Czechoslovak Mathematical Journal

Ján Jakubík

Generalized Dedekind completion of a lattice ordered group

Czechoslovak Mathematical Journal, Vol. 28 (1978), No. 2, 294-311

Persistent URL: http://dml.cz/dmlcz/101532

Terms of use:

© Institute of Mathematics AS CR, 1978

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

GENERALIZED DEDEKIND COMPLETION OF A LATTICE ORDERED GROUP

JÁn Jakubík, Košice

(Received May 5, 1976)

The notions of the generalized Dedekind completion $D_{1}(G)$ and of the archimedean kernel $A(G)$ of a lattice ordered group G were introduced in [10]. In this paper some further properties of $D_{1}(G)$ are established.

In § 2 it is shown that to each direct decomposition of G there corresponds a direct decomposition of $D_{1}(G)$. Namely, if G is a direct product of its l-subgroups G_{i} $(i \in I)$, then $D_{1}(G)$ is a direct product of its l-subgroups $D_{1}\left(G_{i}\right)(i \in I)$. This generalizes a result from [6] concerning archimedean lattice ordered groups. An analogous assertion is valid for direct sums of lattice ordered groups. If G is epiarchimedean and conditionally orthogonally complete, then $D_{1}(G)$ is epiarchimedean. If G is strongly projectable, then so is $D_{1}(G)$. If G is projectable and $A(G)$ is strongly projectable, then $D_{1}(G)$ is projectable. If G is projectable, then $D_{1}(G)$ need not be projectable. If G is conditionally orthogonally complete, then so is $D_{1}(G)$.

Pairwise splitting lattice ordered groups have been studied by Martinez [12]. Generalized Dedekind completions of pairwise splitting lattice ordered groups are dealt with in §3. It is proved that if G is a pairwise splitting abelian lattice ordered group such that the archimedean kernel $A(G)$ of G is conditionally orthogonally complete, then $D_{1}(G)$ is pairwise splitting; the assumption of the conditional orthogonal completeness of $A(G)$ cannot be omitted.

In $\S 4$ the relations between higher degrees of distributivity of a lattice ordered group G and those of $D_{1}(G)$ are investigated. Let β be a cardinal. For a lattice ordered group H we write $d(H)=\alpha$ if H is γ-distributive for each $\gamma<\alpha$ and if H fails to be α-distributive. Let $d(G)=\alpha$. If either $A(G)$ is completely distributive or $A(G)$ is projectable, then $d\left(D_{1}(G)\right)=\alpha$. If $A(G)$ is not completely distributive and $d\left(G_{1}\right)=\beta$, where G_{1} is the Dedekind completion of $A(G)$, then $d\left(D_{1}(G)\right)=\min \{\alpha, \beta\}$.

A lattice ordered group G is called g-complete if $D_{1}(G)=G$. In $\S 5$ it is shown that each lattice ordered group possesses a largest g complete convex l-subgroup. This implies that the class of all g-complete lattice ordered groups is a radical class [11].

1. PRELIMINARIES

The standard terminology for lattices and lattice ordered groups will be used (cf. Birkhoff [1], Conrad [2] and Fuchs [5]). The group operation is written additively, the commutativity of this operation is not assumed.

Let us recall some notions and some results from [10]. Let G be a lattice ordered group. An element $0<a \in G$ is called archimedean in G if for each $0<x \in G$ there exists a positive integer n such that $n x$ non $\leqq a$. We denote by $A(G)$ the l-subgroup of G generated by the set of all archimedean elements of G. Then $A(G)$ is a closed l-ideal of G and $A(G)$ is archimedean (i.e., each element $0<a \in A(G)$ is archimedean in $A(G)$). If H is a convex l-subgroup of G and if H is archimedean, then $H \subseteq A(G)$. We shall often write A instead of $A(G)$, when no ambiguity can occur.

For any archimedean lattice ordered group K we denote by $D(K)$ the Dedekind closure of K (cf. e.g. [1], Chap. XIII, § 13).

For each lattice ordered group G there exists a lattice ordered group $D_{1}(G)$ fulfilling the following conditions:
(i) G is an l-subgroup of $D_{1}(G)$;
(ii) $D(A(G))$ is an l-ideal of $D_{1}(G)$;
(iii) if $x \in G$ and if X is a nonempty subset of $x+A(G)$ such that X is upper bounded in $x+A(G)$, then there is $x_{0} \in D_{1}(G)$ with $\sup X=x_{0}$;
(iv) for each $x_{0} D_{1}(G)$ there exist $x \in G$ and $X \subseteq x+A(G)$ such that X is upper bounded in $x+A(G)$ and $x_{0}=\sup X$ holds in $D_{1}(G)$.

The lattice ordered group $D_{1}(G)$ is determined uniquely up to isomorphisms. More precisely, if D^{\prime} is a lattice ordered group fulfilling the conditions (i)-(iv) (with D^{\prime} instead of $\left.D_{1}(G)\right)$, then there exists an isomorphism φ of $D_{1}(G)$ onto D^{\prime} such that $\varphi(x)=x$ for each $x \in G$ and each $x \in D(A(G))$.

If X is a subset of G and if $\sup X=x_{0}$ exists in G, then x_{0} is the least upper bound of X in $D_{1}(G)$ (and dually). $D_{1}(G)$ coincides with $D(G)$ if and only if G is archimedean. The lattice ordered group $D_{1}(G)$ is said to be the generalized Dedekind completion of G. We have $A\left(D_{1}(G)\right)=D(A(G))$. The l-ideal $D(A(G))$ is closed in $D_{1}(G)$. If G is abelian, then $D_{1}(G)$ is abelian as well.

For each $x_{0} \in D_{1}(G)$ there is $x \in G$ and $a \in D(A(G))$ such that $x_{0}=x+a$. If $0 \leqq x_{0} \in D_{1}(G)$, then there are elements $0 \leqq x_{1} \in G, 0 \leqq a_{1} \in D(A(G))$ with $x_{0}=$ $=x_{1}+a_{1}$. In fact, if $D(A(G))=\{0\}, x_{0}=x+a, x \in G, a \in D(A(G))$, then $a=0$ and $x \geqq 0$. Let $D(A(G)) \neq\{0\}$; then $D(A(G))$ has no least element. Hence there is $x^{\prime} \in x+D(A(G))$ with $x^{\prime} \in G, x^{\prime} \leqq x_{0}$ (cf. the condition (iv) above). Put $x_{1}=x^{\prime} \vee 0$, $a_{1}=-x_{1}+x_{0}$. Then $x_{1} \in x+D(A(G)), 0 \leqq x_{1} \leqq x_{0}, 0 \leqq a_{1} \in D(A(G)), x_{0}=$ $=x_{1}+a_{1}$.

Let $X \subseteq G$. The set

$$
X^{\delta}=\{g \in G:|g| \wedge|x|=0 \text { for all } x \in X\}
$$

is called a polar of G. The set $X^{\delta \delta}$ is said to be a polar generated by X; if $\operatorname{card} X=1$, then $X^{\delta \delta}$ is called a principal polar.

2. DIRECT DECOMPOSITIONS

Let us recall some notions concerning direct products and direct sums of lattice ordered groups (cf. e.g. [6]).

Let I be a nonempty set and for each $i \in I$ let G_{i} be a lattice ordered group. We denote by $G_{1}=\prod_{i \in I} G_{i}$ the direct product of the lattice ordered groups G_{i}. Thus G_{1} is the set of all mappings $f: I \rightarrow \bigcup G_{i}$ such that $f(i) \in G_{i}$ for each $i \in I$, the lattice operations and the group operations being defined coordinatewise. For $i \in I$ we denote $G^{i}=\left\{f \in G_{1}: f(j)=0\right.$ for all $\left.j \in I, j \neq i\right\}$.

Let G be a lattice ordered group and let φ be an isomorphism of G onto G_{1}. For each $i \in I$ we put $G_{i}^{0}=\varphi^{-1}\left(G^{i}\right)$. Each G_{i}^{0} is said to be a direct factor of G. We write also $G=\prod_{i \in I}^{0} G_{i}^{0}$. The l-subgroup of G generated by the set $\bigcup_{i \in I} G_{i}^{0}$ will be denoted by $\sum_{i \in I}^{0} G_{i}^{0}$ and called the direct sum of $G_{i}^{0}(i \in I)$. If I is finite, $I=\{1, \ldots, n\}$, then $\prod_{i \in I}^{0} G_{i}^{0}=\sum_{i \in I}^{0} G_{i}^{0}$ and we denote it also by $G_{1}^{0} \oplus \ldots \oplus G_{n}^{0}$.

Each direct factor of G is a closed l-ideal in G. A convex l-subgroup H of G is a direct factor of G if and only if it fulfils the following conditions:
(a) For each $0<g \in G$ the set $S=\{0 \leqq h \in H: h \leqq g\}$ possesses a greatest element.

If H is a direct factor in G and $0 \leqq g \in G$, then the greatest element of the set S will be denoted by $g(H)$ and it is said to be the component of g in H. For any $g_{1} \in G$ we put $g_{1}(H)=g_{1}^{+}(H)-g_{1}^{-}(H)$. Let H be a direct factor of G; then H^{δ} is also a direct factor of G and the mapping $\psi\left(g_{1}\right)=\left(g_{1}(H), g_{1}\left(H^{\delta}\right)\right)$ is an isomorphism of G onto $H \times H^{\delta}$. Let $G=\prod_{i \in I}^{0} G_{i}^{0}$ and let ψ be a mapping of G into $\prod_{i \in I} G_{i}^{0}$ such that $\psi\left(g_{1}\right)(i)=g_{i}\left(G_{i}^{0}\right)$ for each $g_{1} \in G$ and each $i \in I$. Then ψ is an isomorphism of G onto $\prod_{i \in I} G_{i}^{0}$.

The following two assertions are easy to verify.
2.1. Lemma. Let G be a lattice ordered group and let $\left\{G_{j}\right\}_{j \in J}$ be a system of direct factors of G such that
(i) $G_{j} \cap G_{k}=\{0\}$ whenever j and k are distinct elements of J;
(ii) $g=\mathrm{V}_{j \in J} g\left(G_{j}\right)$ for each $0 \leqq g \in G$;
(iii) if $0 \leqq h_{j} \in G_{j}$ for each $j \in J$, then $\bigvee_{j \in J} h_{j}$ exists in G.

Then $G=\prod_{j \in J}^{0} G_{j}$. Conversely, if $G=\prod_{j \in J}^{0} G_{j}$, then (i), (ii) and (iii) are valid.
2.2. Lemma. Let G be a lattice ordered group and let $\left\{G_{j}\right\}_{j \in J}$ be a system of direct factors of G such that the conditions (i), (ii) from Lemma 2.1 are valid and
(iv) for each $g \in G$, the set $\left\{j \in J: g\left(G_{j}\right) \neq 0\right\}$ is finite.

Then $G=\sum_{j \in J}^{0} G_{j}$. Conversely, if $G=\sum_{j \in J}^{0} G_{j}$, then (i), (ii) and (iv) are valid.
The condition (a) yields
2.3. Lemma. Let G be a lattice ordered group, let H be a direct factor of G and let K be a convex l-subgroup of G. Then $H \cap K$ is a direct factor of K.
2.4. Lemma. Let $G=\prod_{i \in I}^{0} G_{i}$ and let K be a closed convex 1 -subgroup of G. Then $K=\prod_{i \in I}^{0}\left(K \cap G_{i}\right)$.

This follows from Lemma 2.1 and Lemma 2.3.
Analogously, from Lemma 2.2 and Lemma 2.3 we obtain
2.5. Lemma. Let $G=\sum_{i \in I}^{0} G_{i}$ and let K be a convex l-subgroup of G. Then $K=\sum_{i \in I}^{0}\left(K \cap G_{i}\right)$.

Let G be a lattice ordered group and $\emptyset \neq X \subseteq D_{1}(G)$. We denote by $c_{1}(X)$ the convex l-subgroup of $D_{1}(G)$ generated by the set X. If X is an l-subgroup of $D_{1}(G)$, then $c_{1}(X)$ is the set of all $y \in D_{1}(G)$ with the property that there are elements $x_{1}, x_{2} \in$ $\in X$ with $x_{1} \leqq y \leqq x_{2}$. If G is archimedean and $\emptyset \neq X \subseteq D(G)$, then we denote by $c_{0}(X)$ the convex l-subgroup of $D(G)$ generated by X. If we do not suppose that G is archimedean and if $\emptyset \neq X \subseteq A(G)$, then $c_{0}(X)=c_{1}(X)$ (here the symbol c_{0} is taken with respect to $D(A(G)))$.
2.6. Proposition. Let G be an archimedean lattice ordered group and let H be a direct factor of G. Then $c_{0}(H)$ is a direct factor of $D(G)$. The lattice ordered group $c_{0}(H)$ is the Dedekind closure of H. For each $g \in G, g(H)=g\left(c_{0}(H)\right)$.

Proof. Let $0 \leqq d \in D(G)$. There exists $g \in G$ with $d \leqq g$. Put $g_{1}=g(H)$ and $g_{1} \wedge d=d_{1}$. Then $d_{1} \in c_{0}(H)$ and $d_{1} \leqq d$. Let $0 \leqq x \in c_{0}(H), x \leqq d$. Hence $x \leqq g$ and there is $g_{2} \in H$ with $x \leqq g_{2}$. Thus $x \leqq g \wedge g_{2}$. Since H is convex in G, we obtain $g \wedge g_{2} \in H$ and hence, H being a direct factor of $G, g \wedge g_{2} \leqq g_{1}$. Therefore $x \leqq g_{1} \wedge d=d_{1}$. This shows that $c_{0}(H)$ is a direct factor of $D(G)$.

From the construction of the Dedekind closure it follows immediately that for each convex l-subgroup H_{1} of $G, c_{0}\left(H_{1}\right)$ is the Dedekind closure of H_{1}.

Let $0 \leqq g \in G$. Put $g_{1}=g(H)$. Then $g_{1} \in c_{0}(H)$ and $g_{1} \leqq g$. Assume that there exists $h \in c_{0}(H)$ with $g_{1}<h \leqq g$. There is $g_{0} \in H$ with $h \leqq g_{0}$. Hence $g_{1}<h \leqq$ $\leqq g_{0} \wedge g \leqq g$ and $g_{0} \wedge g \in H$. Since H is a direct factor of G, we have a contradiction. Thus $g_{1}=g\left(c_{0}(H)\right)$. Since each element $g_{2} \in G$ can be written as $g_{2}=g_{3}-g_{4}$ with $g_{3}, g_{4} \in G^{+}$, we get $g_{2}(H)=g_{2}\left(c_{0}(H)\right)$.
2.7. Proposition. Let G be an archimedean lattice ordered group, $G=\prod_{i \in I}^{0} G_{i}$. Then $D(G)=\prod_{i \in I}^{0} c_{0}\left(G_{i}\right)$.

Proof. According to 2.6 , each $c_{0}\left(G_{i}\right)$ is a direct factor of $D(G)$. We have to verify that the conditions (i) (ii) and (iii) from 2.1 are fulfilled with G_{i}, G, J replaced by $c_{0}\left(G_{i}\right), D(G), I$.

Let $j, k \in I, j \neq k$. From $G_{j} \cap G_{k}=\{0\}$ we obtain $c_{0}\left(G_{j}\right) \cap c_{0}\left(G_{k}\right)=\{0\}$, hence (i) is valid. Let $0 \leqq g \in D(G)$. For $j \in I$ denote $g_{j}=g\left(c_{0}\left(G_{j}\right)\right)$. There exists $h \in G$ with $g \leqq h$. Put $h_{j}=h\left(c_{0}\left(G_{j}\right)\right)$. Hence $h_{j} \geqq g_{j}$ for each $j \in I$. By $2.6, h_{j}=h\left(G_{j}\right)$ for each $j \in I$. Thus by $2.1, h=\bigvee h_{j}$. Since $g \geqq g \wedge h_{j} \geqq g_{j}$ and since $g \wedge h_{j} \in$ $\in c_{0}\left(G_{j}\right)$, we have $g \wedge h_{j}=g_{j}$.

Therefore

$$
g=g \wedge h=g \wedge\left(\vee h_{j}\right)=\bigvee\left(g \wedge h_{j}\right)=\bigvee g_{j}
$$

Hence (ii) holds.
Let $0 \leqq g_{j} \in c_{0}\left(G_{j}\right)$ for each $j \in I$. Then for each $j \in I$ there is $h_{j} \in G_{j}$ with $g_{j} \leqq h_{j}$. According to 2.1 there exists $\bigvee h_{j}=h$ in G. Hence the set $\left\{g_{j}\right\}_{j \in I}$ is upper bounded in $D(G)$ and so $\mathrm{V} g_{j}$ exists in $D(G)$. Therefore (iii) is fulfilled.

Remark 1 . According to 2.6 we can also write $D(G)=\prod_{i \in I}^{0} D\left(G_{i}\right)$.
Remark 2. In [6] it was shown that if $G_{i}(i \in I)$ are integrally closed directed groups, then $D\left(\prod G_{i}\right)$ is isomorphic with $\prod\left(D\left(G_{i}\right)\right)$.

The proof of the following proposition is similar to that of Prop. 2.7.
2.8. Proposition. Let G be an archimedean lattice ordered group and let $G=$ $=\sum_{i \in I}^{0} G_{i}$. Then $D(G)=\sum_{i \in I}^{0} c_{0}\left(G_{i}\right)$.
2.9. Lemma. Let G be a lattice ordered group and let H be a direct factor of G. Then $c_{1}(H)$ is a direct factor of $D_{1}(G)$.

Proof. Let $0 \leqq x_{0} \in D_{1}(G)$. There are elements $x^{\prime} \in G^{+}, a \in D(A(G))^{+}$with $x_{0}=x^{\prime}+a$. Denote $x_{1}=x^{\prime}(H), x_{2}=x^{\prime}\left(H^{\delta}\right)$. Then $x^{\prime}=x_{1}+x_{2}, x_{1} \wedge x_{2}=0$.

According to [10], Thm. 2.18, A is a closed convex l-subgroup of G and hence by Lemma 2.4 we have

$$
A=(A \cap H) \oplus\left(A \cap H^{\delta}\right),
$$

thus according to Prop. 2.7

$$
\begin{equation*}
D(A)=c_{0}(A \cap H) \oplus c_{0}\left(A \cap H^{\delta}\right), \tag{1}
\end{equation*}
$$

where $c_{0}(A \cap H)$ is the convex l-subgroup of $D(A)$ generated by the set $A \cap H$, and analogously for $c_{0}\left(A \cap H^{\delta}\right)$. Clearly

$$
\begin{equation*}
c_{0}(A \cap H) \subseteq c_{1}(H), \quad c_{0}\left(A \cap H^{\delta}\right) \subseteq c_{1}\left(H^{\delta}\right) \tag{2}
\end{equation*}
$$

From (1) it follows that $a=a_{1}+a_{2}$ with $0 \leqq a_{1} \in c_{0}(A \cap H), 0 \leqq a_{2} \in c_{0}\left(A \cap H^{\delta}\right)$, thus $a_{1} \wedge a_{2}=0$. By (2), $a_{1} \in c_{1}(H), a_{2} \in c_{1}\left(H^{\delta}\right)$, hence $x_{1} \wedge a_{2}=0, x_{2} \wedge a_{1}=0$. Thus $x_{2}+a_{1}=a_{1}+x_{2}$ and so $x_{0}=x_{1}+a_{1}+x_{2}+a_{2}$. Because $\left(x_{1}+a_{1}\right) \wedge$ $\wedge\left(x_{2}+a_{2}\right)=0$, we get

$$
\begin{equation*}
x_{0}=\left(x_{1}+a_{1}\right) \vee\left(x_{2}+a_{2}\right) . \tag{3}
\end{equation*}
$$

Clearly $x_{1}+a_{1} \in c_{1}(H), x_{2}+a_{2} \in c_{1}\left(H^{\delta}\right)$. Let $0 \leqq x^{\prime \prime} \in c_{1}(H), x^{\prime \prime} \leqq x_{0}$. Then $x^{\prime \prime} \wedge\left(x_{2}+a_{2}\right)=0$, thus from (3) we obtain

$$
x^{\prime \prime}=x^{\prime \prime} \wedge x_{0}=x^{\prime \prime} \wedge\left(x_{1}+a_{1}\right)
$$

Hence $x_{1}+a_{1}$ is the greatest element of the set $\left\{0 \leqq h_{1} \in c_{1}(H): h_{1} \leqq x_{0}\right\}$. Therefore in view of $(\mathrm{a}), c_{1}(H)$ is a direct factor of $D_{1}(G)$.
2.10. Proposition. Let G be a lattice ordered group, $G=\prod_{i \in I}^{0} G_{i}$. Then $D_{1}(G)=$ $=\prod_{i \in I}^{0} c_{1}\left(G_{i}\right)$.
Proof. According to Lemma 2.9, each $c_{1}\left(G_{i}\right)$ is a direct factor of $D_{1}(G)$. We have to verify that the conditions (i), (ii) and (iii) from Lemma 2.1 are satisfied for the system $\left\{c_{1}\left(G_{i}\right)\right\}_{i \in I}$ in $D_{1}(G)$. If $j, k \in I$ are distinct, then $G_{j} \cap G_{k}=\{0\}$ and hence $c_{1}\left(G_{j}\right) \cap c_{1}\left(G_{k}\right)=\{0\}$. Thus (i) holds. Let $0 \leqq g \in D_{1}(G)$. Suppose that $g=$ $=\mathrm{V}_{j \in J} g\left(c_{1}\left(G_{j}\right)\right)$ does not hold. Then there is $x_{1} \in D_{1}(G)$ with $0 \leqq x_{1}<g$ such that $g\left(c_{1}\left(G_{j}\right)\right) \leqq x_{1}$ is valid for each $j \in J$. Put $x_{0}=-x_{1}+g$. There is $0<x \in G$ with $x \leqq x_{0}$. Since $G=\prod_{i \in I}^{0} G_{i}$, there is $i \in I$ such that $x\left(G_{i}\right)>0$. Hence $x\left(c_{1}\left(G_{i}\right)\right)>$ >0 and thus

$$
g\left(c_{1}\left(G_{i}\right)\right)<g\left(c_{1}\left(G_{i}\right)\right)+x\left(c_{1}\left(G_{i}\right)\right) \leqq x_{1}+x \leqq g .
$$

Since $g\left(c_{1}\left(G_{i}\right)\right)+x\left(c_{1}\left(G_{i}\right)\right) \in c_{1}\left(G_{i}\right)$, in view of (a) we must have $g\left(c_{1}\left(G_{i}\right)\right)+$ $+x\left(c_{1}\left(G_{i}\right)\right) \leqq g\left(c_{1}\left(G_{i}\right)\right)$, which is a contradiction. Therefore (ii) is valid.
Let $0 \leqq g_{i} \in c_{1}\left(G_{i}\right)$ for each $i \in I$. There are elements $0 \leqq x_{i} \in G, 0 \leqq a_{i} \in D(A)$ with $g_{i}=x_{i}+a_{i}$. Further, there are elements $y_{i} \in G_{i}$ with $g_{i} \leqq y_{i}$. Hence $x_{i}, a_{i} \in G_{i}$ for each $i \in I$. From $G=\prod_{i \in I}^{0} G_{i}$ and from (iii) it follows that there exists $x=$ $=\mathrm{V}_{i \in I} x_{i}$ in G. Let $i \in I$ be fixed. According to Lemma 2.4 and Prop. 2.7 we have

$$
\begin{equation*}
D(A)=\prod_{j \in I}^{0} c_{0}\left(A \cap G_{j}\right), \tag{4}
\end{equation*}
$$

where the symbol c_{0} has the same meaning as in the proof of Lemma 2.9. Hence

$$
a_{i}=\mathrm{V}_{j \in I} a_{i}\left(c_{0}\left(A \cap G_{j}\right)\right)
$$

Since $a_{i} \in c_{1}\left(G_{i}\right)$ we have $a_{i}\left(c_{0}\left(A \cap G_{j}\right)\right) \in c_{1}\left(G_{i}\right)$. From this and from the relations $a_{i}\left(c_{0}\left(A \cap G_{j}\right)\right) \in c_{1}\left(G_{j}\right), \quad c_{1}\left(G_{i}\right) \cap c_{1}\left(G_{j}\right)=\{0\}$ we obtain $a_{i}\left(c_{0}\left(A \cap G_{j}\right)\right)=0$ for each $j \in I, j \neq i$. This implies that $a_{i}=a_{i}\left(c_{0}\left(A \cap G_{i}\right)\right) \in c_{0}\left(A \cap G_{i}\right)$. Thus according to (4) and Lemma 2.1 there exists $a \in D(A)$ with $a=\mathrm{V}_{i \in I} a_{i}$.

We have

$$
x+a=\left(\bigvee_{i \in I} x_{i}\right)+a=\bigvee_{i \in I}\left(x_{i}+a\right)=\bigvee_{i \in I} \bigvee_{j \in I}\left(x_{i}+a_{j}\right)
$$

If $i, j \in I, i \neq j$, then $x_{i} \wedge a_{j}=0$, thus

$$
x_{i}+a_{j}=x_{i} \vee a_{j} \leqq\left(x_{i}+a_{i}\right) \vee\left(x_{j}+a_{j}\right)
$$

Therefore

$$
x+a=\mathrm{V}_{i \in I}\left(x_{i}+a_{i}\right)=\mathrm{V}_{i \in I} g_{i}
$$

Hence (iii) is valid and the proof is complete.
2.11. Proposition. Let G be a lattice ordered group, $G=\sum_{i \in I}^{0} G_{i}$. Then $D_{1}(G)=$ $=\sum_{i \in I}^{0} c_{1}\left(G_{i}\right)$.

Proof. According to Lemma 2.9, each $c_{1}\left(G_{i}\right)$ is a direct factor of $D_{1}(G)$. Analogously as in the proof of Prop. 2.10 we can verify that the conditions (i) and (ii) hold (we use Prop. 2.8 instead of Prop. 2.7). Let $x_{0} \in D_{1}(G)$. There are elements $x \in G$, $a \in D(A)$ with $x_{0}=x+a$. Both the sets $\left\{i \in I: x\left(G_{i}\right) \neq 0\right\}$ and $\left\{i \in I: a\left(c_{0}(A \cap\right.\right.$ $\left.\left.\left.\cap G_{i}\right)\right) \neq 0\right\}$ are finite. For each $i \in I$ we have $x\left(G_{i}\right)=x\left(c_{1}\left(G_{i}\right)\right), a\left(c_{1}\left(G_{i}\right)\right)=$ $=a\left(c_{0}\left(A \cap G_{i}\right)\right)$. Hence $x_{0}\left(c_{1}\left(G_{i}\right)\right)=x\left(G_{i}\right)+a\left(c_{0}\left(A \cap G_{i}\right)\right)$ and thus the set $\left\{i \in I: x_{0}\left(c_{1}\left(G_{i}\right)\right) \neq 0\right\}$ is finite as well.

A lattice ordered group G is said to be epiarchimedean, if each homomorphic image of G is archimedean. Epiarchimedean lattice ordered groups were investigated by Conrad [4].

Let $x \in G$. The least convex l-subgroup of G containing the element x will be denoted by $c(x)$; it is said to be a principal convex l-subgroup of G. Similarly, if $x_{0} \in D_{1}(G)$, then we put $c_{1}\left(x_{0}\right)=c_{1}\left(\left\{x_{0}\right\}\right)$. The following result has been proved in [3]:
2.12. Theorem. A lattice ordered group G is epiarchimedean if and only if each principal convex l-subgroup of G is a direct factor of G.

For $Y \subseteq D_{1}(G)$ we denote

$$
Y^{\beta}=\left\{g \in D_{1}(G):|g| \wedge|y|=0 \text { for each } y \in Y\right\} .
$$

A set $S \neq \emptyset$ of strictly positive elements of G will be said to be disjoint if $s_{1} \wedge s_{2}=$ $=0$ for each pair of distinct elements s_{1}, s_{2} of S. The lattice ordered group G is called (conditionally) orthogonally complete if each (upper bounded) disjoint subset of G possesses the least upper bound in G.
2.13. Theorem. Let G be an epiarchimedean lattice ordered group. Suppose that G is conditionally orthogonally complete. Then $D(G)$ is epiarchimedean as well.

Proof. The lattice ordered group G is archimedean and hence $D(G)$ exists. Moreover, $D(G)=D_{1}(G)$. Let $0<g_{0} \in D(G)$. There exists $g_{1} \in G$ with $g_{0} \leqq g_{1}$. By using the Axiom of Choice we infer that there exists a disjoint subset S of G such that (i) $s \leqq g_{0}$ for each $s \in S$, and (ii) if $0<h_{3} \in G, h_{3} \wedge s=0$ for each $s \in S$, then $h_{3} \wedge g_{0}=0$. The least upper bound of S in G will be denoted by g_{2}. Clearly $g_{2} \leqq g_{0}$. From the construction of g_{2} it follows that

$$
\begin{equation*}
\left\{g_{2}\right\}^{\beta}=\left\{g_{0}\right\}^{\beta} . \tag{5}
\end{equation*}
$$

Since G is epiarchimedean, $c\left(g_{2}\right)$ is a direct factor of G. Thus according to Prop. 2.6, $c_{1}\left(c\left(g_{2}\right)\right)$ is a direct factor of $D(G)$. Clearly $c_{1}\left(c\left(g_{2}\right)\right)=c_{1}\left(g_{2}\right)$. Further, we have

$$
\begin{equation*}
c_{1}\left(g_{2}\right)^{\beta}=\left\{g_{2}\right\}^{\beta} \tag{6}
\end{equation*}
$$

From (5) and (6) we obtain

$$
c_{1}\left(g_{2}\right)=\left\{g_{2}\right\}^{\beta \beta}=\left\{g_{0}\right\}^{\beta \beta}
$$

Since $g_{0} \in\left\{g_{0}\right\}^{\beta \beta}$, we have $c_{1}\left(g_{0}\right) \subseteq c_{1}\left(g_{2}\right)$. On the other hand, $g_{2} \leqq g_{0}$ yields $c_{1}\left(g_{2}\right) \subseteq c_{1}\left(g_{0}\right)$. Hence $c_{1}\left(g_{0}\right)=c_{1}\left(g_{2}\right)$. Therefore $c_{1}\left(g_{0}\right)$ is a direct factor of $D(G)$. Thus according to Thm. 2.12, $D(G)$ is epiarchimedean.

Remark. It can be shown by examples that if G is epiarchimedean, then $D(G)$ need not be epiarchimedean. (Cf. Example 6.4 below.)

The following remark will be useful in the sequel: if X is a lattice ordered group and if Y_{1}, Y_{2} are l-subgroups of X with $Y_{1}^{+} \subseteq Y_{2}^{+}$, then $Y_{1} \subseteq Y_{2}$.
2.14. Lemma. Let G be a lattice ordered group, $G=\prod_{i \in I}^{0} G_{i}$. Then $c_{1}\left(G_{i}\right) \cap G=$ $=G_{i}$ for each $i \in I$.
Proof. Let $i \in I$. We have to verify that $c_{1}\left(G_{i}\right) \cap G \subseteq G_{i}$. Let $0<x \in c_{1}\left(G_{i}\right) \cap G$. Then $x=\bigvee_{j \in I} x\left(G_{j}\right), x\left(G_{j}\right) \geqq 0$, hence $x\left(G_{j}\right) \in c_{1}\left(G_{i}\right)$ for each $j \in I$. If $j \neq i$, then $x\left(G_{j}\right) \in G_{j} \subseteq c_{1}\left(G_{j}\right)$; according to Prop. 2.11 we have $c_{1}\left(G_{i}\right) \cap c_{1}\left(G_{j}\right)=\{0\}$, thus $x\left(G_{j}\right)=0$. Therefore $x=x\left(G_{i}\right) \in G_{i}$.
2.15. Lemma. Let G be a lattice ordered group, $G=\prod_{i \in I}^{0} G_{i}$. Then $D\left(A\left(G_{i}\right)\right)=$ $=c_{1}\left(G_{i}\right) \cap D(A)$.
Proof. Clearly $A\left(G_{i}\right)=A \cap G_{i}$. According to 2.4 we have $A=\prod_{i \in I}^{0}\left(A \cap G_{i}\right)$, hence $A=\prod_{i \in I}^{0} A\left(G_{i}\right)$. In view of Prop. 2.7 we obtain $D(A)=\prod_{i \in I}^{0} D\left(A\left(G_{i}\right)\right)$. Thus $D\left(A\left(G_{i}\right)\right) \subseteq D(A)$. Let $0 \leqq x \in D\left(A\left(G_{i}\right)\right)$. There exists $y \in A\left(G_{i}\right)$ with $x \leqq y$. Then $y \in G_{i}$, hence $x \in c_{1}\left(G_{i}\right)$ and therefore

$$
D\left(A\left(G_{i}\right)\right) \subseteq c_{1}\left(G_{i}\right) \cap D(A)
$$

Let $0<x \in c_{1}\left(G_{i}\right) \cap D(A)$. There exists a subset $\left\{a_{k}\right\} \subseteq A$ and an element $a \in A$ such that $0 \leqq a_{k} \leqq a$ holds for each a_{k}, and $\bigvee a_{k}=x$ is valid in $D(A)$. From the convexity of $c_{1}\left(G_{i}\right)$ we obtain $a_{k} \in c_{1}\left(G_{i}\right)$ and hence, in view of Lemma 2.14, $a_{k} \in G_{i}$ for each a_{k}. Moreover, $a_{k}=a_{k}\left(G_{i}\right) \leqq a\left(G_{i}\right)$, hence $\left\{a_{k}\right\}$ is an upper bounded subset of $A\left(G_{i}\right)$. Thus $\left\{a_{k}\right\}$ is an upper bounded subset of $D\left(A\left(G_{i}\right)\right)$. Since $D\left(A\left(G_{i}\right)\right)$ is a direct factor of $D(A)$, it is a closed l-subgroup of $D(A)$ and hence $x \in D\left(A\left(G_{i}\right)\right)$. Therefore

$$
c_{1}\left(G_{i}\right) \cap D(A) \subseteq D\left(A\left(G_{i}\right)\right) .
$$

2.16. Lemma. Let G be a lattice ordered group, $G=\prod_{i \in I}^{0} G_{i}$. Then $c_{1}\left(G_{i}\right)=$ $=D_{1}\left(G_{i}\right)$ for each $i \in I$.
Proof. Let $i \in I$ be fixed. We have to verify that the conditions (i)-(iv) from the definition of $D_{1}(G)$ (cf. § 1) are fulfilled with G and $D_{1}(G)$ replaced by G_{i} and $c_{1}\left(G_{i}\right)$, respectively. The validity of (i) is obvious. From Lemma 2.15 it follows that (ii) holds.

Let $0<y_{0} \in c_{1}\left(G_{i}\right)$. There are elements $0 \leqq y \in G, 0 \leqq a \in D(A)$ with $y_{0}=y+a$. By the convexity of $c_{1}\left(G_{i}\right)$, both y and a belong to $c_{1}\left(G_{i}\right)$. According to Lemma 2.14 we have $y \in G_{i}$. Further, from Lemma 2.15 we obtain $a \in D\left(A\left(G_{i}\right)\right)$.

Now let $x_{0} \in c_{1}\left(G_{i}\right)$. There are elements $y_{0}, z_{0} \in\left(c_{1}\left(G_{i}\right)\right)^{+}$with $x_{0}=y_{0}-z_{0}$. Let y, a be as above. Analogously, there are elements $z \in G_{i}$ and $a_{1} \in D\left(A\left(G_{i}\right)\right)$ with $z_{0}=z+a_{1}$. Further, there is $a_{2} \in A\left(G_{i}\right)$ such that $a_{1} \leqq a_{2}$. Put $a_{3}=a_{2}-a_{1}$. Then we have $a_{3} \in D\left(A\left(G_{i}\right)\right), a_{3} \geqq 0, z_{0}=z_{1}-a_{3}, z_{1}=z+a_{2} \in G_{i}$. Hence

$$
x_{0}=y+a+a_{3}-z_{1}=y-z_{1}+a_{4}
$$

with $0 \leqq a_{4} \in D\left(A\left(G_{i}\right)\right)$. Hence there exists an upper bounded subset $\left\{a_{k}\right\}$ of $A\left(G_{i}\right)$ with $a_{4}=\bigvee a_{k}$ (holding in $D\left(A\left(G_{i}\right)\right)$, and hence also in $\left.D_{1}(G)\right)$. Thus $\left\{y-z_{2}+a_{k}\right\}$ is an upper bounded subset of $y-z_{1}+A\left(G_{i}\right)$ and $x_{0}=\mathrm{V}\left(y-z_{1}+a_{k}\right)$. Therefore (iv) is valid.

Let $x \in G_{i}$ and let $\left\{x_{k}\right\}$ be an upper bounded subset of $x+A\left(G_{i}\right)$. Hence $\left\{x_{k}\right\}$ is an upper bounded subset in $x+A$. Thus the least upper bound x_{0} of $\left\{x_{k}\right\}$ in $D_{1}(G)$ exists. Since $c_{1}\left(G_{i}\right)$ is convex in $D_{1}(G)$, the element x_{0} must belong to $c_{1}\left(G_{i}\right)$. Hence the condition (iii) holds.

From Prop. 2.10 and Lemma 2.16 we obtain
2.17. Theorem. Let G be a lattice ordered group, $G=\prod_{i \in I}^{0} G_{i}$. Then $D_{1}(G)=$ $=\prod_{i \in I}^{0} D_{1}\left(G_{i}\right)$.

Analogously we can verify the following assertion:
2.18. Proposition. Let G be a lattice ordered group, $G=\sum_{i \in I}^{0} G_{i}$. Then $D_{1}(G)=$ $=\sum_{i \in I}^{0} D_{1}\left(G_{i}\right)$.

A lattice ordered group G is said to be projectable (strongly projectable) if each principal polar (each polar) of G is a direct factor of G.
2.19. Theorem. Let G be a strongly projectable lattice ordered group. Then $D_{1}(G)$ is strongly projectable.
Proof. Let $X_{0} \subseteq D_{1}(G)$. We have to verify that X_{0}^{β} is a direct factor of $D_{1}(G)$. Without loss of generality we can assume that $X_{0} \subseteq\left(D_{1}(G)\right)^{+}$. Put $X=\{x \in G: 0 \leqq$ $\leqq x \leqq x_{0}$ for some $\left.x_{0} \in X_{0}\right\}$. In [10] (Proof of 3.4) it has been shown that $X_{0}^{\beta}=X^{\beta}$ is the set of all $y \in D_{1}(G)$ with the property that there is a subset $\left\{y_{i}\right\} \subseteq\left(X^{\delta}\right)^{+}$with $|y|=\bigvee y_{i}$.

Since G is strongly projectable, we have

$$
G=X^{\delta \delta} \oplus X^{\delta}
$$

and hence, in view of Prop. 2.10,

$$
D_{1}(G)=c_{1}\left(X^{\delta \delta}\right) \oplus c_{1}\left(X^{\delta}\right)
$$

It suffices to verify that $X_{0}^{\beta}=c_{1}\left(X^{\delta}\right)$.
Because $X^{\delta} \subseteq X^{\beta}=X_{0}^{\beta}$, we have $c_{1}\left(X^{\delta}\right) \subseteq c_{1}\left(X_{0}^{\beta}\right)=X_{0}^{\beta}$, hence $c_{1}\left(X^{\delta}\right) \subseteq X_{0}^{\beta}$.
Let $0 \leqq z \in X_{0}^{\beta}$. There is a subset $\left\{z_{i}\right\} \subseteq\left(X^{\delta}\right)^{+}$such that $z=\bigvee z_{i}$ holds in $D_{1}(G)$.

We have $\left\{z_{i}\right\} \subseteq c_{1}\left(X^{\delta}\right)$ and since $c_{1}\left(X^{\delta}\right)$ is a direct factor of $D_{1}(G)$, it is a closed l-subgroup of $D_{1}(G)$. Thus $z \in c_{1}\left(X^{\delta}\right)$ and hence $X_{0}^{\beta} \subseteq c_{1}\left(X^{\delta}\right)$.
2.20. Theorem. Let G be a projectable lattice ordered group. Suppose that $A(G)$ is strongly projectable. Then $D_{1}(G)$ is projectable.

Proof. Let $g_{0} \in D_{1}(G)$. We have to verify that $\left\{g_{0}\right\}^{\beta \beta}$ is a direct factor of $D_{1}(G)$. Since $\left\{g_{0}\right\}^{\beta \beta}=\left\{\left|g_{0}\right|\right\}^{\beta \beta}$, we may assume that $g_{0} \geqq 0$. There are elements $0 \leqq g \in G$, $0 \leqq a \in D(A)$ with $g_{0}=g+a$. The l-subgroup $\left\{g_{0}\right\}^{\beta \beta}$ is a direct factor of $D_{1}(G)$ if and only if $\left\{g_{0}\right\}^{\beta}$ is a direct factor of $D_{1}(G)$.

Since G is projectable, we have

$$
G=\{g\}^{\delta \delta} \oplus\{g\}^{\delta}
$$

This implies by 2.10

$$
D_{1}(G)=c_{1}\left(\{g\}^{\delta \delta}\right) \oplus c_{1}\left(\{g\}^{\delta}\right) .
$$

Denote $c_{1}\left(\{g\}^{\delta \delta}\right)=F_{1}, c_{1}\left(\{g\}^{\delta}\right)=F_{2}$. Then g is a weak unit in F_{1}. Put $a_{i}=a\left(F_{i}\right)$ ($i=1,2$), $g_{1}=g+a_{1}$. Clearly $g_{1} \in F_{1}, a_{2} \in D(A)$.

There is $a_{3} \in A$ with $a_{2} \leqq a_{3}$. Put $X=\left[0, a_{2}\right] \cap A$ (the interval $\left[0, a_{2}\right]$ being taken with respect to $D(A)$). Because A is strongly projectable, we obtain

$$
A=X^{\delta \delta} \oplus X^{\delta}
$$

Denote $a_{3}\left(X^{\delta \delta}\right)=a_{4}$. Since $a_{4} \in A \subseteq G,\left\{a_{4}\right\}^{\delta \delta}$ is a direct factor of G and thus $F_{3}=c_{1}\left(\left\{a_{4}\right\}^{\delta \delta}\right)$ is a direct factor of $D_{1}(G)$. It is not difficult to verify that a_{2} is a weak unit in F_{3}. From this we infer that $F_{3} \subseteq F_{2}$. Hence there is a direct factor F_{4} of $D_{1}(G)$ such that $F_{2}=F_{3} \oplus F_{4}$; thus

$$
D_{1}(G)=F_{1} \oplus F_{3} \oplus F_{4}
$$

Let $0 \leqq h \in\left\{g_{0}\right\}^{\beta}$. Hence $g_{0} \wedge h=0$ and thus $g \wedge h=0, a_{2} \wedge h=0$. Since g and a_{2} are weak units in F_{1} and F_{3}, respectively, we have $h\left(F_{1}\right)=0=h\left(F_{3}\right)$. Thus $h=h\left(F_{4}\right) \in F_{4}$ Therefore $\left\{g_{0}\right\}^{\beta} \subseteq F_{4}$.

Conversely, let $0 \leqq h \in F_{4}$. Then $t \wedge h=0$ for each $0 \leqq t \in F_{1} \oplus F_{3}$. By putting $t=g_{1}+a_{2}=g_{0}$ we obtain $g_{0} \wedge h=0$ and hence $h \in\left\{g_{0}\right\}^{\beta}$. Thus $F_{4} \subseteq\left\{g_{0}\right\}^{\beta}$. Therefore $\left\{g_{0}\right\}^{\beta}=F_{4}$ is a direct factor of $D_{1}(G)$.

If both G and $A(G)$ are projectable lattice ordered groups, then $D_{1}(G)$ need not be projectable (cf. Example 6.2 below).

The following result has been obtained by Rotкоvič [13].
(*) Let G be a conditionally orthogonally complete archimedean lattice ordered group. Then G is projectable.
2.21. Theorem. Let G be a conditionally orthogonally complete lattice ordered group. Then $D_{1}(G)$ is conditionally orthogonally complete.

Proof. Let $Z=\left\{z_{i}\right\}_{i \in I}$ be a bounded disjoint subset of $D_{1}(G)$. Let $z_{1} \in D_{1}(G)$ be an upper bound of Z. There exists $z \in G$ with $z_{1} \leqq z$. For each $i \in I$ there are elements $x_{i} \in G, a_{i} \in D(A)$ such that $0 \leqq x_{i}, 0 \leqq a_{i}, z_{i}=x_{i}+a_{i}$. If $i, j \in I, i \neq j$, then $x_{i} \wedge x_{j}=0=a_{i} \wedge a_{j}$. Hence there exists $x=\bigvee x_{i}$ in G.

Let $i \in I$ be fixed. If $a_{i}=0$, we put $X_{i}=\{0\}$. If $a_{i}>0$, then we choose a maximal disjoint subset X_{i} of the set $\left[0, a_{i}\right] \cap A$. The set X_{i} is upper bounded in G, hence there exists $c_{i}=\sup X_{i}$ in G. Since A is a closed l-subgroup of G, we have $c_{1} \in A$. If i, j are distinct elements of I, then $c_{i} \wedge c_{j}=0$. Because A is a convex l-subgroup of G, it is conditionally orthogonally complete and hence, according to (*), it is projectable. Let D_{i} be the principal polar in A generated by the element c_{i}; thus D_{i} is a direct factor of A. We denote by E_{i} the convex l-subgroup of $D(A)$ generated by the set D_{i}. By $2.10, E_{i}$ is a direct factor of $D(A)$.

For each $i \in I$ there is $b_{i} \in A$ with $a_{i} \leqq b_{i} \leqq z$. Denote $d_{i}=b_{i}\left(D_{i}\right)$. Then $0 \leqq$ $\leqq d_{i} \leqq z$ for each $i \in I$ and $d_{i} \wedge d_{j}=0$ whenever i, j are distinct elements of I. Hence there is $d=\mathrm{V} d_{i}$ in G; since A is closed in G, we have $d \in A$.
If $a_{i}\left(E_{i}\right)<a_{i}$, then there is $0<a \in A$ with $a \leqq a_{i}-a_{i}\left(E_{i}\right)$; but then $0<a^{\prime}=$ $=x \wedge a$ for some $x \in X_{i}$ and hence $a^{\prime} \in D_{i} \subseteq E_{i}$, thus $a_{i}\left(E_{i}\right)<a_{i}\left(E_{i}\right)+a^{\prime} \leqq a_{i}$ and $a_{i}\left(E_{i}\right)+a^{\prime} \in E_{i}$, which is a contradiction. Hence $a_{i}=a_{i}\left(E_{i}\right) \in E_{i}$. We have $t\left(E_{i}\right)=t\left(D_{i}\right)$ for each $t \in A$. Thus

$$
a_{i}=a_{i}\left(E_{i}\right) \leqq b_{i}\left(E_{i}\right)=b_{i}\left(D_{i}\right)=d_{i} \leqq d
$$

Hence it follows that $a=\bigvee a_{i}$ exists in $D(A)$. Put $z_{0}=x+a$. Clearly $z_{i} \leqq z_{0}$ for each $i \in I$. In the same way as in the proof of 2.10 we can now verify that $z_{0}=\bigvee z_{i}$. Hence $D_{1}(G)$ is conditionally orthogonally complete.
2.22. Theorem. Let G be an orthogonally complete lattice ordered group. Then $D_{1}(G)$ is orthogonally complete.

The proof is analogous to that of 2.22 .

3. PAIRWISE SPLITTING LATTICE ORDERED GROUPS

Let G be a lattice ordered group, $0 \leqq x, y \in G$. We write $x \ll y$ if $n x \leqq y$ for each positive integer n. We say that x splits by y if there are elements $x_{1}, x_{2} \in G$ such that $x=x_{1}+x_{2}, x_{1} \wedge x_{2}=0, x_{1} \in c(y)$ and $x_{2} \wedge y \ll x_{2}$.

Let us consider the following condition for G :
(p) For each pair $0 \leqq x, y \in G$, the element x splits by y.

A lattice ordered group G fulfilling (p) is said to be pairwise splitting; lattice ordered groups with this property were investigated by Martinez [12]. It is easy to verify that an archimedean lattice ordered group is pairwise splitting if and only if it is epiarchimedean. Let \mathscr{P} be the class of all pairwise splitting lattice ordered groups. If G is pairwise splitting, then each convex l-subgroup of G is pairwise splitting.
3.1. Lemma. Let G be a pairwise splitting abelian lattice ordered group. Suppose that $A=A(G)$ is conditionally orthogonally complete. Let $0 \leqq x \in G, 0 \leqq$ $\leqq y_{0} \in D_{1}(G)$. Then x splits by y_{0} in $D_{1}(G)$.

Proof. There are elements $y \in G, b \in D(A)$ such that $0 \leqq y, 0 \leqq b, y_{0}=y+b$. If $b=0$, then x splits by y_{0}. Suppose that $b>0$. There exists $b_{1} \in A$ with $b \leqq b_{1}$. From the Axiom of Choice it follows that there exists a disjoint subset $\left\{b_{i}\right\}$ of A such that
(i) $b_{i} \leqq b$ for each b_{i},
(ii) if $0<a_{1} \in A, a_{1} \leqq b$, then $a_{1} \wedge b_{i}>0$ for some b_{i}.

The set $\left\{b_{i}\right\}$ is upper bounded in A, hence there exists $\bigvee b_{i}=b_{2}$ in A and by (i), $b_{2} \leqq b$.
Since A is a convex l-subgroup of G and because \mathscr{P} is a torsion class, A must be pairwise splitting and hence A is epiarchimedean. Thus by $2.13, D(A)$ is epiarchimedean. Hence $c\left(b_{2}\right)$ is a direct factor of A and $c_{1}\left(c\left(b_{2}\right)\right)=c_{1}\left(b_{2}\right)$ is a direct factor of $D(A)$. From (i) and (ii) it follows that $c_{1}(b)^{\beta}=c_{1}\left(b_{2}\right)^{\beta}$. Hence we obtain (because $D(A)$ is epiarchimedean)

$$
c_{1}\left(b_{2}\right)=c_{1}(b) .
$$

Put $b_{3}=b_{1}\left(c_{1}\left(b_{2}\right)\right)$. From the construction of the convex l-subgroup $c_{1}\left(b_{2}\right)$ it follows that $b_{3}=\bigvee_{m \geqq 0}\left(m b_{2} \wedge b_{1}\right)$ and that there exists a positive integer n with $b_{3} \leqq n b_{2} \wedge b_{1}$. Thus $b_{3}=n b_{2} \wedge b_{1}$, hence $b_{3} \in G$. We have $b \leqq b_{1}$ and thus

$$
b=b\left(c_{1}(b)\right)=b\left(c_{1}\left(b_{2}\right)\right) \leqq b_{1}\left(c_{1}\left(b_{2}\right)\right)=b_{3} .
$$

This implies that $c_{1}(b)=c_{1}\left(b_{3}\right)$. From this and from the commutativity of G we get $c_{1}\left(y_{0}\right)=c_{1}(y+b)=c_{1}\left(y+b_{3}\right)$.

Since $y+b_{3} \in G$, the element x splits by $y+b_{3}$. Thus there are elements $x_{1}, x_{2} \in$ $\in G$ such that $x=x_{1}+x_{2}, x_{1} \wedge x_{2}=0, x_{1} \in c\left(y+b_{3}\right),\left(y+b_{3}\right) \wedge x_{2} \ll x_{2}$. Therefore $x_{1} \in c_{1}\left(y_{0}\right), y_{0} \wedge x_{2} \ll x_{2}$. Hence x splits by y_{0} in $D_{1}(G)$.
3.1.1. Corollary. Let G be as in 3.1. Let $0 \leqq a \in D(A), 0 \leqq y_{0} \in D_{1}(G)$. Then a splits by y_{0}.

Proof. There is $b \in A$ with $a \leqq b$. According to Lemma 3.1, b splits by y_{0}. Hence there are elements $b_{1}, b_{2} \in D_{1}(G)$ such that $b=b_{1}+b_{2}, b_{1} \wedge b_{2}=0, b_{1} \in c\left(y_{0}\right)$ and $b_{2} \wedge y_{0} \ll b_{2}$. Since $D(A)$ is archimedean, $b_{2} \wedge y_{0}=0$. Put $a_{1}=b_{1} \wedge a$, $a_{2}=b_{2} \wedge a$. Then $a=a_{1}+a_{2}, a_{1} \wedge a_{2}=0, a_{1} \in c\left(y_{0}\right), a_{2} \wedge y_{0}=0$. Hence a splits by y_{0}.
3.2. Lemma. Let G be a pairwise splitting abelian lattice ordered group. Suppose that $A(G)$ is conditionally orthogonally complete. Let $0 \leqq x \in D_{1}(G), 0 \leqq z \in$ $\in D_{1}(G), 0 \leqq a \in D(A), z \ll x+a$. Then $z \ll x$.

Proof. According to Corollary 3.1.1, the element a splits by z. Thus there are elements $a_{1}, a_{2} \in D_{1}(G)$ such that $a=a_{1}+a_{2}, a_{1} \wedge a_{2}=0, a_{1} \in c_{1}(z), a_{2} \wedge z \ll$
$\ll a_{2}$. Then $a_{1}, a_{2} \in D(A)$ and since $D(A)$ is archimedean, we have $a_{2} \wedge z=0$. Hence $a_{2} \wedge n z=0$ for each positive integer n.

Since $n z \leqq x+a_{1}+a_{2}$, there are elements $0 \leqq z_{1}, z_{2} \in D_{1}(G)$ with $n z=$ $=z_{1}+z_{2}, 0 \leqq z_{1} \leqq x+a_{1}, 0 \leqq z_{2} \leqq a_{2}$. If $z_{2}>0$, then $a_{2} \wedge n z \geqq z_{2}>0$, a contradiction. Thus $z_{2}=0, n z \leqq x+a_{1}$ for each positive integer n. If $a_{1}=0$, then the assertion of the lemma is valid; suppose that $a_{1}>0$.

There exists a maximal disjoint subset $\left\{a_{i}\right\} \subset A$ with $a_{i} \leqq a_{1}$. The set $\left\{a_{i}\right\}$ is upper bounded in A, hence there exists $\bigvee a_{i}=a_{3}$ in A and $a_{3} \leqq a_{1}$. From the construction of a_{3} it follows that $c_{1}\left(a_{3}\right)^{\beta}=c_{1}\left(a_{1}\right)^{\beta}$; from this and from the fact that $D(A)$ is epiarchimedean we obtain $c_{1}\left(a_{3}\right)=c_{1}\left(a_{1}\right)$. Hence there is a positive integer n_{1} with $n_{1} a_{3} \geqq a_{1}$.

Since $a_{1} \in c_{1}(z)$, there is a positive integer m with $a_{1} \leqq m z$. Then for each positive integer n we have

$$
\begin{gathered}
(n+m) z \leqq x+a_{1}, \\
n z \leqq x+a_{1}-m z \leqq x .
\end{gathered}
$$

3.3. Theorem. Let G be a pairwise splitting abelian lattice ordered group. Suppose that $A(G)$ is conditionally orthogonally complete. Then $D_{1}(G)$ is pairwise splitting.

Proof. Let $0 \leqq x_{0}, y_{0} \in D_{1}(G)$. There are elements $0 \leqq x \in G, 0 \leqq a_{1} \in D(A)$ with $x_{0}=x+a_{1}$. Further, there is $a \in A$ such that $a_{1} \leqq a$. Then $x+a \in G$ and hence, according to Lemma 3.1, $x+a$ splits by y_{0}. Hence there are elements $x_{1}, x_{2} \in G$ with $x+a=x_{1}+x_{2}, x_{1} \wedge x_{2}=0, x_{1} \in c_{1}\left(y_{0}\right), x_{2} \wedge y_{0} \ll x_{2}$. Denote $x_{1}^{\prime}=x_{1} \wedge x_{0}, x_{2}^{\prime}=x_{2} \wedge x_{0}$. We have $x_{1}^{\prime} \wedge x_{2}^{\prime}=0$ and

$$
\begin{gathered}
x_{0}=x_{0} \wedge\left(x_{1}+x_{2}\right)=x_{0} \wedge\left(x_{1} \vee x_{2}\right)=\left(x_{0} \wedge x_{1}\right) \vee\left(x_{0} \wedge x_{2}\right)= \\
=x_{1}^{\prime} \vee x_{2}^{\prime}=x_{1}^{\prime}+x_{2}^{\prime}, \quad x_{1}^{\prime} \in c_{1}\left(y_{0}\right), \quad x_{2}^{\prime} \wedge y_{0} \leqq x_{2} \wedge y_{0} \ll x_{2}
\end{gathered}
$$

Since $x+a \in x_{0}+D(A)$, we have $x_{2}=(x+a) \wedge x_{2} \in x_{0} \wedge x_{2}+D(A)$. Hence there is $0 \leqq a_{2} \in D(A)$ such that $x_{2}=x_{2}^{\prime}+a_{2}$. We have $x_{2}^{\prime} \wedge y_{0} \ll x_{2}^{\prime}+a_{2}$, thus according to Lemma 3.2, $x_{2}^{\prime} \wedge y_{0} \ll x_{2}^{\prime}$. Therefore x_{0} splits by y_{0}.

Problem. Does the assertion of Thm. 3.3 remain valid without the assumption of commutativity of G ?

4. THE α-DISTRIBUTIVITY

Let α be a cardinal and let L be a lattice. Consider the following condition for L :
(α) If $\left\{x_{t, s}\right\}_{t \in T, s \in S}$ is a subset of L such that both $\bigwedge_{t \in T} \bigvee_{s \in S} x_{t, s}$ and $\bigvee_{\varphi \in S^{T}} \Lambda_{t \in T} x_{t, \varphi(t)}$ exist in L and if card $T \leqq \alpha$, card $S \leqq \alpha$, then

$$
\bigwedge_{t \in T} \bigvee_{s \in S} x_{t, s}=\bigvee_{\varphi \in S T} \bigwedge_{t \in T} x_{t, \varphi(t)}
$$

If L fulfils the condition (α) and the condition dual to (α), then it is said to be α distributive. L is called completely distributive if it is α-distributive for each cardinal α.

Let β be a cardinal. If L is β_{1}-distributive for each cardinal $\beta_{1}<\beta$ and if L fails to be β-distributive, then we write $d(L)=\beta$.

Let G be a lattice ordered group. It is easy to verify that G is α-distributive if it fulfils (α).

The following assertion is easy to verify.
4.1. Lemma. Let G be a lattice ordered group and let α be an infinite cardinal. Suppose that G fails to be α-distributive. Then there is $0<v \in G$ such that for each $0<v_{1} \in G$ with $v_{1} \leqq v$, the interval $\left[0, v_{1}\right]$ of G fails to be α-distributive.

We need the following result:
(A) (Cf. [7].) Let α be an infinite cardinal and let G be an archimedean lattice ordered group. Suppose that card $[0, v] \leqq \alpha$ for each strictly positive element v of G. Assume that G is α-distributive. Then $D(G)$ is α-distributive.
4.2. Proposition. Let G be a lattice ordered group. Suppose that G is completely distributive. Then $D_{1}(G)$ is completely distributive.

Proof. This follows from Prop. 1.7 of the paper [15] and from the fact that each element of $D_{1}(G)$ is the supreum of a certain family of elements of G (cf. the condition (iv) in § 1).
4.3. Theorem. Let α be an infinite cardinal and let G be a lattice ordered group. Suppose that card $[0, v] \leqq \alpha$ for each strictly positive element of $A(G)$. Assume that G is α-distributive. Then $D_{1}(G)$ is α-distributive.

Proof. Since G is α-distributive, $A(G)=A$ must be α-distributive as well. Thus (A) implies that $D(A)$ is α-distributive.

Assume that $D_{1}(G)$ is not α-distributive. By Lemma 4.1 there is $0<v \in D_{1}(G)$ such that the interval $\left[0, v_{1}\right]$ of $D_{1}(G)$ fails to be α-distributive for each $0<v_{1} \in$ $\in D_{1}(G)$ with $v_{1} \leqq v$.

We distinguish two cases. First suppose that there exists $0<a \in A$ with $a \leqq v$. Then the interval $[0, a]$ of $D_{1}(G)$ is a sublattice of $D(A)$ and hence it is α-distributive, which is a contradiction. Now suppose that no $0<a \in A$ with $a \leqq v$ exists. Each element $0<v_{1} \in D_{1}(G)$ with $v_{1} \leqq v$ can be written as $v_{1}=x+a_{1}, 0 \leqq x \in G$, $0 \leqq a_{1} \in D(A)$. Then we have $a_{1} \leqq v_{1} \leqq v$, hence $a_{1}=0$ and thus $v_{1}=x \in G$. Hence the interval $[0, v]$ of $D_{1}(G)$ is a sublattice of G and so it is α-distributive, which is a contradiction.
4.4. Theorem. Let G be a lattice ordered group that is not completely distributive, $d(G)=\alpha$. If $A(G)$ is completely distributive, then $d\left(D_{1}(G)\right)=\alpha$. If $A(G)$ is not completely distributive, $d(D(A(G)))=\beta$, then $d\left(D_{1}(G)\right)=\min (\alpha, \beta)$.

Proof. From [10], Prop. 2.20 it follows that $D_{1}(G)$ is not α-distributive, hence $d\left(D_{1}(G)\right) \leqq \alpha$. If $A(G)$ is not completely distributive, then $D(A(G))$ cannot be completely distributive; if $d(D(A(G)))=\beta$, then according to [10], Prop. 2.16, $d\left(D_{1}(G)\right) \leqq$ $\leqq \beta$. Now it suffices to verify that if γ is a cardinal and both G and $D(A(G))$ are γ-distributive, then $D_{1}(G)$ is γ-distributive as well. To prove it we can use the same method as in the proof of 4.2.
4.5. Theorem. Let G be a lattice ordered group that is not completely distributive, $d(G)=\alpha$. Suppose that $A(G)$ is projectable. Then $d\left(D_{1}(G)\right)=\alpha$.

Proof. If $A(G)$ is completely distributive, then the assertion is valid according to 4.4. Suppose that $d(A(G))=\beta$. Hence $\beta \geqq \alpha$. Since $A(G)$ is projectable, from [8] we obtain $d(D(A(G)))=\beta$. Hence $d\left(D_{1}(G)\right)=\alpha$ by 4.4.

5. g-COMPLETE LATTICE ORDERED GROUPS

An archimedean lattice ordered group G is complete if and only if $D(G)=G$. A lattice ordered group H will be called g-complete (generalized complete) if $D_{1}(H)=$ $=H$. It was remarked in [11] that $D_{1}(H)=H$ if and only if $A(H)$ is complete.

The following assertion has been proved in [9]:
(A) Let G be a lattice ordered group. Then there exists a convex l-subgroup $C(G)$ of G such that
(a) $C(G)$ is complete;
(b) if H is a convex l-subgroup of G and if H is complete, then $H \subseteq C(G)$.

A class \mathscr{K} of lattice ordered groups is said to be a radical class [11] if it fulfils the following conditions:
(i) \mathscr{K} is closed with respect to isomorphisms.
(ii) If H_{1} is a convex l-subgroup of a lattice ordered group H and if $H \in \mathscr{K}$, then $H_{1} \in \mathscr{K}$.
(iii) If H_{i} is a system of convex l-subgroups of a lattice ordered group H and if each H_{i} belongs to \mathscr{K}. then $\bigvee H_{i} \in \mathscr{K}$.

In this paragraph it will be shown that the class of all g-complete lattice ordered groups is a radical class.
5.1. Theorem. Let G be a lattice ordered group. There exists a convex l-subgroup $B_{0}(G)$ of G such that
(a) $B_{0}(G)$ is g-complete,
(b) if B_{1} is a convex l-subgroup of G and if B_{1} is g-complete, then $B_{1} \subseteq B_{0}(G)$.

Proof. Let $\left\{B_{i}\right\}$ be the set of all convex l-subgroups of G fulfilling

$$
B_{i} \cap A(G) \subseteq C(G)
$$

Put $B_{0}(G)=\bigvee B_{i}$. Then $B_{0}(G) \cap A(G) \subseteq C(G)$. Hence $A\left(B_{0}(G)\right)=A(G) \cap B_{0}(G) \subseteq$ $\subseteq C(G)$. Since $A\left(B_{0}(G)\right)$ is complete, $B_{0}(G)$ is g-complete.
Let B_{1} be a convex l-subgroup of G and suppose that B_{1} is g-complete. Then $A\left(B_{1}\right)=A(G) \cap B_{1}$ is complete, hence $A(G) \cap B_{1} \subseteq C(G)$ and thus $B_{1} \in\left\{B_{i}\right\}$. Therefore $B_{1} \subseteq B_{0}(G)$.

Remark. It is easy to verify that $B_{0}(G)$ is a characteristic l-subgroup of G. It can be shown by examples that $B_{0}(G)$ need not be a closed l-subgroup of G (cf. Example 6.5 below).
5.2. Theorem. The class K_{g} of all g-complete lattice ordered groups is a radical class.

Proof. K_{g} obviously fulfils (i). Let $H \in K_{g}$ and let H_{1} be a convex l-subgroup of H. Then $A(H)$ is complete and since $A\left(H_{1}\right)=H_{1} \cap A(H), A\left(H_{1}\right)$ is complete as well. Thus (ii) holds. Let G be a lattice ordered group and let $\left\{G_{i}\right\}$ be a system of convex l-subgroups of G such that each G_{i} belongs to K_{g}. Let $B_{0}(G)$ be as in 5.1. Then each G_{i} is a subset of $B_{0}(G)$, hence $\bigvee G_{i} \subseteq B_{0}(G)$; in view of (ii) we have $\bigvee G_{i} \in K_{g}$ and hence (iii) is valid.
5.3. Proposition. Let G be a lattice ordered group, $G=\prod_{i \in I}^{0} G_{i}$. Then G is g complete if and only if all G_{i} are g-complete.

Proof. Assume that all G_{i} are g-complete. Then according to Prop. 2.17, G is g-complete. Conversely, suppose that G is g-complete. Hence $A(G)$ is complete. We have $A(G)=\prod_{i \in I}^{0}\left(A(G) \cap G_{i}\right)$ and $A(G) \cap G_{i}=A\left(G_{i}\right)$ for each $i \in I$. Since each direct factor of a complete lattice ordered group is complete, all G_{i} 's are g-complete.

An analogous proposition is valid for direct sums.
Let H be an abelian lattice ordered group. Consider the following condition for H :
(I) it is possible to define a multiplication of elements of H by reals so that H turns out to be a vector lattice.

We denote by \mathscr{V}_{1} the class of all archimedean lattice ordered groups fulfiling the condition (I). Further, let \mathscr{V}_{2} be the class of all $G \in \mathscr{V}_{1}$ that are complete. Lattice ordered groups belonging to \mathscr{V}_{2} are called complete vector lattices [1] or K-spaces [14]. Let us denote by \mathscr{V}_{3} the class of all $G \in K_{g}$ fulfilling (I).
5.4. Proposition. Both \mathscr{V}_{1} and \mathscr{V}_{2} are radical classes.

Proof. \mathscr{V}_{1} obviously fulfils the conditions (i) and (ii). Let G be a lattice ordered group and let $\left\{H_{i}\right\}$ be a system of convex l-subgroups of G such that each H_{i} belongs to \mathscr{V}_{1}. Put $H=\bigvee H_{i}$. Each H_{i} is a convex l-subgroup of $A(G)$, hence H is a convex l-subgroup of $A(G)$ as well. From Thm. 1.3, [4] it follows that each archimedean lattice ordered group possesses a largest convex l-subgroup fulfilling the condition (I). We denote by H_{0} the largest convex l-subgroup of $A(G)$ fulfilling (I). Since all H_{i}
are convex l-subgroups of H_{0}, we obtain that H is a convex l-subgroup of H_{0}. Thus H belongs to \mathscr{V}_{1}. Therefore \mathscr{V}_{1} is a radical class. Let \mathscr{C} be the class of all complete lattice ordered groups. \mathscr{C} is a radical class [12] and $\mathscr{V}_{2}=\mathscr{V}_{1} \cap \mathscr{C}$. The intersection of two radical classes being again a radical class, \mathscr{V}_{2} is a radical class as well.
5.5. Corollary. Let G be a lattice ordered group. Then G possesses a largest convex l-subgroup $V_{i}(G)$ belonging to $\mathscr{V}_{i}(i=1,2)$.

Problem. Is \mathscr{V}_{3} a radical class?

6. EXAMPLES

6.1. If a lattice ordered group G is complete, then each polar of G is a direct factor of G. A polar of a g-complete lattice ordered group H need not be a direct factor of H.

Let H be the set of all triples (x, y, z) of reals, the operation + in H being defined componentwise. For $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right) \in H$ we put $\left(x_{1}, y_{1}, z_{1}\right) \leqq\left(x_{2}, y_{2}, z_{2}\right)$, if either $x_{1}<x_{2}$, or $x_{1}=x_{2}$ and $y_{1} \leqq y_{2}, z_{1} \leqq z_{2}$. Then H is a g-complete lattice ordered group. The set P consisting of all $(x, y, z) \in H$ with $x=z=0$ is a polar of H and P fails to be a direct factor of H.
6.2. If a lattice ordered group G is projectable and if $A(G)$ is projectable, then $D_{1}(G)$ need not be projectable.
Let $I=[0,1]$ be the interval of reals and let F be the set of all real functions f defined on I with the following property: there is a finite set $M(f) \subseteq I$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$ whenever $x_{1}, x_{2} \in I \backslash M(f)$. The partial order and the operation + on the set F are defined in the natural way. Let G be the set of all pairs (f, g) with $f, g \in F$. For $\left(f_{i}, g_{i}\right) \in G(i=1,2)$ we put $\left(f_{1}, g_{1}\right)+\left(f_{2}, g_{2}\right)=\left(f_{1}+f_{2}, g_{1}+g_{2}\right)$ and we set $\left(f_{1}, g_{1}\right) \leqq\left(f_{2}, g_{2}\right)$ if for each $x \in I$ we have either $f_{1}(x)<f_{2}(x)$, or $f_{1}(x)=$ $=f_{2}(x)$ and $g_{1}(x) \leqq g_{2}(x)$. Then G is a projectable lattice ordered group. $A(G)$ consists of all elements $(0, g)$ with $g \in F ; A(G)$ is projectable as well. Let I_{1} be an infinite subset of $I, I_{1} \neq I$. For each $t \in I_{1}$ let $f_{t} \in F$ such that $f_{t}(t)=1$ and $f_{t}(x)=0$ for $x \in I, x \neq t$. The least upper bound h of the set $\left\{\left(0, f_{t}\right): t \in I_{1}\right\}$ in $D_{1}(G)$ exists. Let $f \in F, f(x)=1$ for each $x \in I$. Let P be the principal polar of $D_{1}(G)$ generated by the element h. Then the set

$$
\left\{h_{1} \in P: 0 \leqq h_{1} \leqq(f, 0)\right\}
$$

has no greatest element. Hence P fails to be a direct factor of G.
6.3. If a lattice ordered group G is pairwise splitting, then $D_{1}(G)$ need not be pairwise splitting.

Let F be as in 6.2. Then F is pairwise splitting lattice ordered group. Put $t_{n}=1 / n$ $(n=1,2, \ldots)$. For each positive integer n let $f_{n} \in F$ with $f_{n}\left(t_{n}\right)=1 / n, f_{n}(x)=0$
for each $x \neq t_{n}$. Since G is archimedean, $D_{1}(F)=D(F)$. The least upper bound h of the set $\left\{f_{n}\right\}(n=1,2, \ldots)$ in $D_{1}(F)$ exists. Let $f \in F, f(x)=1$ for each $x \in I$. The element f does not split by h in $D_{1}(F)$. Hence $D_{1}(F)$ is not pairwise splitting.
6.4. There exists an epiarchimedean lattice ordered group G such that $D(G)$ fails to be epiarchimedean.

Let F, h be as in 6.3. The lattice ordered group F is epiarchimedean and the principal convex l-subgroup of $D_{1}(F)$ generated by the element h fails to be a direct factor of $D_{1}(G)$. Hence $D_{1}(F)$ is not epiarchimedean.
6.5. The largest g-complete l-ideal $B_{0}(G)$ of a lattice ordered group G need not be a closed l-subgroup of G.

Let F be as in 6.2. Let F_{1} be the set of all $f \in F$ such that (i) $f(x)$ is an integer for each $x \in I$, and (ii) if $x \in I \backslash M(f)$, then $f(x)$ is even. F_{1} is an archimedean lattice ordered group. Hence $B_{0}\left(F_{1}\right)=C\left(F_{1}\right)$. Thus $B_{0}\left(F_{1}\right)$ consists of all $f \in F_{1}$ such that $f(x)=0$ for each $x \in I \backslash M(f)$. Let $f \in F_{1}$ with $f(x)=2$ for each $x \in I$. There is a subset $X \subseteq B_{0}\left(F_{1}\right)$ such that $\sup X=f$ holds in F_{1}; hence $B_{0}\left(F_{1}\right)$ fails to be closed in F_{1}.

References

[1] G. Birkhoff: Lattice theory, third edition, Providence 1967.
[2] P. Conrad: Lattice ordered groups, Tulane University 1970.
[3] P. Conrad: Epiarchimedean lattice ordered groups. Czech. Math. J. 24 (1974), 192-218.
[4] P. Conrad: Changing the scalar multiplication on a vector lattice. J. Austral. Math. Soc. 20 (1975), 332-347.
[5] J. Фукс: Частично упорядоченные алгебраические системы, Москва, 1965.
[6] J. Jakubik: Die Dedekindschen Schnitte im direkten Produkt von halbgeordneten Gruppen. Matem. fyz. časop. 16 (1966), 329-336.
[7] J. Jakubik: Distributivity in lattice ordered groups. Czech. Math. J. 22 (1972), 108-125.
[8] J. Jakubik: On σ-complete lattice ordered groups. Czech. Math. J. 23 (1973), 164-174.
[9] J. Jakubik: Conditionally α-complete sublattices of a distributive lattice. Algebra univ. 2 (1972), 255-261.
[10] J. Jakubik: Archimede kernel of a lattice ordered group. Czech. Math. J. 28 (1978), 140-154.
[11] J. Jakubik: Radical classes and radical mappings of lattice ordered groups. Symposia Math. 31 (1977), 451-477.
[12] J. Martinez: Pairwise splitting lattice ordered groups. Czech. Math. J. 27 (1977), 545-551.
[13] Г. Я. Роткович: О дизъюнктно полных архимедовых полуупорядоченных группах. Czech. Math. J. 27 (1977), 523-527.
[14] Б. Z. Вулих: Введение в теорию полуупорядоченных пространств, Москва 1961.
[15] E. C. Weinberg: Completely distributive lattice ordered groups. Pacif. J. Math. 12 (1962), 1131-1148.

Author's address: 04001 Košice, Švermova 5, ČSSR (Vysoké učení technické).

