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RIESZ GROUPS WITH A FINITE NUMBER 
OF DISJOINT ELEMENTS 

JiRi RACHUNEK, Olomouc 

(Received January 6, 1976) 

Let G = (G, + , ^ ) be an ordered group (henceforth po-group). Two elements 
cii, ^2 e G are disjoint if a^ > 0, «2 > ^̂  a^ л «2 = Ö? where a^ л «2 denotes 
infß («1, «2). ^ = («1, ..., a„} is called a disjoint subset of G if ^ g G"*" \ {0} and any 
two elements a,-, a^ e Л, / Ф j are disjoint. 

P. CONRAD in [1] has studied the structure of a lattice-ordered group G satisfying 
the following condition : 

(c„) G contains an «-element disjoint subset but does not contain an (n + 1)-
element disjoint subset. 

/-groups with the property (C2) had been studied by P. CONRAD and A. CLIFFORD 
in [2] and by F. SIK in [8]. 

Similarly J. JAKUBIK in [4] has studied a po-group G having the property: 

(^2) There exist two m-disjoint elements x, y e G such that if Л g G is an m-
disjoint subset and card Ä > 1, then Ä = {x, j } . 

[x, y e G will be called m-disjoint if 0 e л; л j , where x л у is a multilattice opera
tion in G.) 

In this paper, Riesz groups with the property (c„) are investigated. 

0. Let G = (G, + , ^ ) be a po-group. G will be called an interpolation group 
if to any a^, «2, b^, 62 e G satisfying a,- ^ bj (i = 1, 2; j = 1, 2), there exists с e G 
such that üi S с S bj (i = 1, 2;j = 1, 2) (i.e. the ordered set (po-set) (G, ^ ) satisfies 
the interpolation property). A directed interpolation group is said to be a Riesz 
group. A po-set S satisfying the interpolation property is said to be an antilattice-
ordered set if it holds: If a л Ь[а v Ь] exists in S, then а л Ь = а о г а л Ь = 
= b\_a V b = a or a V b = b"]. A Riesz group G = (G, + , ^ ) is said to be an 
antilattict. if the po-set (G, ^ ) is an antilattice-ordered set. A Riesz group G is an 
antilattice if and only if it holds: If a л Ь = 0 (a, Ь G G), then a =̂  О or Ь = О 
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(See [3, Lemma 7.1].) A po-group G is said to be regular if the existence of'mfQ+(x, y) 
imphes the existence of infG(x, y) for x, y e G^. (G^ denotes the positive cone of G.) 
If G is regular, then с = mfQ+(x, y) implies с = infG(x, y). 

If 0 Ф Л is a subset of a group G, then <Л> will always denote the subgroup of G 
that is generated by Ä. 

1. Any interpolation group is regular. (See [6].) 

2. Let G be a Riesz group satisfying the property (c„) (n ^ 2) and let (a j , ..., a„} 
be an n-element disjoint subset of G. Then 

Hi = {x G G : x A aj = 0 for all j ф i} 

is an antilattice-ordered convex subsemigroup with 0 of G^ and Gi = <Я,> is an 
antilattice-ordered directed convex subgroup of G. 

Proof, a) Let x, у e Hi, i.e. x A aj = у A aj = 0 for all j ф i. Then, by [7, 

Hilfssatz 2], (x + j') л aj = 0 for all j ф /, and hence Hi is a subsemigroup with 0 
of G^. It is evident that Hi contains with each element x the whole interval [0, x] , 
therefore Hi is convex. 

b) By a) and by [5, Theorem 2.1], Ĝ  = <Hj> is a directed convex subgroup of G 
and G^ = Hi. Since Ĝ  is convex and G is an interpolation group, it follows that 
also Gl is an interpolation group. Let us show that Ĝ  is antilattice-ordered. Let 
0 ^ X, y e Gl (hence x, y e Hi) and let x л y = 0. Then x = 0 or y = 0, for other
wise {x, j ; , «1, ..., fl._i, a, + i, ..., a„} would be an [n + l)-element disjoint subset 
of G. 

c) From b) and from the regularity of G it follows that Hi is antilattice-ordered. 

3. Let G be a group, Я^, ..., H„ subsemigroups of G, and let A be the subsemigroup 
of G that is generated by Я ^ , . . . , H„. Then A ^ H^® ... @ H„ (see also [1, p. 173]) 
will mean that 

(1) A = H, + . . . + Я „ 
(2) Hin{H, + ... + Я,._1 + Я, + 1 + ... + Я,) - {0} for all i = 1, ..., n, 
(3) X,- + Xj = x̂ - + Xi for all X,- e Hi, Xj e Hj, i Ф j . 

4. Let G be a Riesz group, Я^, ..., Я„ (n ^ 2) convex subsemigroups with 0 o/G"^ 
лмс/г that Hi n Я^ = {O} for all i Ф j , and let A be the subsemigroup of G that is 
generated by H^, ..., Я„. Then 

a) A = H,@ ...@H,^; 
b) i/ X = Xĵ  + ... + x„ where Xj G HI (/ = 1, ..., n), then x = x^ v ... v x„; 
c) A is convex. 
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Proof, a) Let x e Я^, у e Hj, / Ф j . If 0 ^ z ^ x, y, then the convexity of the 
subsemigroups Я -̂, Hj impHes z eHin Hj, hence z = 0. Since (by 1) any Riesz 
group is regular, it is x л у = 0. Hence by [7, Hilfssatz 2] it holds x-\-y = xvy = 
= у + X, therefore Л = Я^ + .. . + Я„. 

Let x^eЯ, -п(Я1 + .. + я^_1 + Я,:+1 + .. + Я„). Then х,- = х^ + .. . + x^„i + 
+ Xf+j + ... + х„, where Xj^eHj,, /с e {1, ..., п} \ {/}. Thus the preceding part 
implies x̂  = x^ v .. . v х^_| v x̂  + i v .. . v x„. 

Let further x,- e Hi, Xj e Hj, i ф j . Then Xj e (x^, ..., x,_ i, x^+1, ..., x„} implies 
0 = Xj л Xj = (X| V .. . V X/-_i V Xi+i V ... V x„) л Xj = Xj. Hence 0 = Xj for 
all j Ф / and thus also x̂  = 0. Therefore /I = Я | © ... © Я„. 

b) The assertion b) is now evident. 
c) Let 0 ^ J ^ X, xe A, Then 0 ^ j ^ x^ + ... + x„, where x^ 6 Я,-, f = 

= 1, . . . , « . G is a Riesz group, hence there exist 0 ^ x- ^ x^ (i = 1, ..., n) such that 
J = xi + .. . + x^. The subsemigroups Я^, ..., Я„ are convex, therefore x[eHi 
{i = 1 , . . . , и), i.e. j ;ev4. 

If G is a po-group, then G = Gj Ш ... Ш G,, means that G is an o-direct sum of 
its o-ideals (i.e. normal directed convex subgroups) G,-. 

5. Let G be a Riesz group satisfying the property (c„) (n ^ 2), {^i, ..., a„} an 
n-element disjoint subset of G, Я,- = {x e G; x л Ду = 0 for all j ф г} (f = 
= 1 , . . . , n), Л the subsemigroup of G generated by Я ^ , . . . , Я„. Then (A} = 
= <Я1>ш...ш<я„>. 

Proof. First let us show that {A} is the direct sum (Я^ ) © .. . © <Я„> of the 
subgroups <Я1>, ..., <Я„>. Let us prove that for i Ф J it is Я,- n Я^ = {O}. Let 
X e Hi n Hj. But then x л aj^ ~ 0 for all /c = 1, ..., n and since G has the property 
(c„), X = 0. Hence (by 4) it holds A = H^ ® ... @ H„ and A is convex with 0. 
Therefore (by [5, Theorem 2.1]) <Л> is a directed convex subgroup of G and 
<АУ = A. 

Now let us show that H^ (г = 1, ..., n) is invariant in A. Let у e A, у = h^ + . . . 
. . . + /ï„, /7,- G Hi (î = 1, ..., n), X e Hi. Then 

- J + X + Ĵ  = - /î„ - . ., - /?1 + X + /îj + . . . + /?„ , 

hence by 4 

~ y + X + y = -hi -~~ h^ - .., - hi^y ~ /?i_i - . . . - - /?i + /ii + . . . 

. . . + /i^_i + /7,-+i + . . . + //„ + X + /îj = -hi -^ X + hi. 

Let j Ф /. Then 0 = x; л a^ = —/?,. + (x л a^) + /?,-, therefore by [7, Hilfssatz 2] 

0 = {-hi + X + /i,.) A{~hi + ttj -b /j^) = 

= (-/ï,- + X + /if) л (~/7^ + /?i + üj) = ( - f t . + X + ft,.) A ay . 
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Hence -/г,- + X + /îj e Я^. This implies by [5, Theorem 3.1] that <Я,> (/ = 1, ..., n) 
is a normal subgroup of {Л}. 

Now let us prove that <Л> - ( Я ^ ) + ... + <Я„>. Let z e <Л>. Then z = 
= X - j ; , where x, >' 6 Л, i.e. x = h^^ + ... + /zi"\ у = h['^ + ... + /i^^'\ hf\ /î /> 6 
е Я „ / = 1, ..., п. Thus z = /ii"> + .. . + hi""^ ~ h['^ - .. . - /î /> e « Я ^ Х ... 
..., < Я „ » . Since <Я^> = Hi — Hi {i = ! , . . . , « ) and since all elements of distinct 
subsemigroups Hi, Hj commute, it holds also that all elements of <(Я;>, <(Я̂ .> 
commute. Hence ЦН^}, ..., < Я „ » = ( Я ^ ) + .. . + <Я„>, and so <Л> g 
g (Я^ ) 4- ... + <Я„>. The converse inclusion is evident. 

Let now xe(H,} + .. . + <Я,._1> + <Я,.+ 1> + .. . + <Я„>. Then 

X = /i^ - /?; + . . . + /7f_i - /^;_i + /2,4.^ - hi+^ + . . . Л- K - h'n, 

where /ly, /?j e Яу (j = 1, ..., / — 1, f + 1, ..., и), and thus 

X = /7i + .. + / î , - i 4- /2,-+i + . . . + /ï„ - /7̂  - . . . - /z;+i - /?;-i ~ . . . - /li = 

= (/i, + ... + //,-1 + /î,-+i + ... + К) -

~{h[ + ... + h[_, + /z;+i + .. . + h;). 

Hence xe{H^ + .. . + Я^.^ + Я^+х + .. . + Я„>. Therefore (Я^ ) + .. . + 
+ <Я,_1> + <Я,+ 1> + .. + <Я„> = <Я1 + . . . + Я,_1 + Я,+ 1 + . . . + Я„>. 

It is clear that Б '̂̂  = Я^ + ... + Я^.^ + Я^+1 + . . . + Я„ is а subsemigroup 
with О of G^. Indeed, all elements from any distinct summands commute. Let us 
show that Б '̂̂  is convex. Let 0 ^ j ^ /ẑ  + . . . + /7,_i + /Zf+i + .. . + h„, hje Hj, 
7 = 1, . . . , / — 1, i + 1, ..., n. Since G is a Riesz group, y = E^ + ... + hi-^ + 
+ ß^+i + .. . + Я„ where 0 ^ Яу ^ /ly, j = 1, ..., i — 1, f + 1, ..., n. Hj being 
convex implies йу e Яу, and hence у G B^^\ 

Now, since G is a Riesz group it follows by [5, Theorems 2.1, 2.4, 3.1] 

«Hi}n{iH,} + ... + <Я,_,> + <Я,^,> + ... + <Я,»)-^ = 

= «я,> n <Я1 + ... + я,_, + я,+, + ... + н.уу = 
= <Я,>+ п <Я1 + ... + Hi., + Я , ^ , + ... + Н,У = 

= Hin{H, + ... + Hi., +Hi^, + ... + Я „ ) = {0] . 

The subgroup <Я, ->п«Я1> + ... + <Я;_1> + <Я,.+ 1> + ... + <Я„» is directed, 
thus also {Hi}n{<^H,y + ... + <Hi.,y + <Я,+ 1> + ... + <Я„» = {O}. There
fore {A} = <я^>е . . . е<я ,> . 

Let now 0 й Х6<Л>, X = X, + ... -\- x„, x,-e <Я^>, / = 1, ..., п. Since the 
subgroups <Я^> are directed, it holds 

0 ^ x i + . . . + x„ ^ x i + ... + x„, 

where .x, e 1/(х/, 0) n <Я,>, i = i, ..., п. (t/(x, .v) means the set of all upper bounds 
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of a subset {x, y} in G.) And since G is a Riesz group, there exist 0 g ŵ  ^ x^ (/ == 
= 1, ..., ?i) such that 

Xi + . . . + X^ = III + .- . + W„. 

<Я^> being convex, it is г/| G <Я^>, / = 1, ..., п. And since <^> is the direct sum of 
its subgroups <Я^>, 0 ^ Xf = ŵ , i = 1, ..., n. Therefore {A} = {Hi} Ш ... 
. . .Ш<Я„>. 

6. Let A be a Riesz group such that A = A^ Ш •-. Ш A,^, where A^, ..., A„ are 
antilattices, A^ Ф {0} (i = 1, ..., n). Then A satisfies the condition (c„). 

Proof. Let XiE At \ { 0 } , / = 1, ..., n. Then, by the proof 4a), x̂  л Xj = 0 for 
/ 4= J. Thus A contains an n-element disjoint subset. Let Y = {yи -"•> Упу Уп+i be 
an {n + l)-element disjoint subset in A, yj = yji + ... + Уу„, yji e A^, j = 1, .... n, 
П + 1, i = 1, ..., n. But then for each j ф к and for each i = 1, ..., n it is yji л j^ i = 
= 0. Since every A^ is an antilattice, yji = 0 or yj,i = 0. Therefore it must hold that 
at most one of the уц, ..., y„i, у„ + и is strictly positive. But this means that some of 
the elements j i , ..., y„, j ^+ i is equal to 0, thus 7is not a disjoint subset in A. There
fore A has the property (c„). 

Throughout the following G will denote a Riesz group with the property (c„) 
(n ^ 2), («1, ..., a„} an n-element disjoint subset in G, Я,- = {x e G; x л â - = 0 
for all j Ф i} {i = 1, ..., /î), Л a subsemigroup of G that is generated by the sub-
semigroups Hi, ..., Я„. 

7. Let 0 < biG Hi, i = 1, ..., n, an<i /e/ Ki = {x e G; x л by = 0 / o r all j ф /}. 
T/ien Я^ = iCi, / = ] , . . . , fi. 

Proof. Let X e Я -̂, i Ф j and let 0 ^ j e G such that y ^ b^, x. Then the convexity 
of Hi, Hj yields y e Hj n Hi, hence j^ = 0. Therefore x л by = 0 for all j ф /, 
and so X G Kl. This implies Я̂ - g Ki. 

Similarly Ki g Я^. 

8. / / [bi, ..., Ь„} is an n-element disjoint subset of G, then {bi, ..., b,,} ^ A. 
Moreover, there exists a permutation cp on {1, ..., n} such that bisHi^ for all 
г = 1, ..., п. 

Proof. Let / Ф j and let "~l(b̂ t л ai = 0), 1{Ь^ л aj = О). Since G is a Riesz 
group, there exist q^, ĉ ŷ such that 0 < q̂ - ^ b̂ t, a ;̂ 0 < ĉ ĵ = h^ ^j- ^^^ then 

b„} is an {n + l)-element disjoint subset of G. This 
means that it holds ~](Ь^ л â  = 0) for at most one i G {l, ..., n}, therefore b^ G Я,-
for some i. But since Я^ is antilattice-ordered, no two of the biJs can belong to the 
same Я;. 

9. <Л> /5 a normal subgroup of G. * 
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Proof. Let I Ф j , X, y € G, y ^ ~x + a^ -\- x, y ^ —x + ÜJ + x. Then x + 
+ J — X ^ öj, öfy, hence x + j — x ^ 0. This means y ^ —x + x = 0. Therefore 
it holds ( — X + â  + x) л ( —x + Uj + x) = 0. Hence by 8, 0 < ~ x + «̂  + x e 
€ Hifp for all Ï, where cp is a permutation on {1, ..., n]. Thus by 7, 

-X + Л + X = ~x + (я^ e . . . ея„) + X g Hi,̂ , e ... ея„^ = Л. 
Then, by [5, Theorem 3.1], <^> is normal in G. 

References 

[1 ] Conrad, P.: The structure of a lattice-ordered group with a finite number of disjoint elements, 
Michigan Math. J., 7 (1960), 171-180. 

{2] Conrad, P. and Clifford, A. H.: Lattice ordered groups having at most two disjoint elements, 
Proc. Glasgow Math. Assoc, 4 (1960), 111 — 113. 

[3] Fuchs, L.: Riesz groups, Ann. Scuola Norm. Sup. Pisa, Ser. Ill , 19 (1965), 1 — 34. 
[4] Jakubik, J.: Partially ordered groups with two disjoint elements, Colloq. Math., 21 (1970), 

39-44 . 
[5] Rachûnek, J.: Directed convex subgroups of ordered groups. Acta Univ. Palack. Olomucen-

sis, Fac. rer. nat., 41 (1973), 39-46 . 
[6] Rachunek. J.: Prime subgroups of ordered groups, Czechoslovak Math. J., 24 {99) (1974), 

541-551. 
[7] Sik, F.: Zum Disjunktivitätsproblem auf geordneten Gruppen, Math. Nachr., 25 (1963), 

8 5 - 9 3 . 
[8] Sik, F.: Struktur und Realisierungen von Verbandsgruppen III, Mem. Fac. Cie. Univ. 

Habana, vol. 7, no. 4 (1966), 1-20. 

Author's address: 111 46 Olomouc, Leninova 26, CSSR (Pfirodovëdeckâ fakulta UP). 

107 


		webmaster@dml.cz
	2020-07-03T01:14:52+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




