{i+1}+\ldots+\bar{h}_{n}$ where $0 \leqq \bar{h}_{j} \leqq h_{j}, j=1, \ldots, i-1, i+1, \ldots, n . H_{j}$ being convex implies $\bar{h}_{j} \in H_{j}$, and hence $y \in B^{(i)}$.

Now, since G is a Riesz group it follows by [5, Theorems 2.1, 2.4, 3.1]

$$
\begin{aligned}
& \left(\left\langle H_{i}\right\rangle \cap\left(\left\langle H_{1}\right\rangle+\ldots+\left\langle H_{i-1}\right\rangle+\left\langle H_{i+1}\right\rangle+\ldots+\left\langle H_{n}\right\rangle\right)\right)^{+}= \\
& \quad=\left(\left\langle H_{i}\right\rangle \cap\left\langle H_{1}+\ldots+H_{i-1}+H_{i+1}+\ldots+H_{n}\right\rangle\right)^{+}= \\
& \quad=\left\langle H_{i}\right\rangle^{+} \cap\left\langle H_{1}+\ldots+H_{i-1}+H_{i+1}+\ldots+H_{n}\right\rangle^{+}= \\
& \quad=H_{i} \cap\left(H_{1}+\ldots+H_{i-1}+H_{i+1}+\ldots+H_{n}\right)=\{0\} .
\end{aligned}
$$

The subgroup $\left\langle H_{i}\right\rangle \cap\left(\left\langle H_{1}\right\rangle+\ldots+\left\langle H_{i-1}\right\rangle+\left\langle H_{i+1}\right\rangle+\ldots+\left\langle H_{n}\right\rangle\right)$ is directed, thus also $\left\langle H_{i}\right\rangle \cap\left(\left\langle H_{1}\right\rangle+\ldots+\left\langle H_{i-1}\right\rangle+\left\langle H_{i+1}\right\rangle+\ldots+\left\langle H_{n}\right\rangle\right)=\{0\}$. Therefore $\langle A\rangle=\left\langle H_{1}\right\rangle \oplus \ldots \oplus\left\langle H_{n}\right\rangle$.

Let now $0 \leqq x \in\langle A\rangle, x=x_{1}+\ldots+x_{n}, x_{i} \in\left\langle H_{i}\right\rangle, i=1, \ldots, n$. Since the subgroups $\left\langle H_{i}\right\rangle$ are directed, it holds

$$
0 \leqq x_{1}+\ldots+x_{n} \leqq \bar{x}_{1}+\ldots+\bar{x}_{n}
$$

where $\bar{x}_{i} \in U\left(x_{i}, 0\right) \cap\left\langle H_{i}\right\rangle, i=1, \ldots, n .(U(x, y)$ means the set of all upper bounds
of a subset $\{x, y\}$ in G ．）And since G is a Riesz group，there exist $0 \leqq u_{i} \leqq \bar{x}_{i}(i=$ $=1, \ldots, n$ ）such that

$$
x_{1}+\ldots+x_{n}=u_{1}+\ldots+u_{n} .
$$

$\left\langle H_{i}\right\rangle$ being convex，it is $u_{i} \in\left\langle H_{i}\right\rangle, i=1, \ldots, n$ ．And since $\langle A\rangle$ is the direct sum of its subgroups $\left\langle H_{i}\right\rangle, 0 \leqq x_{i}=u_{i}, i=1, \ldots, n$ ．Therefore $\langle A\rangle=\left\langle H_{1}\right\rangle \boxplus \ldots$ ．．．$\left.⿴ 囗 H_{n}\right\rangle$ ．

6．Let A be a Riesz group such that $A=A_{1} \boxplus \ldots$ 解，where A_{1}, \ldots, A_{n} are antilattices，$A_{i} \neq\{0\}(i=1, \ldots, n)$ ．Then A satisfies the condition $\left(\mathrm{c}_{n}\right)$ ．

Proof．Let $x_{i} \in A_{i}^{+} \backslash\{0\}, i=1, \ldots, n$ ．Then，by the proof 4 a$), x_{i} \wedge x_{j}=0$ for $i \neq j$ ．Thus A contains an n－element disjoint subset．Let $Y=\left\{y_{1}, \ldots, y_{n}, y_{n+1}\right\}$ be an $(n+1)$－element disjoint subset in $A, y_{j}=y_{j 1}+\ldots+y_{j n}, y_{j i} \in A_{i}, j=1, \ldots, n$ ， $n+1, i=1, \ldots, n$ ．But then for each $j \neq k$ and for each $i=1, \ldots, n$ it is $y_{j i} \wedge y_{k i}=$ $=0$ ．Since every A_{i} is an antilattice，$y_{j i}=0$ or $y_{k i}=0$ ．Therefore it must hold that at most one of the $y_{1 i}, \ldots, y_{n i}, y_{n+1, i}$ is strictly positive．But this means that some of the elements $y_{1}, \ldots, y_{n}, y_{n+1}$ is equal to 0 ，thus Y is not a disjoint subset in A ．There－ fore A has the property $\left(\mathrm{c}_{n}\right)$ ．

Throughout the following G will denote a Riesz group with the property $\left(\mathrm{c}_{n}\right)$ $(n \geqq 2),\left\{a_{1}, \ldots, a_{n}\right\}$ an n－element disjoint subset in $G, H_{i}=\left\{x \in G ; x \wedge a_{j}=0\right.$ for all $j \neq i\}(i=1, \ldots, n), A$ a subsemigroup of G that is generated by the sub－ semigroups H_{1}, \ldots, H_{n} ．

7．Let $0<b_{i} \in H_{i}, i=1, \ldots, n$ ，and let $K_{i}=\left\{x \in G ; x \wedge b_{j}=0\right.$ for all $\left.j \neq i\right\}$ ． Then $H_{i}=K_{i}, i=1, \ldots, n$ ．

Proof．Let $x \in H_{i}, i \neq j$ and let $0 \leqq y \in G$ such that $y \leqq b_{j}, x$ ．Then the convexity of H_{i}, H_{j} yields $y \in H_{j} \cap H_{i}$ ，hence $y=0$ ．Therefore $x \wedge b_{j}=0$ for all $j \neq i$ ， and so $x \in K_{i}$ ．This implies $H_{i} \cong K_{i}$ ．

Similarly $K_{i} \subseteq H_{i}$ ．
8．If $\left\{b_{1}, \ldots, b_{n}\right\}$ is an n－element disjoint subset of G ，then $\left\{b_{1}, \ldots, b_{n}\right\} \subseteq A$ ． Moreover，there exists a permutation φ on $\{1, \ldots, n\}$ such that $b_{i} \in H_{i \varphi}$ for all $i=1, \ldots, n$ ．

Proof．Let $i \neq j$ and let $\neg\left(b_{k} \wedge a_{i}=0\right), \neg\left(b_{k} \wedge a_{j}=0\right)$ ．Since G is a Riesz group，there exist $c_{k i}, c_{k j}$ such that $0<c_{k i} \leqq b_{k}, a_{i} ; 0<c_{k j} \leqq b_{k}, a_{j}$ ．But then $\left\{b_{1}, \ldots, b_{k-1}, c_{k i}, c_{k j}, b_{k+1}, \ldots, b_{n}\right\}$ is an $(n+1)$－element disjoint subset of G ．This means that it holds $\neg\left(b_{k} \wedge a_{i}=0\right)$ for at most one $i \in\{1, \ldots, n\}$ ，therefore $b_{k} \in H_{i}$ for some i ．But since H_{i} is antilattice－ordered，no two of the b_{k}＇s can belong to the same H_{i} ．

9．$\langle A\rangle$ is a normal subgroup of G ．

Proof. Let $i \neq j, x, y \in G, y \leqq-x+a_{i}+x, y \leqq-x+a_{j}+x$. Then $x+$ $+y-x \leqq a_{i}, a_{j}$, hence $x+y-x \leqq 0$. This means $y \leqq-x+x=0$. Therefore it holds $\left(-x+a_{i}+x\right) \wedge\left(-x+a_{j}+x\right)=0$. Hence by $8,0<-x+a_{i}+x \in$ $\in H_{i \varphi}$ for all i, where φ is a permutation on $\{1, \ldots, n\}$. Thus by 7 ,

$$
-x+A+x=-x+\left(H_{1} \oplus \ldots \oplus H_{n}\right)+x \cong H_{1 \varphi} \oplus \ldots \oplus H_{n \varphi}=A
$$

Then, by [5, Theorem 3.1], $\langle A\rangle$ is normal in G.

References

[1] Conrad, P.: The structure of a lattice-ordered group with a finite number of disjoint elements, Michigan Math. J., 7 (1960), 171-180.
[2] Conrad, P. and Clifford, A. H.: Lattice ordered groups having at most two disjoint elements, Proc. Glasgow Math. Assoc., 4 (1960), 111-113.
[3] Fuchs, L.: Riesz groups, Ann. Scuola Norm. Sup. Pisa, Ser. III, 19 (1965), 1-34.
[4] Jakubik, J.: Partially ordered groups with two disjoint elements, Colloq. Math., 21 (1970), 39-44.
[5] Rachi̊nek, J.: Directed convex subgroups of ordered groups, Acta Univ. Palack. Olomucensis, Fac. rer. nat., 41 (1973), 39-46.
[6] Rachůnek, J.: Prime subgroups of ordered groups, Czechoslovak Math. J., 24 (99) (1974), 541-551.
[7] Šik, F.: Zum Diş̧unktivitätsproblem auf geordneten Gruppen, Math. Nachr., 25 (1963), 85-93.
[8] Šik, F.: Struktur und Realisierungen von Verbandsgruppen III, Mem. Fac. Cie. Univ. Habana, vol. 1, no. 4 (1966), 1-20.

Author's address: 77146 Olomouc, Leninova 26, ČSSR (Přírodovědecká fakulta UP).

