Czechoslovak Mathematical Journal

Ján Jakubík

Archimedean kernel of a lattice ordered group

Czechoslovak Mathematical Journal, Vol. 28 (1978), No. 1, 140-154

Persistent URL: http://dml.cz/dmlcz/101520

Terms of use:

© Institute of Mathematics AS CR, 1978

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ARCHIMEDEAN KERNEL OF A LATTICE ORDERED GROUP

Ján Jakubík, Košice

(Received February 18, 1976)

For any archimedean lattice ordered group H we denote by $D(H)$ the Dedekind closure of H (cf. e.g. [1], Chap. XIII, § 13). Under the natural embedding, H is an l-subgroup of $D(H)$ such that for each element $x_{0} \in D(H)$ there exists a subset $X \cong$ $\subseteq H$ that is upper bounded in H with $x_{0}=\sup X$.
Let G be a lattice ordered group. We denote by $\mathscr{A}(G)$ the set of all convex l-subgroups of G that are archimedean. The set $\mathscr{A}(G)$ is partially ordered by inclusion. In $\S 1$ of this paper it will be shown that $\mathscr{A}(G)$ possesses the greatest element $A(G)$. The convex l-subgroup $A(G)$ is said to be the archimedean kernel of G.

Let \mathscr{G} be the class of all lattice ordered groups and let \mathscr{R} be a nonempty subclass of \mathscr{G} such that the following conditions are fulfilled:
$(\alpha) \mathscr{R}$ is closed with respect to isomorphisms.
(β) If $K \in \mathscr{R}$ and K_{1} is a convex l-subgroup of K, then $K_{1} \in \mathscr{R}$.
(γ) If $K_{2} \in \mathscr{G}$ and if $\left\{K_{i}\right\}_{i \in I}$ is a set of convex l-subgroups of K_{2} belonging to \mathscr{R}, then $\bigvee_{i \in K} K_{i} \in \mathscr{R}$.

Under these assumptions \mathscr{R} is called a radical class [5]. If, moreover, \mathscr{R} is closed with respect to homomorphisms, then \mathscr{R} is said to be a torsion class (Martinez [6]). From the existence of the archimedean kernel we easily obtain that the class \mathscr{A} of all archimedean lattice ordered groups is a radical class.

It is well-known that a homomorphic image of an archimedean lattice ordered group need not be archimedean; hence \mathscr{A} fails to be a torsion class.
In § 2 we construct, for each $G \in \mathscr{G}$, a lattice ordered group $D_{1}(G)$ fulfilling the following conditions:
(i) G is an l-subgroup of $D_{1}(G)$.
(ii) $D(A(G))$ is an l-ideal of $D_{1}(G)$.
(iii) If $x \in G$ and X is a nonempty subset of $x+A(G)$ such that X is upper bounded in $x+A(G)$, then there is $x_{0} \in D_{1}(G)$ with $\sup X=x_{0}$.
(iv.) For each $x_{0} \in D_{1}(G)$ there exists $x \in G$ and $X \subseteq x+A(G)$ such that X is upper bounded in $x+A(G)$ and $x_{0}=\sup X$.

Thus, in particular, $D_{1}(G)$ is an amalgam of the lattice ordered groups G and $D(A(G))$ with the common l-subgroup $A(G)$. If G is archimedean, then $D_{1}(G)=D(G)$. Hence $D_{1}(G)$ is a generalization of the notion of the Dedekind closure which can be employed also for non-archimedean lattice ordered groups. $D_{1}(G)$ will be called the generalized Dedekind closure of G. The lattice ordered group $D_{1}(G)$ is determined by the conditions (i)-(iv) up to isomorphisms.

Further, it is shown that $A(G)$ is a closed l-ideal in G and that $D(A(G))$ is a closed l-ideal in $D_{1}(G)$. If $X \subseteq G$ and if g is the least upper bound of X in G, then g is also the least upper bound of X in $D_{1}(G)$ (and dually). A problem is proposed concerning the relations between $D_{1}(G)$ and the extension of G that was defined by L. Fuchs in [3] (Chap. V, § 10).

In § 3, some relations between G and $D_{1}(G)$ are established; e.g., it is shown that if G is abelian and divisible, then so is $D_{1}(G)$. There exists a one-to-one correspondence between the polars of G and the polars of $D_{1}(G)$. If G is representable, then $D_{1}(G)$ is representable as well.

For the basic notions and notation cf. Birkhoff [1], Conrad [2], Fuchs [3]. In what follows all lattice ordered groups are written additively though they are not assumed to be abelian.

1. THE ARCHIMEDEAN KERNEL

Let G be a lattice ordered group. Let $\mathscr{A}(G)$ be as above and let $\mathscr{A}_{1}(G)$ be the set (partially ordered by inclusion) of all convex l-subgroups of G that are abelian.
1.1. Lemma. $\mathscr{A}_{1}(G)$ possesses the greatest element.

Proof. Each variety of representable l-groups being a torsion class [6], the assertion follows from (γ).

The greatest element of $\mathscr{A}_{1}(G)$ will be denoted by $A_{1}(G)$. Since each archimedean lattice ordered group is abelian, we have $A \subseteq A_{1}(G)$ for each archimedean l-subgroup A of G.

An element $0<g$ of a lattice ordered group K will be called archimedean in K if for each $0<x \in K$ there exists a positive integer n such that $n x$ non $\leqq g$. If g is archimedean in K and $0<g_{1} \in K, g_{1}<g$, then g_{1} is archimedean in K.
1.2. Lemma. Let a, b be archimedean elements of an abelian lattice ordered group K. Then $a \vee b$ is archimedean in K.

Proof. Denote $a-a \wedge b=a_{1}, b-a \wedge b=b_{1}$. Then

$$
\begin{equation*}
a \vee b=a \wedge b+a_{1}+b_{1} \tag{1}
\end{equation*}
$$

Assume that $a \vee b$ fails to be archimedean. Then there is $0<z \in K$ such that $n z<$ $<a \vee b$ for each positive integer n. We have either $a \wedge b=0$ or $a \wedge b$ is archimedean. Hence there is a positive integer n_{1} such that $n_{1} z$ non $\leqq a \wedge b$. Put

$$
x=n_{1} z-\left(n_{1} z \wedge a \wedge b\right) .
$$

Thus $x>0$. At the same time we have

$$
x=n_{1} z \vee(a \wedge b)-a \wedge b \leqq a \vee b-a \wedge b=a_{1}+b_{1}=a_{1} \vee b_{1}
$$

since $a_{1} \wedge b_{1}=0$. This implies

$$
x=\left(x \wedge a_{1}\right) \vee\left(x \wedge b_{1}\right)
$$

and either $x \wedge a_{1}$ or $x \wedge b_{1}$ is strictly positive. Without loss of generality we may assume that $x_{1}=x \wedge a_{1}>0$. Since $x_{1} \leqq x \leqq n_{1} z$, we have $n x_{1} \leqq a \vee b$ for each positive integer n. There is a positive integer n_{2} with $n_{2} x_{1}$ non $\leqq a$. From (1) and from $n_{2} x_{1} \leqq a \vee b$ we obtain that there are elements $y_{1}, y_{2}, y_{3} \in K$ with $0 \leqq y_{1} \leqq a \wedge b, 0 \leqq y_{2} \leqq a_{1}, 0 \leqq y_{3} \leqq b_{1}$ such that

$$
n_{2} x_{1}=y_{1}+y_{2}+y_{3}
$$

In view of $x_{1} \leqq a_{1}$ we have $x_{1} \wedge b_{1}=0$ and hence $n_{2} x_{1} \wedge b_{1}=0$. Thus $y_{3}=0$ and therefore $n_{2} x_{1}=y_{1}+y_{2} \leqq a \wedge b+a_{1}=a$, which is a contradiction.
1.3. Lemma. Let a be an archimedean element of an abelian lattice ordered group K. Then $2 a$ is archimedean in K.

Proof. Suppose that $2 a$ fails to be archimedean. Then there is $0<x \in K$ such that $2 n x<2 a$ for each positive integer n, and hence $n x<a$ for each positive integer n, which is a contradiction.
1.4. Lemma. Let K be an abelian lattice ordered group and let K_{1} be the set of all elements $a \in K$ such that either $a=0$ or $|a|$ is archimedean. Then K_{1} is a convex l-subgroup of K.

Proof. If $a \in K_{1}$, then $-a \in K_{1}$. Let $a, b \in K_{1}$. Then $|a|,|b| \in K_{1}$ and thus by Lemma 1.2, $|a| \vee|b| \in K_{1}$. According to Lemma 1.3 we have $2(|a| \vee|b|) \in K_{1}$. If $c \in K, 0<c \leqq|a|$, then clearly $c \in K_{1}$. Since

$$
|a|+|b| \leqq 2(|a| \vee|b|),
$$

we infer that $|a|+|b| \in K_{1}$. From this and from $|a+b| \leqq|a|+|b|$ we obtain $a+b \in K_{1}$. Hence K_{1} is a subgroup of K. Since $a \in K_{1}$ implies $|a| \in K_{1}$, иe infer that K_{1} is directed. Being convex in K, it follows that K_{1} is an l-subgroup of K.
1.5. Theorem. Let G be a lattice ordered group. There exists a convex l-subgroup $A(G)$ of G such that $(\mathrm{a}) A(G)$ is archimedean, and (b) if G_{1} is a convex l-subgroup of G and if G_{1} is archimdean, then $G_{1} \subseteq A(G)$.

Proof. Put $A_{1}(G)=K$ and let K_{1} be as in Lemma 1.4. Then K_{1} is a convex l subgroup of G and is archimedean. Let G_{1} be a convex l-subgroup of G and suppose that G_{1} is archimedean. Then G_{1} is abelian, thus $G_{1} \cong K$. Moreover, each strictly positive element of G_{1} must be archimedean in K, hence $G_{1}^{+} \subseteq K_{1}$. This implies $G_{1} \cong K_{1}$. Now we may put $K_{1}=A(G)$.
1.6. Corollary. The class \mathscr{A} of all archimedean lattice ordered groups is a radical class.

Proof. Obviously \mathscr{A} fulfils (α) and (β). Let $G \in \mathscr{G}$ and let $\left\{G_{i}\right\}_{i \in I}$ be a set of convex archimedean l-subgroups of G. Then $G_{i} \cong A(G)$ and hence $\bigvee G_{i} \cong A(G)$. According to (β) we obtain $\bigvee G_{i} \in \mathscr{A}$.
1.7. Lemma. For each $G \in \mathscr{G}, A(G)$ is an l-ideal of G.

Proof. $A(G)$ being a convex l-subgroup of G it suffices to verify that $A(G)$ is normal in G. Let $g \in G$. Then $-g+A(G)+g$ is a convex l-subgroup of G isomorphic with $A(G)$. In particular, $-g+A(g)+g$ is archimedean. Hence according to Theorem 1 we have $-g+A(g)+g \cong A(G)$.

When no ambiguity can occur, we shall write often A instead of $A(G)$.

2. CONSTRUCTION OF $D_{1}(G)$

Let L be a lattice. For $X \subseteq L$ we denote by X^{u} and X^{l} the set of all upper bounds or the set of all lower bounds of the set X in L, respectively. Let L_{1} be the system of all sets of the form $\left(X^{u}\right)^{l}$, where X is any nonempty upper bounded subset of L. Then L_{1} (partially ordered by inclusion) is a conditionally complete lattice; the set L_{2} of all principal ideals of L is a sublattice of L_{1} isomorphic with L and each element of L_{1} is a join of some elements of L_{2}. Hence there is a conditionally complete lattice $d(L)$ such that L is a sublattice of $d(L)$ and each element x_{0} of $d(L)$ is a join of a subset X of L such that X is upper bounded in L; also, there is a subset Y of L such that Y is lower bounded in L and x_{0} is the meet of the set Y in $d(L)$. The lattice $d(L)$ is determined uniquely up to isomorphism.

Let G be a lattice ordered group. Denote $A(G)=A$. For each class $x+A(x \in G)$ we construt the lattice $d(x+A)$. We may assume that $d(x+A) \cap d(y+A)=\emptyset$ whenever $x+A \neq y+A$ and that $d(x+A)=D(A)$ for $x=0$. Put

$$
S=\bigcup_{x \in G} d(x+A) .
$$

We define a binary operation + on the set S as follows. Let $x_{0}, y_{0} \in S$. There are elements $x, y \in G$ with $x_{0} \in d(x+A), y_{0} \in d(y+A)$. Let X_{0} be the set of all elements $x_{i} \in x+A$ with $x_{i} \leqq x_{0}$, and let Y_{0} have the analogous meaning. Then X_{0} and Y_{0}
are upper bounded in $x+A$ or $y+A$, respectively. Hence the set $Z_{0}=\left\{x_{i}+y_{i}\right.$: $\left.: x_{i} \in X_{0}, y_{i} \in Y_{0}\right\}$ is an upper bounded subset of $x+y+A$ (cf. Lemma 1.7). Thus there exists $z_{0}=\sup Z_{0}$ in $d(x+y+A)$. We put $x_{0}+y_{0}=z_{0}$.

If $x_{0}, y_{0} \in G$, then clearly $x_{0}+y_{0}$ in S coincides with the original operation $x_{0}+y_{0}$ in G. Analogously, for $x_{0}, y_{0} \in D(A)$ the operation $x_{0}+y_{0}$ in S gives the same result as the operation $x_{0}+y_{0}$ in $D(A)$.

Let $X_{1} \subseteq X_{0}, \quad Y_{1} \subseteq Y_{0}, \sup X_{1}=x_{0}$ and $\sup Y_{1}=y_{0}$. Denote $Z_{1}=\left\{x_{i}^{\prime}+y_{i}^{\prime}\right.$ $\left.: x_{i}^{\prime} \in X_{1}, y_{i}^{\prime} \in Y_{1}\right\}$.
2.1. Lemma. $\sup Z_{1}=x_{0}+y_{0}$.

Proof. The set Z_{1} is upper bounded in $x+y+A$, hence sup $Z_{1}=u$ exists in $d(x+y+A)$. Let $u_{1} \in x+y+A, u_{1} \geqq u$. For each $x_{i}^{\prime} \in X_{1}$ and each $y_{j}^{\prime} \in Y_{1}$ we have $u_{1} \geqq x_{i}^{\prime}+y_{i}^{\prime}, u_{1}-y_{j}^{\prime} \geqq x_{i}^{\prime}$, hence $u_{1}-y_{j}^{\prime} \geqq x_{i}$ for each $x_{i} \in X_{0}$. From $-x_{i}+u_{1} \geqq y_{j}^{\prime}$ we infer that $-x_{i}+u_{1} \geqq y_{j}$ for each $y_{j} \in Y_{0}$. Therefore $u_{1} \geqq$ $\geqq x_{i}+y_{j}$. This implies $u_{1} \geqq x_{0}+y_{0}$. Hence $u \geqq x_{0}+y_{0}$. Since $X_{1} \cong X_{0}$, $Y_{1} \cong Y_{0}$, we have $u \leqq x_{0}+y_{0}$. Thus $u=x_{0}+y_{0}$.
2.2. Lemma. The operation + on S is associative.

Proof. Let $x_{0}, y_{0}, t_{0} \in S$ and let x, y, X_{1}, Y_{1} be as above. There is $t \in G$ and $T_{1} \subseteq t+A$ such that sup $T_{1}=t_{0}$ holds in $d(t+A)$. Lemma 2.1 implies

$$
\begin{gathered}
\left(x_{0}+y_{0}\right)+t_{0}=\sup \left\{\left(x_{1}+y_{1}\right)+t_{1}: x_{1} \in X_{1}, y_{1} \in Y_{1}, t_{1} \in T_{1}\right\}= \\
=x_{0}+\left(y_{0}+t_{0}\right) .
\end{gathered}
$$

2.3. Lemma. $0+x_{0}=x_{0}+0=x_{0}$ for each $x_{0} \in S$.

This follows immediately from Lemma 2.1.
2.4. Lemma. For each $x_{0} \in S$ there are elements $x \in G$ and $a \in D(A)$ such that $x_{0}=x+a$.

Proof. There is $x \in G$ with $x_{0} \in d(x+A)$ and a set $X_{1} \subseteq x+A$ such that $x_{0}=\sup X_{1}$ is valid in $d(x+A)$ and X_{1} is upper bounded in $x+A$. Put $X_{2}=$ $=\left\{-x+x_{i}: x_{i} \in X_{1}\right\}$. Then X_{2} is an upper bounded subset of A. Thus there is $a=\sup X_{2}$ in $D(A)$. From Lemma 2.1 we obtain $x_{0}=x+a$.
2.5. Lemma. $(S ;+)$ is a group.

Proof. From Lemma 2.2 and Lemma 2.3 it follows that it suffices to verify that for each element $x_{0} \in S$ there is $y_{0} \in S$ with $x_{0}+y_{0}=0$. Let $x_{0} \in S$ and let x, a be as in Lemma 2.4. Put $y_{0}=-a+(-x)$. Then $x_{0}+y_{0}=0$ by Lemma 2.2.

Let x_{0}, x and X_{0} be as above. We denote

$$
\left(x_{0}\right)=\left\{y \in G: y \geqq x_{i} \text { for each } x_{i} \in X_{0}\right\}, \quad\left(x_{0}\right)^{v}=\left(x_{0}\right) \cap(x+A)
$$

Let $X_{1} \subseteq X_{0}$ with $\sup X_{1}=x_{0}$ in $d(x+A)$. Clearly

$$
\left(x_{0}\right)=\left\{z \in G: z \geqq x_{i}^{\prime} \text { for each } x_{i}^{\prime} \in X_{1}\right\} .
$$

We define a binary relation \leqq on S as follows. For $x_{0}, y_{0} \in S$ we put $x_{0} \leqq y_{0}$ if $\left(y_{0}\right) \leqq\left(x_{0}\right)$. For $x_{0}, y_{0} \in G$ the relation $x_{0} \leqq y_{0}$ coincides with the relation $x_{0} \leqq y_{0}$ in G, and analogously for $x_{0}, y_{0} \in D(A)$. The relation \leqq on S is obviously reflexive and transitive.
2.6. Lemma. Let $x_{0}, y_{0} \in S, x_{0} \leqq y_{0}$ and $y_{0} \leqq x_{0}$. Let $x, y \in G, x_{0} \in d(x+A)$, $y_{0} \in d(y+A)$. Then $x+A=y+A$.

Proof. There are elements $x_{1}, t_{1} \in x+A, y_{1}, t_{2} \in y+A$ with $t_{1} \geqq x_{0} \geqq x_{1}$, $t_{2} \geqq y_{0} \geqq y_{1}$. From $x_{0} \leqq y_{0}, y_{0} \leqq x_{0}$ we infer that $x_{1} \leqq t_{2}, y_{1} \leqq t_{1}$. Then in the factor l-group G / A we have

$$
\begin{gathered}
\left(x_{1}+A\right) \vee\left(y_{1}+A\right)=\left(x_{1} \vee y_{1}\right)+A \leqq\left(t_{1} \wedge t_{2}\right)+A= \\
=\left(t_{1}+A\right) \wedge\left(t_{2}+A\right)=\left(x_{1}+A\right) \wedge\left(y_{1}+A\right),
\end{gathered}
$$

hence $x_{1}+A=y_{1}+A$. Thus $x+A=y+A$.
2.7. Lemma. Let $x_{0}, y_{0} \in S, x_{0} \leqq y_{0}$ and $y_{0} \leqq x_{0}$, Then $x_{0}=y_{0}$.

Proof. According to Lemma 2.6 there is $x \in G$ such that x_{0} and y_{0} belong to $d(x+A)$. Moreover, we have $\left(x_{0}\right)=\left(y_{0}\right)$ and hence $\left(x_{0}\right)^{v}=\left(y_{0}\right)^{v}$. Therefore $x_{0}=y_{0}$.

We have verified that the relation \leqq is a partial order on S.
2.8. Lemma. Let $x_{0}, y_{0}, z_{0} \in S, x_{0} \leqq y_{0}$. Then $x_{0}+z_{0} \leqq y_{0}+z_{0}$.

Proof. Let $x \in G$ with $x_{0} \in d(x+A)$ and let $\left\{x_{i}\right\}$ be the set of all elements of $x+A$ that are less or equal to x_{0}. Let y, y_{j} and z, z_{k} have the analogous meaning with respect to y_{0} and z_{0}. We have

$$
\begin{aligned}
& x_{0}+z_{0}=\sup \left\{x_{i}+z_{k}\right\} \quad(\text { in } d(x+z+A)), \\
& y_{0}+z_{0}=\sup \left\{y_{j}+z_{k}\right\} \quad(\text { in } d(y+z+A)) .
\end{aligned}
$$

Let $t \in G, t \in\left(y_{0}+z_{0}\right)$. Then $y_{j}+z_{k} \leqq t$ for each y_{j} and each z_{k}. Hence $y_{j} \leqq$ $\leqq t-z_{k}$ and so $y_{0} \leqq t-z_{k}$ for each z_{k}. Thus $x_{0} \leqq t-z_{k}$, hence $x_{i} \leqq t-z_{k}$, $x_{i}+z_{k} \leqq t$ for each x_{i} and each z_{k}. Thus $t \in\left(x_{0}+z_{0}\right)$. Therefore $x_{0}+z_{0} \leqq$ $\leqq y_{0}+z_{0}$.
Analogously we obtain: if $x_{0}, y_{0}, z_{0} \in S, x_{0} \leqq y_{0}$, then $z_{0}+x_{0} \leqq z_{0}+y_{0}$. Thus $(S,+, \leqq)$ is a partially ordered group.

2.9. Lemma. S is lattice ordered.

Proof. Let $x_{0}, y_{0} \in S$ and let x, y, x_{i}, y_{k} have the same meaning as in the proof of Lemma 2.8. Let Z be the set consisting of all elements $x_{i} \vee y_{k}$. Then Z is an upperbounded subset of $(x \vee y)+A$. Hence there is $z_{0}=\sup Z$ in $(x \vee y)+A$. If $t \in\left(z_{0}\right)$, then $x_{i} \leqq t$ and $y_{j} \leqq t$ for each x_{i} and each y_{j}, hence $x_{0} \leqq z_{0}$ and $y_{0} \leqq z_{0}$. Let $z_{1} \in S, x_{0} \leqq z_{1}, y_{0} \leqq z_{1}$ and let $t_{1} \in\left(z_{1}\right)$. Then $x_{i} \leqq t_{1}$ and $y_{j} \leqq t_{1}$, hence $x_{i} \vee y_{j} \leqq t_{1}$ and thus $z_{0} \leqq z_{1}$. Therefore $z_{0}=x_{0} \vee y_{0}$. This implies that S is a lattice ordered group.
2.10. Lemma. G is an l-subgroup of S and $D(A)$ is an l-ideal in S.

Proof. Let $x_{0}, y_{0} \in G$. From the method of constructing $x_{0} \vee y_{0}$ in S (cf. the proof of Lemma 2.9) it follows that $x_{0} \vee y_{0}$ in S coincides with $x_{0} \vee y_{0}$ in G. Since $x_{0} \wedge y_{0}=-\left(-x_{0} \vee-y_{0}\right)$ holds in G and since G is a subgroup of S we infer that G is an l-subgroup in S. Analogously we verify that $D(A)$ is an l-subgroup in S.

Let $0<x_{0} \in D(A), 0<y_{0} \in S, y_{0}<x_{0}$. There is $y \in G$ with $y_{0} \in d(y+A)$. Further, there are elements $x_{1} \in A, y_{1} \in y+A$ with $0<y_{1} \leqq y_{0}, x_{0}<x_{1}$. Thus $0<y_{1}<x_{1}$ and hence according to Theorem 1.5 we have $y_{1} \in A$. Hence $y \in A$ and so $d(y+A)=D(A)$. Thus $y_{0} \in D(A)$. Therefore $D(A)$ is a convex l-subgroup of S.

Let $d \in D(A)$. There is a subset $\left\{a_{i}\right\}$ in A that is upper bounded in A and such that $d=\mathrm{V} a_{i}$ holds in $D(A)$. This together with the convexity of $D(A)$ in S shows that $d=\bigvee a_{i}$ is valid in S. Let $g \in G$. Then

$$
-g+d+g=-g+\mathrm{V} a_{i}+g=\mathrm{V}\left(-g+a_{i}+g\right)
$$

holds in S and according to Lemma 1.7, $-g+a_{i}+g \in A$. Moreover, the set $\left\{-g+a_{i}+g\right\}$ is upper bounded in A. Hence $-g+d+g$ belongs to $D(A)$ for each $g \in G$; thus $-g+D(A)+g=D(A)$.

Let $x_{0} \in S$ and let x, a be as in 2.4. Then $x_{0}=x+a$ and

$$
-x_{0}+D(A)+x_{0}=-a-x+D(A)+x+a=-a+D(A)+a=D(A)
$$

Hence $D(A)$ is a normal subgroup of S. Thus $D(A)$ is an l-ideal in S.
2.11. Lemma. For each $x \in G$ we have $d(x+A)=x+D(A)$.

Proof. Let $x_{0} \in d(x+A)$. By Lemma 2.4 we have $x_{0}=x+a$ for some $a \in D(A)$. Hence $d(x+A) \cong x+D(A)$. Conversely, let $x_{0} \in x+D(A)$, thus $x_{0}=x+a_{1}$ for some $a_{1} \in D(A)$. There exists an upper bounded subset $\left\{a_{i}\right\}$ of A such that $\vee a_{i}=a_{1}$. Then $\left\{x+a_{i}\right\}$ is an upper bounded subset of $x+A$ and $x+a_{1}=$ $=\sup \left\{x+a_{i}\right\}$ according to the definition of the operation + in S (the operation sup being taken with respect to $d(x+A)$). Hence $x+D(A) \cong d(x+A)$.
2.12. Corollary. Each set $d(x+A)$ is convex in S. Thus if $\left\{x_{i}\right\}$ is an upper bounded subset in $d(x+A)$ and if $x_{0}=\bigvee x_{i}$ holds in $d(x+A)$, then $x_{0}=\bigvee x_{i}$ is valid in S.

Denote $S=D_{1}(G)$.
2.13. Theorem. $D_{1}(G)$ is a lattice ordered group fulfilling the conditions $(i)-(i v)$.

Proof. By Lemma 2.9, $D_{1}(G)$ is a lattice ordered group. According to Lemma 2.10, the conditions (i) and (ii) are fulfilled. The conditions (iii) and (iv) follow from 2.11, 2.12 and from the construction of the set S.
2.14. Proposition. Let $G \in \mathscr{G}$. Then (a) $A\left(D_{1}(G)\right)=D(A)$, and (b) $D_{1}(G)=G$ if and only if $A(G)$ is conditionally complete.

Proof. $D(A)$ being conditionally complete, it is archimedean and hence $D(A) \subseteq$ $\subseteq A\left(D_{1}(G)\right)$. Let $0<x_{0} \in D_{1}(G), x_{0}$ non $\in D(A)$. Then there is $x \in G$ such that $x \notin A$ and $x_{0} \in d(x+A)$. Further, there is $x_{1} \in x+A$ with $0<x_{1} \leqq x_{0}$. Thus x_{1} non $\in A$ and hence there is $0<y \in G$ such that $n y<x_{1} \leqq x_{0}$ holds for each positive integer n. This shows that x_{0} fails to be archimedean. Hence $A\left(D_{1}(G)\right)^{+} \cong D(A)$ and so $A\left(D_{1}(G)\right) \subseteq D(A)$. Therefore (a) is valid.

Let $A(G)$ be conditionally complete. Then $D(A)=A(G)$ and hence according to Lemma 2.4 we have $D_{1}(G)=G$. Conversely, assume that $D_{1}(G)=G$. Then in view of (a) we have

$$
A(G)=A\left(D_{1}(G)\right)=D(A),
$$

hence $A(G)$ is conditionally complete.
2.15. Proposition. Let D^{\prime} be a lattice ordered group. Assume that D^{\prime} fulfils the conditions (i)-(iv) with D^{\prime} instead of $D_{1}(G)$. Then there exists an isomorphism φ of $D_{1}(G)$ onto D^{\prime} such that $\varphi(x)=x$ and $\varphi(a)=a$ for each $x \in G$ and each $a \in$ $\in D(A(G))$.

Proof. Let $x_{0} \in D_{1}(G)$. There is $x \in G$ with $x_{0} \in d(x+A)$. Let $\left\{x_{i}\right\}=X$ be the set of all elements of the set $x+A$ that are less or equal to x_{0}. The set $\left\{x_{i}\right\}$ is bounded in $x+A$ and hence there exists $x_{0}^{\prime}=\sup \left\{x_{i}\right\}$ in D^{\prime} by (iii). Put $\varphi\left(x_{0}\right)=x_{0}^{\prime}$. If $x_{0} \in G$ or $x_{0} \in D(A(G))$, then clearly $\varphi\left(x_{0}\right)=x_{0}$.
(a) Let $\left\{x_{j}^{\prime}\right\}=X_{1} \cong X$ such that $\sup X_{1}=x_{0}$ holds in $D_{1}(G)$. Then the set X_{1} is upper bounded in $x+A$, hence there exists sup $X_{1}=x_{0}^{\prime \prime}$ in D^{\prime}. Both sets $\left\{x_{i}-x\right\}$, $\left\{x_{j}^{\prime}-x\right\}$ are upper bounded subsets in A, hence $\mathrm{V}\left(x_{i}-x\right)$ and $\mathrm{V}\left(x_{j}^{\prime}-x\right)$ belong to $D(A)$. Moreover, since $D(A)$ is an l-ideal in both $D_{1}(G)$ and $D^{\prime}\left(c f\right.$. (ii)), $\mathrm{V}\left(x_{i}-x\right)$ calculated in $D_{1}(G)$ gives the same result as $\bigvee\left(x_{i}-x\right)$ with respect to D^{\prime}, and analogously for $\mathrm{V}\left(x_{j}^{\prime}-x\right)$. By calculating in $D_{1}(G)$ we obtain $\mathrm{V}\left(x_{i}-x\right)=x_{0}-x=$ $=\mathrm{V}\left(x_{j}^{\prime}-x\right)$; in D^{\prime} it holds $\mathrm{V}\left(x_{i}-x\right)=x_{0}^{\prime}-x, \mathrm{~V}\left(x_{j}^{\prime}-x\right)=x_{\mathrm{c}}^{\prime \prime}-x$. Hence $x_{0}^{\prime}=x_{0}^{\prime \prime}$.
(b) Let $y_{0}^{\prime} \in D^{\prime}$. There is $x \in G$ and a subset $Y \cong x+A$ such that Y is upper bounded in $x+A$ and $y_{0}^{\prime}=\sup Y$ in D^{\prime}. There exists $y_{0} \in D_{1}(G)$ with $\sup Y=y_{0}$ in $D_{1}(G)$. According to (a) we have $\varphi\left(y_{0}\right)=y_{0}^{\prime}$. Hence φ is surjective.
(c) Let $x_{0}, y_{0} \in D_{1}(G)$ and suppose that $\varphi\left(x_{0}\right)=\varphi\left(y_{0}\right)$. There are $x, y \in G$ and $X_{1}, Y_{1} \subset G$ such that X_{1} is an upper bounded subset in $x+A, Y_{1}$ is an upper bounded subset in $y+A$ and $\sup X_{1}=x_{0}$, sup $Y_{1}=y_{0}$ holds in $D_{1}(G)$. Then according to (a) we have $\sup X_{1}=\varphi\left(x_{0}\right)=\varphi\left(y_{0}\right)=\sup Y_{1}$ in D^{\prime}. Hence $x-y=$ $=\left(x-\varphi\left(x_{0}\right)\right)+\left(\varphi\left(y_{0}\right)-y\right) \in D(A)$, since both $x-\varphi\left(x_{0}\right)$ and $\varphi\left(y_{0}\right)-y$ belong to $D(A)$ (to verify this, we can use an analogous method as in (a)). Thus without loss of generality we can suppose that $x=y$. By calculating in D^{\prime} we obtain that both elements $\sup \left(X_{1}-x\right), \sup \left(Y_{1}-x\right)$ belong to $D(A)$ and that $\sup \left(X_{1}-x\right)=$ $=\sup \left(Y_{1}-x\right)$ holds in $D(A)$; this implies $\sup X_{1}=\sup Y_{1}$ in $D_{1}(G)$. Hence φ is a monomorphism.
(d) Let $x_{0}, y_{0}, x, y, X_{1}, Y_{1}$ be as in (c) with the distinction that we do not assume $\varphi\left(x_{0}\right)=\varphi\left(y_{0}\right)$. Put $X_{1}=\left\{x_{i}\right\}, Y_{1}=\left\{y_{i}\right\}$.

In $D_{1}(G)$ we have $x_{0}+y_{0}=\sup \left\{x_{i}+y_{j}\right\}$ and the set $\left\{x_{i}+y_{j}\right\}$ is an upper bounded subset of $x+y+A$. Hence in D^{\prime} we get

$$
\varphi\left(x_{0}+y_{0}\right)=\sup \left\{x_{i}+y_{j}\right\}=\bigvee x_{i}+\bigvee y_{j}=\varphi\left(x_{0}\right)+\varphi\left(y_{0}\right) .
$$

Thus φ is an isomorphism with respect to the group operation. Further, in $D_{1}(G)$ we have $x_{0} \vee y_{0}=\sup \left\{x_{i} \vee y_{j}\right\}$ and $\left\{x_{i} \vee y_{j}\right\}$ is an upper bounded subset of $x \vee y+A$. Thus in D^{\prime} it holds

$$
\varphi\left(x_{0} \vee y_{0}\right)=\sup \left\{x_{i} \vee y_{j}\right\}=\vee x_{i} \vee \vee y_{j}=\varphi\left(x_{0}\right) \vee \varphi\left(y_{0}\right) .
$$

Hence φ is an isomorphism with respect to \vee. Since $x_{0} \wedge y_{0}=-\left(\left(-x_{0}\right) \vee\left(-y_{0}\right)\right)$, φ is also an isomorphism with respect to the operation \wedge.
2.16. Theorem. For each lattice ordered group $G, D(A(G))$ is a closed l-subgroup of $D_{1}(G)$.

Proof. It suffices to verify that if $\emptyset \neq\left\{a_{i}^{\prime}\right\}_{i \in I} \cong D(A(G))^{+}$and if $\bigvee a_{i}^{\prime}=b$ holds in $D_{1}(G)$, then $b \in D(A(G))$. Assume that b does not belong to $D(A(G))$. Then there is $0<x \in G$ with $b \in x+D(A(G)), x<b, x$ non $\in A(G)$. Put $a_{i}^{\prime} \wedge x=a_{i}$. From the infinite distributivity of $D_{1}(G)$ we obtain $\bigvee a_{i}=x$. Clearly $\left\{a_{i}\right\}_{i \in I} \cong D(A(G))$.

Since x does not belong to $A(G)$, it fails to be archimedean and hence there is $0<c_{1} \in G$ such that $n c_{1}<x$ for each positive integer n. If $c_{1} \wedge a_{i}=0$ for each $i \in I$, then $c_{1} \wedge x=0$, which is a contradiction. Hence there is $j \in I$ such that $a_{j} \wedge c_{1}=c>0$. Then $c \in D(A(G))$ and $n c<x$ for each positive integer n.

Since $D(A(G))$ is conditionally complete, the element

$$
c_{i}=V\left(a_{i} \wedge n c\right) \quad(n=1,2, \ldots)
$$

exists for each $i \in I$. Let

$$
\begin{gathered}
(c)^{\gamma}=\left\{g \in D_{1}(G):|g| \wedge c=0\right\}, \\
K=\left\{h \in D_{1}(G):|h| \wedge|g|=0 \text { for each } g \in(c)^{\gamma}\right\} .
\end{gathered}
$$

Because $D_{1}(G)$ is a complete lattice ordered group, both K and $(c)^{\gamma}$ are direct factors of $D_{1}(G)$. We shall show that c_{i} is the component of a_{i} in K. It suffices to verify that c_{i} is the greatest element of the set

$$
K_{i}=\left\{k \in K: 0 \leqq k \leqq a_{i}\right\} .
$$

Clearly $c_{i} \in K_{i}$. Suppose that c_{i} fails to be the greatest element of K_{i}. Then there is $0<t_{1} \in D_{1}(G)$ with $t_{1}+c_{i} \in K, t_{1}+c_{i} \leqq a_{i}$. Hence $t_{1} \wedge c=t>0$. For each positive integer n we have

$$
\begin{aligned}
& t+\left(a_{i} \wedge n c\right) \leqq t_{1}+c_{i} \leqq a_{i} \\
& t+\left(a_{i} \wedge n c\right) \leqq c+n c=(n+1) c
\end{aligned}
$$

thus $t+\left(a_{i} \wedge n c\right) \leqq a_{i} \wedge(n+1) c$ and therefore

$$
c_{i}<t+c_{i}=t+\bigvee_{n=1}^{\infty}\left(a_{i} \wedge n c\right)=\bigvee_{n=1}^{\infty}\left(t+\left(a_{i} \wedge n c\right)\right) \leqq \bigvee_{n=2}^{\infty}\left(a_{i} \wedge n c\right)=c_{i}
$$

which is a contradiction. Hence c_{i} is the component of a_{i} in K and therefore

$$
d_{i}=a_{i}-c_{i}
$$

is the component of a_{i} in $(c)^{\gamma}$. This implies immediately that $d_{i} \wedge c_{i}=0$, hence $a_{i}=c_{i} \vee d_{i}$. Further, we have $d_{i} \wedge n c=0$ for each positive integer n, since $n c \in K$ and $d_{i} \in(c)^{\gamma}$.

Let N be the set of all positive integers. Then

$$
x=\bigvee_{i \in I} a_{i}=\bigvee_{i \in I}\left(c_{i} \vee d_{i}\right)=\bigvee_{i \in I} \bigvee_{n \in N}\left(a_{i} \wedge n c\right) \vee d_{i}
$$

Since $n c<x$, we get

$$
x=\bigvee_{i \in I} \bigvee_{n \in N}\left(n c \vee d_{i}\right)
$$

At the same time we have obviously

$$
x=\bigvee_{i \in I} \bigvee_{n \in N}\left((n+1) c \vee d_{i}\right)
$$

Then

$$
\begin{aligned}
& c+x=c+\bigvee_{i \in I} \bigvee_{n \in N}\left(n c \vee d_{i}\right)=\bigvee_{i \in I} \bigvee_{n \in N}\left((n+1) c \vee\left(c+d_{i}\right)\right)= \\
& =\bigvee_{i \in I} \bigvee_{n \in N}\left((n+1) c \vee\left(c \vee d_{i}\right)\right)=\bigvee_{i \in I} \bigvee_{n \in N}\left((n+1) c \vee d_{i}\right) \approx x
\end{aligned}
$$

which is a contradiction, since $c>0$. Thus $b \in D(A(G))$.
2.17. Lemma. Let $x \in G, b_{1} \in D_{1}(G), b_{1} \notin G, b_{1}<x$. Then there is $x_{1} \in G$ with $b_{1}<x_{1}<x$.

Proof. Put $b_{2}=b_{1}-x, b_{3}=-b_{2}$. Then $0<b_{3}$ and $b_{3} \notin G$. Hence there is $Y \cong G^{+}$with $\sup Y=b_{3}$. Choose $0<y \in Y$. We have $-y+x \in G$ and $b_{1}<$ $<-y+x<x$.
2.18. Theorem. For each lattice ordered group $G, A(G)$ is a closed l-subgroup of G.

Proof. Again, it suffices to verify that if $\emptyset \neq\left\{a_{i}\right\}_{i \in I} \subseteq A(G)$ and $b=\bigvee a_{i}$ holds in G, then $b \in A(G)$. If $b=\sup \left\{a_{i}\right\}$ is valid in $D_{1}(G)$, then according to Theorem 2.16 we have $b \in D(A(G))$ and thus, since $b \in G$, we obtain $b \in A(G)$.

Assume that $b \neq \sup \left\{a_{i}\right\}$ in $D_{1}(G)$. Hence there is $b_{1} \in D_{1}(G)$ with $b_{1} \notin G$ such that $a_{i}<b_{1}$ for each $i \in I$ and $b_{1}<b$. According to Lemma 2.17 there is $x_{1} \in G$ with $b_{1}<x_{1}<b$. Hence $a_{i}<x_{1}$ for each $i \in I$, thus $x_{1} \geqq b$, which is a contradiction.
2.19. Corollary. Let $\emptyset \neq\left\{a_{i}\right\}$ be a set of archimedean elements in a lattice ordered group G and let $\bigvee a_{i}=b$ be valid in G. Then b is archimedean in G.
2.20. Proposition. Let $\left\{x_{i}\right\} \subset G$ and let x be the least upper bound of the set $\left\{x_{i}\right\}$ in G. Then x is the least upper bound of the set $\left\{x_{i}\right\}$ in $D_{1}(G)$.

Proof. Since G is an l-subgroup of $D_{1}(G)$, we have $x_{i} \leqq x$ for each x_{i}. Assume that x fails to be the least upper bound of the set $\left\{x_{i}\right\}$ in $D_{1}(G)$. Then there is $y \in D_{1}(G)$ such that $y<x$ and $x_{i} \leqq y$ for each x_{i}. Thus y non $\in G$. Hence $0<x-y$ and $x-y$ does not belong to G. Hence there is $z \in G$ such that $0<z<x-y$. This yields $y<-z+x<x$ and clearly $-z+x \in G, x_{i}<-z+x<x$ for each x_{i}. This is a contradiction.

Analogously we can verify the assertion dual to 2.20 .
Let G be a partially ordered group. In [3], Chap. V, § 10, L. Fuchs has defined an extension of G such that if G is an archimedean lattice ordered group then this extension coincides with $D(G)$; we denote this extension by $F(G)$. Let us recall the definition of $F(G)$.

Let $F_{1}(G)$ be the system consisting of all sets $\left(X^{u}\right)^{l}$, where X is any nonempty subset of G that is upper bounded in G. The system $F_{1}(G)$ is partially ordered by the inclusion. For $X_{1}, Y_{1} \in F_{1}(G)$ we put $X_{1}+{ }_{1} Y_{1}=\left(\left\{x_{1}+y_{1}: x_{1} \in X_{1}, y_{1} \in Y_{1}\right\}^{u}\right)^{l}$. Then $\left(F_{1}(G) ; \leqq,+_{1}\right)$ is a partially ordered semigroup with a neutral element $\left(\{0\}^{u}\right)^{l}$. We denote by $F(G)$ the set of all elements of $F_{1}(G)$ that have an inverse in $F_{1}(G)$. Then $F(G)$ is a partially ordered group. If we identify the element $g \in G$ with $\left(\{g\}^{u}\right)^{l}$, then $F(G)$ turns out to be an extension of G.

Problem 1. Let G be a lattice ordered group. What relations exist between $F(G)$ and $D_{1}(G)$? In particular, when do $F(G)$ and $D_{1}(G)$ coincide? (If this is the case, then the above results give a rather constructive description of the structure of $F(G)$.)

Problem 2. Let G be a partially ordered group. Let $A(G)$ be the system of all convex subgroups G_{1} of G having the property that G_{1} is an archimedean lattice ordered group under the induced partial order. When has $A(G)$ the greatest element?

3. SOME FURTHER PROPERTIES OF THE GENERALIZED DEDEKIND COMPLETION

In what follows G denotes a lattice ordered group.
3.1. Lemma. $D_{1}(G)$ is abelian if and only if G is abelian.

Proof. Since G is an l-subgroup of $D_{1}(G)$, the assertion 'only if' is obvious. Let G be abelian and let $x_{0}, y_{0} \in D_{1}(G)$. Let x, y, X_{0}, Y_{0} be as in the definition of $x_{0}+y_{0}$ (cf. § 2). Then

$$
\begin{aligned}
& x_{0}+y_{0}=\sup \left\{x_{i}+y_{j}: x_{i} \in X_{0}, y_{j} \in Y_{0}\right\}= \\
& =\sup \left\{y_{j}+x_{i}: x_{i} \in X_{0}, y_{j} \in Y_{0}\right\}=y_{0}+x_{0}
\end{aligned}
$$

3.2. Proposition. Let G be abelian and divisible. Then $D_{1}(G)$ is abelian and divisible.

Proof. According to 3.1, $D_{1}(G)$ is abelian. Let $x_{0} \in D_{1}(G)$. There is $x \in G$ such that $x_{0} \in x+D(A)$. Let n be a positive integer. Since G is divisible, there is $y \in G$ with $n y=x$. Put $y_{0}=y+x_{0}-x$. We have $y_{0}-y \in D(A)$. Since A is a convex l-subgroup of G, it must be divisible. In [4] it was shown that if H is an archimedean divisible lattice ordered group, then $D(H)$ is a vector lattice. Thus $D(A)$ is a vector lattice. In particular, $D(A)$ is divisible and hence there is $t \in D(A)$ with $y_{0}-y=n t$. Therefore $x_{0}=x+y_{0}-y=n y+n t=n(y+t)$. Hence $D_{1}(G)$ is divisible.

Let us remark that if G is abelian and divisible, then $D_{1}(G)$ need not be a vector lattice (cf. Example 1 below).

Problem 3. Is $D_{1}(G)$ divisible for each divisible lattice ordered group G ?
3.3. Proposition. Let G be a vector lattice. Then $D_{1}(G)$ is a vector lattice as well.

Proof. Each convex l-subgroup of a vector lattice is again a vector lattice; hence A is a vector lattice. Thus $D(A)$ is a vector lattice as well. Let us choose in each class $x+A$ of the factor l-group G / A a fixed element $x_{1}=f(x+A)$. Let $x_{0} \in D_{1}(G)$. There is $x \in G$ such that $x_{0} \in x+D(A)$. Let $x_{1}=f(x+A)$ and let α be a real. Then $x_{0}-x_{1} \in D(A)$, hence $\alpha\left(x_{0}-x_{1}\right)$ is defined. We put

$$
\alpha x_{0}=\alpha x+\alpha\left(x_{0}-x_{1}\right)
$$

If $x_{0} \in G$ or $x_{0} \in D(A)$, then this definition of αx_{0} coincides with the product αx_{0} defined in G or $D(A)$, respectively. It is a routine to verify that under this definition
of multiplication of elements of $D_{1}(G)$ by reals the lattice ordered group $D_{1}(G)$ turns out to be a vector lattice.

Let $\emptyset \neq X \cong G, \emptyset \neq X_{0} \cong D_{1}(G)$. Denote

$$
\begin{aligned}
& X^{\delta}=\{g \in G:|g| \wedge|x|=0 \text { for each } x \in X\}, \\
& X_{0}^{\beta}=\left\{g_{0} \in D_{1}(G):\left|g_{0}\right| \wedge\left|x_{0}\right|=0 \text { for each } x_{0} \in X_{0}\right\} .
\end{aligned}
$$

X^{δ} and X_{0}^{β} are said to be polars in G and in $D_{1}(G)$, respectively (cf. ŠıK [7]). For each polar X^{δ} of G we denote by $f\left(X^{\delta}\right)$ the set of all elements $y_{0} \in D_{1}(G)$ such that $\left|y_{0}\right|$ is a join of a certain subset of X^{δ}.
3.4. Proposition. For each polar X^{δ} of $G, f\left(X^{\delta}\right)$ is a polar of $D_{1}(G)$. Moreover, f is a one-to-one mapping of the set of all polars of G onto the set of all polars of $D_{1}(G)$.

Proof. Let $y_{0} \in f\left(X^{\delta}\right)$. There is a subset $X_{1}=\left\{x_{j}\right\}$ of X^{δ} with $\left|y_{0}\right|=\mathrm{V} x_{j}$. Without loss of generality we may suppose that $x_{j} \geqq 0$ is valid for each x_{j}. If $x \in X$, then $|x| \wedge x_{j}=0$ for each x_{j} and hence by the infinite distributivity of $D_{1}(G)$ we obtain $|x| \wedge\left|y_{0}\right|=0$. Thus $f\left(X^{\delta}\right) \subseteq X^{\beta}$. Let $y_{1} \in X^{\beta}$. There exists a system $\left\{y_{k}\right\} \subset$ $\subset G^{+}$with $\bigvee y_{k}=\left|y_{1}\right|$. For each $x \in X$ we have $|x| \wedge\left|y_{1}\right|=0$ and hence $|x| \wedge y_{k}=$ $=0$ for each y_{k}. Thus $\left\{y_{k}\right\} \subset X^{\delta}$ and hence $y_{1} \in f\left(X^{\delta}\right)$. Therefore $f\left(X^{\delta}\right)=X^{\beta}$ and so $f\left(X^{\delta}\right)$ is a polar in $D_{1}(G)$.

Let X_{0}^{β} be a polar of $D_{1}(G)$. We denote by X the set of all elements $x \in G$ such that $0 \leqq x \leqq\left|x_{0}\right|$ for some $x_{0} \in X_{0}$. Let $y_{1} \in f\left(X^{\delta}\right)$ and $x_{0} \in X_{0}$. Then there is a subset $\left\{x_{i}\right\} \subseteq X$ and a subset $\left\{y_{j}\right\} \subseteq X^{\delta}$ such that $\left\{x_{i}\right\} \subseteq G^{+},\left\{y_{j}\right\} \subseteq G^{+}$and $\bigvee x_{i}=\left|x_{0}\right|$, $\vee y_{j}=\left|y_{1}\right|$. Using the infinite distributivity of $D_{1}(G)$ we obtain $\left|y_{1}\right| \wedge\left|x_{0}\right|=0$, hence $f\left(X^{\delta}\right) \subseteq X_{0}^{\beta}$. Conversely, let $y_{1} \in X_{0}^{\beta}$. There is a subset $\left\{y_{j}\right\} \subseteq G^{+}$such that $\wedge y_{j}=\left|y_{1}\right|$. Let $x \in X$. There is $x_{0} \in X_{0}$ with $x \leqq\left|x_{0}\right|$. Hence $0 \leqq y_{j} \wedge x \leqq y_{1} \wedge$ $\wedge x_{0}=0$. Thus $\left\{y_{j}\right\} \subseteq X^{\delta}$ and therefore $y_{1} \in f\left(X^{\delta}\right)$. Summarizing, we conclude $X_{0}^{\beta}=f\left(X^{\delta}\right)$. Hence f is onto.

Let X, Y be nonempty subsets of G and suppose that $X^{\delta} \neq Y^{\delta}, f\left(X^{\delta}\right)=f\left(Y^{\delta}\right)$. Without loss of generality we may suppose that X^{δ} is not a subset of Y^{δ}. Thus there are elements $0<x_{1} \in X^{\delta}, y=Y$ such that $x_{1} \wedge|y|>0$. Further, from $f\left(X^{\delta}\right)=$ $=f\left(Y^{\delta}\right)$ we get $x_{1} \in f\left(Y^{\delta}\right)$ and hence by the infinite distributivity $x_{1} \wedge|y|=0$, which is a contradiction. Therefore f is one-to-one.

Each polar of a lattice ordered group is a convex l-subgroup [7]. A lattice ordered group is said to be representable if it is a subdirect product of linearly ordered groups. It is well-k nown that a lattice ordered group is representable if and only if each its polar is a normal subgroup (cf. e.g. [2]).
3.5. Theorem. Let G be a representable lattice ordered group. Then $D_{1}(G)$ is also representable.

To prove this we need the following lemmas.
3.6. Lemma. Let G be a representable lattice ordered group. Let B be a polar in $D_{1}(G)$ and let $g \in G$. Then $-g+B+g=B$.

Proof. As we have already proved there exists a polar B_{1} of G such that for each $0<b \in B$ there is a subset $S \subset B_{1}$ with $\sup S=b$. The mapping $\psi(t)=$ $=-g+t+g\left(t \in D_{1}(G)\right)$ is an automorphism on $D_{1}(G)$, thus $-g+B+g$ is a polar of $D_{1}(G)$. Since G is representable, we have $-g+B_{1}+g=B_{1}$ and thus $B_{1} \subseteq-g+B+g$. Each polar being a closed sublattice (cf. [7]) we obtain $B^{+} \cong$ $\cong-g+B+g$ and hence $B \cong-g+B+g$. By putting $-g$ instead of g we get $B \cong g+B-g$, thus $B=-g+B+g$.
3.7. Lemma. Let G be a representable lattice ordered group. Let B be a polar in $D_{1}(G)$ and let $a \in D(A)$. Then $-a+B+a=B$.

Proof. Because each element of $D(A)$ can be written as a difference of two elements belonging to $D(A)^{+}$, it suffices to prove the assertion for $a>0$. Then there exists a subset $\left\{a_{i}\right\} \subset A^{+}$such that $\left\{a_{i}\right\}$ is upper bounded in A and $\bigvee a_{i}=a$. Let a_{1} be an upper bound of $\left\{a_{i}\right\}$ in A. Without loss of generality we may suppose that $\left\{a_{i}\right\}$ possesses the least element a_{0}. Let $b \in B$. According to 3.6 there are elements b_{i}, b^{\prime} and $b^{\prime \prime}$ in B such that

$$
\begin{equation*}
a_{i}+b=b_{i}+a_{i}, \quad a_{1}+b=b^{\prime}+a_{1} . \tag{2}
\end{equation*}
$$

For $a_{i}=a_{0}$ we denote $b_{i}=b^{\prime \prime}$. All elements $b_{i}, b^{\prime}, b^{\prime \prime}$ belong to $b+D(A)$. We have $a_{i}+b \leqq a_{1}+b$, thus $b_{i}+a_{i} \leqq b^{\prime}+a_{1}$ and hence $b_{i} \leqq b^{\prime}+a_{1}$. Since $b^{\prime}+a_{1} \in b+D(A)$, the set $\left\{b_{i}\right\}$ is upper bounded in $b+D(A)$ and hence there exists a least upper bound b_{1} of the set $\left\{b_{i}\right\}$ in $b+D(A)$. Clearly $b_{1}=\mathrm{V} b_{i}$ is valid in $D_{1}(G)$. Since each polar is a closed sublattice, we get $b_{1} \in B$.

From $a_{0}+b \leqq a_{i}+b$ we obtain $b^{\prime \prime}+a_{0} \leqq b_{i}+a_{i}$ and thus

$$
b^{\prime \prime}+a_{0}-a \leqq b^{\prime \prime}+a_{0}-a_{i} \leqq b_{i}
$$

Since $b^{\prime \prime}+a_{0}-a \in b+D(A)$, the set $\left\{b_{i}\right\}$ is lower bounded in $b+D(A)$ and hence there exists the greatest lower bound b_{2} of $\left\{b_{i}\right\}$ in $b+D(A)$. Then $\Lambda b_{i}=b_{2}$ is valid in $D_{1}(G)$ and $b_{2} \in B$.

From (2) we get

$$
b_{2}+a_{i} \leqq a_{i}+b \leqq b_{1}+a_{i}
$$

hence

$$
b_{2}+a \leqq a+b \leqq b_{1}+a
$$

Because $b_{1}+a, b_{2}+a \in B+a$ and $B+a$ is a convex subset of $D_{1}(G)$ we infer that $a+b \in B+a$. Thus $a+B \cong B+a$. Analogously we can verify that $B+$ $+a \cong a+B$.
Proof of Theorem 3.5. Let B be a polar of $D_{1}(G)$ and $x_{0} \in D_{1}(G)$. There are $g \in G$ and $a \in D(A)$ such that $x_{0}=g+a$. Now from 3.6 and 3.7 we ohtain $-x_{0}+$ $+B+x_{0}=B$. Thus $D_{1}(G)$ is representable.
3.8. Proposition. Let $G_{1}=\left(G ; \leqq{ }_{1},+_{1}\right), G_{2}=\left(G ; \leqq 2,{ }_{2}\right)$ be lattice ordered groups defined on the same underlying set G such that
(i) $\left(G ; \leqq_{1}\right)=\left(G ; \leqq_{2}\right)$,
(ii) the partition of G corresponding to the l-ideal $A\left(G_{1}\right)$ (consisting of classes $\left.x+{ }_{1} A\left(G_{1}\right), x \in G\right)$ coincides with the partition of G corresponding to the l-ideal $A\left(G_{2}\right)$.

Then there exists an isomorphism ψ of the lattice $\left(D_{1}\left(G_{1}\right) ; \leqq{ }_{1}\right)$ onto the lattice $\left(D_{1}\left(G_{2}\right), \leqq_{2}\right)$ such that $\psi(g)=g$ for each $g \in G$.

Proof. The assertion follows immediately from the definition of the partial order in $D_{1}\left(G_{1}\right)$ or $D_{1}\left(G_{2}\right)$, respectively (cf. § 2).

Let us remark that the condition (ii) is not a consequence of (i) (cf. Example 3.10 below).
3.9. Example. Let R_{0} and R be the additive group of all reals or all rationals, respectively, with the natural linear order. Let $G=R_{0} \circ R$ be the lexicographic product of R_{0} and R (cf. [3]). Then $A(G)=D(A(G))$ is the set of all $(x, y) \in R_{0} \circ R$ with $x=0$, hence $D_{1}(G)=G, G$ is divisible and $D_{1}(G)$ fails to be a vector lattice.
3.10. Example. Let R_{0} be as in 3.9. Put $G_{1}=R_{0}, G_{2}^{\prime}=R_{0} \circ R_{0}$. The lattice (G_{2}^{\prime}, \leqq) is isomorphic with the lattice (R_{0}, \leqq), hence there is a lattice ordered group $G_{2}=\left(R_{0} ; \leqq,+_{1}\right)$ defined on the set R_{0} such that G_{2} is isomorphic with G_{2}^{\prime}. Thus the condition (i) from 3.8 is fulfilled. We have $A\left(G_{1}\right)=G_{1}$, hence $G_{1} \mid A\left(G_{1}\right)$ is a one-element set. On the other hand, $G_{2} / A\left(G_{2}\right)$ is isomorphic with R_{0}, hence the condition (ii) from 3.8 fails to be valid.

Added in proof. In a recent paper by R. H. Redfield (Archimedean and basic elements in completely distributive lattice ordered groups, Pacif. J. Math. $63(1976), 247-254)$ there is given a different proof of Theorem 1.5. (Redfield's paper appeared in March 1976.)

References

[1] G. Birkhoff: Lattice theory, 3rd edition, Providence 1967.
[2] P. Conrad: Lattice ordered groups, Tulane University, 1970.
[3] Л. Фукс: Частично упорядоченные алгебраические системы,Москва 1965.
[4] Я. Якубик: Представления и расширения l-групп. Czech. Math. J. 13 (1963), 267-283.
[5] J. Jakubik: Radical mappings and radical classes of lattice ordered groups. Symposia Mathem. 21 (1977), 451-477.
[6] J. Martinez: Torsion theory for lattice ordered groups. Czech. Math. J. 25 (1975), 284-299.
[7] Ф. IIик: К теории структурно упорядоченных групп. Czech. Math. J. 6 (1956), 1-25.
Author's address: 04001 Košice, Švermova 5, ČSSR (Vysoké učení technické).

