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For an archimedean lattice ordered group H we denote by D(H) the Dekekind
completion of H (cf. BIRKHOFF [1], Chap. XIII, § 13). Let K be an abelian lattice
ordered group. EVERETT [5] defined an extension M(K) of K that was constructed
by means of Dedekind cuts of the lattice (K; <); we shall call M(K) the maximal
Dedekind completion of K. (In [5], M(K) was said to be the Dedekind completion
of K.)'The generalized Dedekind completion DI(G) of a lattice ordered gioup G has
been defined in [8]; cf. also [9]. If G 1s archimedean, then both M(G) and D,(G)
coincide with the Dedekind completion D(G).

A lattice ordered group K will be called M-complete if it is abelian and M(K) = K.
In § 1 it will be shown that each lattice ordered group G possesses a largest convex
M-complete I-subgroup m(G). From this it follows that the class of all M-complete
lattice ordered groups is a radical class [7].

In § 2 it will be proved that if an abelian lattice ordered group is a direct product
of its I-sugroups B; (i €I), then M(G) is a direct product of its I-subgroups M(B;)
(i €I). An analogous assertion is valid for direct sums.

A natural question arises what are the relations between M(G) and D,(G) for an
abelian lattice ordered group G and, in particular, when do the both completions
M(G) and D,(G) coincide. It will be shown in § 3 that D,(G) is always an l-subgroup
of M(G). In each lattice ordered group G there exists a largest archimedean convex
I-subgroup A(G) of G; this is said to be the archimedean kernel of G (cf. [8]). If G
is an abelian lattice ordered group such that (i) G is linearly ordered, and (ii)
A(G) * {0}, then M(G) = D,(G). If either (i) or (ii) fails to hold, then M(G) need
not coincide with DI(G). In Proposition 3.11 a necessary and sufficient condition
is given for M(G) = D,(G) to be valid.

Some results on the relationship between G and M(G) are established in §4.
E.g., it is shown that if G fulfils the condition

(F) each upper bounded disjoint subset of G is finite,
then M(G) fulfils the condition (F) as well. CONRAD [3] has proved that if G satisfies
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(F), then there exists a system S = {4;} (iel) of convex linearly ordered sub-
groups of G such that G can be constructed from S by means of the operations
of direct sums and lexicographic extensions; it will be shown that then M(G) can be
constructed in an analogous way from the system S" = {M(4,)} (i €1).

We shall use the standard notation for lattices and latiice ordered groups (cf.
BIRKHOFF [1], CoNRAD [2], FucHs [6]).

1. MAXIMAL DEDEKIND COMPLETION

Let Lbe a lattice. For X = L we denote by X* or X', respectively, the set of all
upper and the set of all lower bounds of the set X in L. Let d(L) be the system of all
sets (X“), where X runs over the system of all nonempty upper bounded subsets
of L. The system d(L) is partially ordered by the set theoretical inclusion. Then d(L)
is a conditionally complete lattice. The lattice operations in d(L) will be denoted
by A and v. If (X%)! (i el) are subsets of L such that the system {(X%)'}i; S is
lower bounded in L, then

Aier (X3)' = Mier (X' 5
if the system S is upper bounded in L, then
Vier (X7)' = (User (X3)))"-
The mapping ¢ : L — d(L) defined by
o(x) = ({x}*)" foreach xeL

is an isomorphism of Linto d(L). We shall identify x with ¢(x) for each x € L. Then L
is a sublattice of d(L). If X, is a subset of Land x, is the supremum of X, in L,
then xy is also the supremum of X, in d(L); the analogous dual assertion is also valid.

Let (G; £; +) be an abelian lattice ordered group. Consider the lattice (G; <).
We define a binary operation + in d(G) as follows: for Y, Y, € d{(G) we set

Y+ Y, = ({Y1 + ¥ :y.€Yy, ye L)
The following results 1.1 —1.3 have been proved in [5].

1.1. Lemma. (d(G); +) is a semigroup. The element 0 € G is a neutral element
in (d(G); +).If a, b, c€d(G), a £ b, then ¢ + a £ ¢ + b. The set G is a subsemi-
group of (d(G); +).

1.2. Theorem. Let M(G) be the set of all elements of d(G) having an inverse in
the semigroup d(G). Then

(a) M(G) is a group with respect to the operation +;
(b) M(G) is a sublattice of the lattice d(G).

612



From 1.1 and 1.2 it follows that M(G) is a lattice ordered group. From the definition
of M(G) we obtain immediately that M(G) is a maximal subsemigroup of d(G) with
respect to the property of being a group. G is obviously an l=subgroup of M(G). We
shall call M(G) the maximal Dedekind completion of G. If M(G) = G, then G is
said to be M-complete.

For a € d(G) we denote

u(@)={g9eG:a=<g}, lla)={geG:g < a},
wa) ={g, — 92 : 9, €u(a), g, €l(a)}.

1.3. Theorem. Let a € d(G). Then a belongs to M(G) if and only if inf v(a) = 0
holds in G.

Let x, ye G, x < y. The set [x, y] = {z eG:x<z < y} is said to be an interval
of G. The interval [x, y] is nontrivial, if x < y. Let us consider the fellowing con-
dition for a nontrivial interval [x, y] of G:

(m) If X & 0 = Y are subsets of [x, y] such that x, < y, for each x; € X and
each y, € Y and

1) inf{y, — x,:x,€X, y,eY} =0,

then sup X exists in [x, y].

1.4. Lemma. G is M-complete if and only if each nontrivial interval of G fulfils
the condition (m). If each nontrivial interval of G* fulfils (m), then G is M-complete.

Proof. Let G be M-complete. Suppose that [x, y] is a nontrivial interval of G
and let X, Ybe as in (m). Then X is upper bounded in G and hence z = (X*)' belongs
to d(G). Clearly

Xclz), YSu(z)
and hence
{yi —xy:x,€X. y,eY} S (z).

From this and from (1) we infer that infv(z) = 0 holds in G. Thus according to
Theorem 1.3, z belongs to M(G). Because G is M-complete, we have z € G. In M(G)
the relation sup X = z is valid; thus sup X = z holds in G. Obviously z € [x, y].
Hence z = sup X in [x, y]. Therefore [x, y] fulfils (m).

Conversely, assume that each nontrivial interval of G fulfils the condition (m).
If G = {0}, then clearly M(G) = {0}. Suppose that G = {0} and let a € M(G).
There are elements x, y € G with x < a < y. Put

X =1Ia)n[x,y], Y=u(a)n[x,y].

Then x; < y, for each x; € X and each y, € Y. If g, € u(a), g, € l(a), then g; A y€
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€Y, g, vxeXand
gL ANY =g VX=4g;—4g,.

From this and from inf v(a) = 0 we obtain that (1) is valid. Hence by (m), sup X = x,
exists in G. Thus sup X = x; holds in d(G). On the other hand, according to the
construction of X we have sup X = ain d(G). Hence a = x, € G and thus G = M(G).

Suppose that each nontrivial interval of G fulfils (m) and let I, = [a, b] be a non-
trivial interval of G. Then I, = [0, b — a] is a nontrivial interval of G* isomorphic
with I; hence I, fulfils (m) and thus G is M-complete.

1.5. Lemma. Let x, y,z€ G, x < y < z. Suppose that both intervals [x, y] and
[y, z] fulfil the condition (m). Then [x, z] fulfils (m).

Proof. Let X, Y be nonempty subsets of the interval [x, z] such that x; < y, for
each x, € X and each y, € Y. Suppose that (1) is valid. Put
X ={x, Ay:x;eX}, X" ={x, vy:x, eX}

and let Y, Y” be defined analogously. X" and Y’ are nonempty subsets of the interval
[x, y] and x] < y} for each xj € X" and each yj e Y’ For x, € X and y, €Y we
have y; A y — x; A y £y, — x,; hence from (1) we obtain

() inf{yj —x}{:)yieY, xjeX'}=0.

Because [x, y] fulfils (m), there exists sup X’ = p in [x, y]. Similarly, by considering
the subsets X” and Y” in [y, z] we conclude that g = sup X” exists in [y, z]. Put
r=p+ q — y. For each x;, € X and each y, € Y denote

’ ”
X1 =X AY, X3 =X VY)Y,

VI=VIAY, YI=y VY.
Then x;, =x} +x{ —y =r and y, =y; + ¥ — y = r holds for each x, e X
and each y, € Y. Suppose that r & sup X in [x, z]; then there is r; € [x, z] such that

ry <randr; < x; foreach x; e X. Hence 0 < r — r; < y, — x; for each x; e X
and each y, € Y, which contradicts (1). Thus [x, z] fulfils (m).

1.6. Corollary. Let x,y€ G, 0 < x, 0 < y. If both [0, x] and [0, y] fulfil (m),
then [0, x + y] fulfils (m).

Let m(G) be the set of all elements g € G such that either g = 0 or g = 0 and the
interval [0, |g|] fulfils (m).

1.7. Theorem. For each abelian lattice ordered group G, m(G) is a convex
I-subgroup of G. Moreover, m(G) is M-complete and A = m(G) whenever A is an
M-complete convex I-subgroup of G. For each automorphism ¢ of the lattice ordered
group G we have ¢(m(G)) = m(G).
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Proof. If g €m(G), then clearly —g & m(G). Let gy, g, €m(G), g, + 0 + ga.
Put [g,] + [g2| = 9. According to 1.6, the interval [0, ¢] fulfils (m). We have

0<lg, +g,] =9,

hence the interval [0, |g, + g,|] fulfils (m). Thus g, + g, € m(G). Hence m(G) is
a subgroup of G. It is obvious that m(G) is upper-directed and convex, hence it is
a convex [-subgroup of G. If x, y e m(G), x < y, then 0 < y — x e m(G) and the
intervals [x, y], [0, y — x] are isomorphic; hence [x, y] fulfils the condition (m).
Thus according to 1.4, m(G) is M-complete. Let 4 be a convex I-subgroup of G and
suppose that A is M-complete. Let 0 < a € 4. By 1.4, the interval [0, a] of G fulfils
(m) and thus a € m(G). Therefore A < m(G). Let ¢ be an automorphism of the Jattice
ordered group G. Then ¢(m(G)) is isomorphic with m(G), hence ¢@(m(G)) is M-
complete and hence ¢(m(G)) € m(G). Similarly ¢~ *(m(G)) = m(G) and thus
#(m(G)) = m(G).

1.7.1. Theorem. Let H be a lattice ordered group. There exists a convex Il-sub-
group my(H) of H with the following properties:

(i) my(H) is M-complete;
(ii) if A4 is a convex I-subgroup of H such that A is M-complete, then A = m(H).

Proof. There exists a largest convex abelian I-subgroup a(H) of H (cf. [8],
Lemma 1.1). Put a(H) = G, m,(H) = m(G). Then m,(H) is abelian and by 1.7,
m;(H) is M-complete. Let A be a convex l-subgroup of H such that A is M-complete.
Thus A < a(H) and hence according to 1.7 we have 4 < m,(H).

Let & be a class of lattice ordered groups. Suppose that £ fulfils the following
conditions:

(a) A is closed with respect to isomorphisms.

(b) If A€ o and B is a convex l-subgroup of 4, then Be 1.

(c) If {Ai} is a system of convex I-subgroups of a lattice ordered group H such that
each 4; belongs to &, then V A4; belongs to .

Under these assumptions ¢ is said to be a radical class [7].

Let ./ be the class of all lattice ordered groups that are M-complete. .# obviously
fulfils (a). From 1.4 it follows that (b) is valid for .#. Let {4;} be a system of convex
l-subgroups of a lattice ordered group H such that each A4;is M-complete. According
to 1.7.1 we have A; S m(H) for each A4; and hence V4; = m,(H). Thus by (b),
V 4; belongs to . and hence .# fulfils (c). Therefore . is a radical class.

1.8. Lemma. Let K be a lattice ordered group, ke K, X < K, YS K, sup X =
=k=infY,Z={y—x:x€X, ye Y}. Then inf Z = 0.

Proof. Denote X = {Xi}ier, Y = {§;}es- Suppose that inf Z # 0. Then there is
0 < teK such that y; — X; 2 t for each i€l and each je J. Hence y; =2 t + X;
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and thus
k<t+k=t+ViaXi=Vialt +x) = AN yi =k,

which is a contradiction.

1.9. Lemma. M(G) is M-complete.

Proof. Denote M(G) = H and let ho € M(H). There are sets X, Y < H such that
sup X = hy = inf Y holds in M(H). Put X = {x;}, Y= {y,}. For each x; there is
a subset X; of G such that x; = sup X is valid in H. Similarly, for each y; there is
a subset Y; of G such that y; = inf Y; holds in H. Denote X’ = UX,, Y' = UY,.
Then

sup X' = hy = inf Y’

is valid in M(H). Put Z’' = {y’ — x":y"eY’, x’ € X'}. According to 1.8 we have
inf Z' = 0 in M(H), and hence inf Z’' = 0 in G. Hence in view of 1.3 there is h, € H
such that

(%) sup X’ = hy = inf Y’

is valid in H; thus (*) holds in M(H) as well and therefore h; = ho. Hence h, € H
and so M(H) = H.

1.10. Theorem. Let G be an abelian lattice ordered group. Let H be a lattice
ordered group fulfilling the conditions

(a) H is M-complete;
(b) G is an I-subgroup of H;
(c) for each h e H there are sets X = G, Y = G such that supX = h = inf Y.

Then there exists an isomorphism ¢ of M(G) onto H such that ¢(g) = g for each
geG.

Proof. Let a € M(G). There exists a subset X; + 0 of G such that sup X, = a
holds in M(G). The set X, is upper bounded in G. Put Y= X4, X = (X7)"in G.
Then we have in M(G) the relations

supX =a =infY.
Put Z = {y — x:x€X, yeY}. According to Lemma 1.8,
(2 infZ =0

holds in M(G). Hence (2) is valid in G.

Denote Y, = X* X, = Y;, where the symbols u and [ are taken with respect to H.
Put Z, = {y, — X, : X, €X,, y, € Y,}. From (2) we obtain

) infZ, =0.
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Hence according to 1.3 there exists & € M(H) such that
supX, =h=inf Y, .

Because H is M-complete, we have h e H. We put ¢(a) = h. Clearly ¢(g) = g
for each g € G. The element h is correctly defined (i.e., it is uniquely defined by the
element a); namely, if X is another subset of G with sup X; = a in M(G), then
(X%)* = X% in G. From the definition of the operations +, A and v in M(G) it
follows that ¢ is a homomorphism of the lattice ordered group M(G) into H.

Suppose that ¢(a) = 0 for some a € M(G), a #+ 0. Then (p(|a!) = 0. There is
0<geG with g £ la]; thus @(g) = 0. This is a contradiction, since o(g9) = g.
Hence ¢ is an isomorphism of M(G) into H.

Let heH. Put X' ={geG:g=<h}, Y ={geG:h<g}, Z={y —x":
:x'€X’, y' e Y'}. From (c) we obtain

supX' = h=inf Y.
Hence according to 1.8 we have
4) infZ' =0

in H. From this and from (b) it follows that (4) holds in G as well. Thus by 1.3, there
exists @ € M(G) with sup X’ = a and then ¢(a) = h. Hence ¢ is onto. This completes
the proof.

According to 1.2 and 1.9 the lattice ordered group H = M(G) fulfils the con-
ditions (a) and (b). From the construction of M(G) it follows that it satisfies also the
condition (c). Hence these conditions may serve as an intrinsic definition of the
maximal Dedekind completion of G.

From the definition of M(G) and from the definition of the Dedekind closure of
an archimedean lattice ordered group it follows immediately that if G is archimedean,
then M(G) coincides with the Dedekind closure D(G) of G.

The lattice ordered group M(G) is said to be the M-closure of G.

1.11. Lemma. Let G, be a convex l-subgroup of G. Let H be as in 1.10 and let

H, = {heH: there are g, g’ € G, with g < h < g¢'}.
Then
(i) H, is a convex l-subgroup of H;
(ii) H, is the maximal Dedekind closure of G,.

Proof. Let h;e H, (i = 1,2). There are g;, g;€ G with g; < h; < g; (i = 1, 2).
Then —g;< —h; < —g; (i=1,2), g, + g, < h; + hy, < g} + g5, hence H, is
a subgroup of H. Since g; A g, = x = g} Vv g3 holds for x = hy A h, and for
x = hy Vv h,, H, is a sublattice of H. It is obvious that H, is a convex subset of H.
Thus (i) is valid.
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In order to prove (i) we have to verify that the conditions (a), (b) and (c) from 1.10
are fulfilled with H and G replaced by H,; and G,. Since H, is a convex l-subgroup
of H by (i), it follows from 1.4 that H, is M-complete, thus (a) holds. The condition
(b) is obviously valid. Let h e H,. Since h € H, there are X, Y < G such that (c) is
valid. Put X; = X n G;, Y; = YN G,. From (c) and from the definition of H; it
follows that sup X, = h = inf Y;. Hence (ii) holds.

2. DIRECT DECOMPOSITIONS

For the notions and notation concerning direct decompositions of a lattice ordered
group cf., e.g., [9], § 2. The notion of a completely subdirect product of lattice ordered
groups has been introduced by Sik [10]. Let G be an abelian lattice ordered group
and let H be the M-completion of G.

2.1. Lemma. Let B be a direct factor of G. If G is M-complete, then B is M-
complete as well.

Proof. From Lemma 1.4 it follows that each convex l-subgroup of an M-complete
lattice ordered group is M-complete. Since B is a convex I-subgroup of G, the M-
completeness of G implies that B is M-complete.

2.2. Proposition. Let G = H?e, B;. Then G is M-complete if and only if all B;
are M-complete.

Proof. The assertion “only if” follows from 2.1. Suppose that all B; are M-
complete and let [a, b] be a nontrivial interval of G. Let X, Y be nonempty subsets
of [a, b] such that x < y for each x € X and each y € Y. Assume that (1) is valid.
For each i €1 let a; = a(B;), X; = X(B;) and let b;, Y; have the analogous meanings.
Foreach xe X, ye Y, i eI we have

0= y(B) —x(B)=(y—x)(B)=y—x.
Hence from (1) we obtain that
1) inf{y; —x,:y,€Y, x,€X;} =0

is valid for each i € I. Because B; is M-complete, z; = sup X; exists B; for each i € I.
Let z € G be such that z(B;) = z, for each i €. It is easy to verify that z = sup X
is valid in G. Hence in view of 1.4, G is M-complete.

For X = G we denote
ofX)={yeH:x, <y <x, forsome x,x,eX}.

If X is a convex I-subgroup of G, then ¢(X) is a convex {-subgroup of H.
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2.3. Lemma. Let B be a direct factor of G. Then ¢(B) is a direct facior of H.
For each g € G, g(B) = g(c(B)).

Proof. Let 0 < h € H. There are subsets X, Y < G* such thatsup X = h = inf Y
holds in H. Hence (1) is valid in G (cf. Lemma 1.8). Put X, = X(B), Y, = Y(B).
From (1) it follows that

(1" inf{y, — x;:x,€X;, y,e¥} =0

is valid in G. Hence there is h; € H such that sup X; = h; = inf ¥;. Clearly h, € ¢(B)
and 0 < hy < h. Assume that there is t € c(B) such that hy <t < h. We have
0< —hy +tecB), —h, + te H and hence there is 0 < ve B such that v £
< —hy + t. Hence hy + v < h and therefore x; + v < y, for each x, € X, and
each y, € Y,, which contradicts (1”). Thus h, is the greatest element of the set
{z€c(B):0 £ z £ h}. From this it follows that ¢(B) is a direct factor of H and
that hy = h(c(B)).

Now suppose that the element 0 < h belongs to G. Then we may suppose that
h € X and hence h(B) is the greatest element of X ;. This implies that h; = sup X, =
= h(B), hence h(c(B)) = h(B). If g is an arbitrary element of G, then there are
91,92 € G* withg = g, — g,; then g(B) = ¢,(B) — g2(B) = g.(c(B)) — 92(c(B)) =

= g(c(B)).
2.4. Lemma. Let B be a convex I-subgroup of G. Then c(B) is the M-closure of B.

Proof. We have to verify that the conditions (a), (b) and (c) from 1.10 are valid
if we replace G and H by B and ¢(B). The conditions (a) and (b) are obviously fulfilled.
Let he c(B). There are elements by, b, € B with b; < h < b,. Further, there are
subsets X, Y of G such that sup X = h = inf Y. Put

X,={xvb:xeX}, Y={yAby:yeY}.
Then X, Y; < Band sup X, = h = inf Y, holds in ¢(B). Hence (c) is valid.
2.5. Theorem. Let G be a completely subdirect product of lattice ordered groups B;

(iel). Then M(G) is a completely subdirect product of lattice ordered groups
M(B)) (i el).

Proof. As above, we put M§G) = H. According to 2.4 we have M(B;) = ¢(B)
for each i € I. By 2.3, each ¢(B;) is a direct factor in H.If i, jel,i % j, then B; n B; =
= {0}; this implies immediately that ¢(B;) N ¢(B;) = {0}. Thus it suffices to verify
that for each h € H we have
h=Viqhi,

where h; = h(c(B;)). Clearly h; < h for each i € I. Assume that there is f € H with
S < hsuch that h; £ fforeachiel. Thereis 0 < g e G withg £ —f + h. We have
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g: = g(B;) > 0 for some i € I. Hence
hi<hi+g;=f+g<h,

which is a contradiction, because h; + g; € c(Bi) and h; is the greatest element of the
set {zec(B;):0 =<z < h}.

2.5.1. Corollary. (Cf. CERNAK [4].) Let G be an archimedean lattice ordered
group. Suppose that G is a completely subdirect product of lattice ordered groups B;
(ieI). Then D(G) is a completely subdirect product of lattice ordered groups
D(G,) (i eI).

2.6. Lemma. Let G = [[°G; (i €I) and let X, Y be nonempty subsets of G such
that x < y for each x € X and each ye Y. For i€l let X; and Y; be as in 2.2. Sup-
pose that (1') holds for each i € I. Then (1) is valid.

Proof. Assume that (1) fails to hold. Then thereis 0 < g € Gsuchthaty — x = g
for each x € X and each y € Y. There is i € I with g; = g(B;) > 0. Then y;, — x; = g,
for each y; € Y; and each x; € X;, which is a contradiction.

2.7. Theorem. Let G = [[°G, (i € I). Then M(G) = [[° M(G;) (i 1).

Proof. We shall use the same notation as in 2.6. In view of 2.5 it suffices to prove
that if 0 < h' € ¢(B;) for each i €I, then V¢ h' exists in H.

Let 0 < hi € ¢(B,) for each i €l. Then for each i €I there are nonempty subsets
X', Y' < B, such that sup X’ = h’ = inf Y' is valid in ¢(B;). Let X be the set of all
elements x € G such that x(B;) € X' holds for each i el and let Y be defined ana-
logously. Then X # @ #+ Y. According to 2.6, the condition (1) holds for X, Y and

hence there is € H such that sup X = h = inf Y. Put h; = h(c(B;)) for each i el.
~ Let i be a fixed element of I and choose x; € X'. There exists x € X such that x; =
= x(B;), hence x; £ x < h. From this we obtain x; = x,(c(B;)) < h(c¢(B;)) = h;.
Thus h' = sup X' < h;. Analogously, by considering the elements y; e Y, we get
h; £ h'; thus h' = h;. By the same method as in 2.5 we can now prove that

Vh = h.
2.8. Proposition. Let G = Y °B; (i€l). Then H = Y ° M(B)) (i eI).

Proof. According to 2.3 and 2.4, each M(Bi) is a direct factor of H. If i, jel,
i + j, then B; n B; = {0} and from this we infer that M(B;) n M(B;) = {0}. Now
in view of 2.5 we have only to verify that for each x, € H, the set

I(xo) = {i €l :xo(M(B))) * 0}

is finite. Since each element of H is a difference of positive elements, it suffices to
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consider the case x, > 0. There is y € G with x, < y. According to 2.3 we have
¥(M(B;)) = y(B:), hence

I(y) ={iel:yB) + 0};
thus I(y) is finite. For each i €1,
0 = xo(M(By)) = y(M(By)) ;

therefore the set I(x,) is finite.

3. THE ARCHIMEDEAN KERNEL

Let G be a lattice ordered group. An element 0 < g € G is called archimedean
in G if for each 0 < x € G there is a positive integer n such that nx < g. A lattice
ordered group G is archimedean if and only if all its strictly positive elements are
archimedean in G. Let A(G) be the set of all elements g € G such that either g = 0
or |g| is archimedean in G. It has been proved in [8] that A(G) is a closed I-ideal of G;
it is said to be the archimedean kernel of G.

Assume that G is abelian and let H be the maximal Dedekind completion of G.

3.1. Proposition. The archimedean kernel of H is the set of all elements he H
with the property that |h| = sup Z for a subset Z <= A(G).

Proof. Let he H, ]h[ = sup Z for some Z = A(G), h + 0. Without loss of gener-
ality we can suppose that 0 < z for each z € Z. Assume that there is z € Z that fails
to be archimedean in H. Hence there is 0 < x € H such that nx < z for each positive
integer n. There exists 0 < g € G with g < x; hence ng < z for each positive in-
teger n, which is a contradiction, because z € A(G). Thus Z = A(H); since A(H) is
a closed l-ideal in H, we infer that |h| € A(H). This implies h € A(H).

Conversely, let he A(H), h % 0. Then 0 < [hleA(H). There exists a subset
X < Gt with supX = lhl If some 0 3+ x € X is not archimedean in G, then |h|
fails to be archimedean in H, which is a contradiction. Thus X < A(G).

3.1.1. Corollary. ¢(4(G)) < A(H).

3.2. Proposition. Let G be a linearly ordered group. Then c¢(A(G)) = A(H).

Proof. If A(G) = {0}, then it follows from 3.1 that A(H) = {0}. Suppose that
A(G) # {0}. Hence according to 3.1 we have A(H) #+ {0}. Let 0 < h e A(H) and
assume that h does not belong to c¢(A(G)). Hence a < h for each a € A(G). Let
h, € A(H), hy 2 0. According to 3.1 there is Z = A(G) with sup Z = h,. Hence
hy £ h and therefore h is the greatest element of A(H). But no lattice ordered group
distinct from {0} can have a greatest element and thus we arrive at a contradiction.
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Now we can ask whether ¢(4(G)) = A(H) is valid for each abelian lattice ordered
group G. The following example shows that the answer is negative.

3.3. Example. Let N be the set of all positive integers and let A be the additive
group of all integers with the natural linear order. For each n e N let

G,=B,-C,

(the symbol o denoting the lexicographic product, cf. [6]) with B, = C, = 4 for

each n e N. Put
GO = HneN Gn .

The elements g € G, will be written as pairs g = (g,, g,), where

g9(n) = (94(n), 92(n)) » 91(n) € B,, gs(n)eC,.

Denote
sy(g) = {neN :g,(n) + 0} .

Let G be the set of all elements g € G, fulfilling the following conditions:

(i) the set s,(g) is finite;
(ii) there exists ny € N such that g;(n;) = g,(n,) for each pair n,, n, € N with
ho = ny = ny.
Then G is an l-subgroup of the lattice ordered group G,. Clearly
A(G) ={geG:gy(n) =0 foreach neN}.

We denote by g° the element of G, satisfying g3(n) = 0 and g3(n)
neN. Put

1 for each

It

X={geG:g<yg°, Y={geG:g>y¢°,
Z={y—x:xeX, yeY}.

We have 0 + Z = G*. Assume that there is 0 < u € G such that u < z for each

z € Z. Then there is ny € N with u(no) > 0.
Define x, y € G as follows:
xy(n) =0 foreach neN,
x,(ng) =1 and x,(n) =0 foreach neN, n = ny;
yi(ng) =0 and y,(n) =1 foreach neN, n + no;
ya(noe) =1 and y,(n) =0 foreach neN, n # n,.
Then xe X, ye Y and hence u < y — x. Thus
u(ng) = (y = x)(no) = 0,

which is a contradiction. Therefore
infZ=0.
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Hence according to 1.3, the element
h=supX =infY

exists in M(G) = H. Since X = A(G), it follows from 3.1 that h belongs to A(H).

A(G) is a complete lattice ordered group. This implies that ¢(4(G)) = A(G).

A subset @ + S of G such that 0 < s for each se S and s; A s, = 0 for any two
distinct elements of S is said to be disjoint. Each subset of A(G) that is upper bounded
in A(G) is finite. There exists an infinite disjoint subset of X. Since h is an upper
bound of X, the element h cannot belong to A(G) and thus h ¢ ¢(A(G)). Therefore
(A(G)) + A(H).

Let us recall the notion of the generalized Dedeking completion of a lattice ordered
group G that was introduced in [8] (without assuming the commutativity of G).

Let Dl(G) be a lattice ordered group fulfilling the following conditions:

(i) G is an I-subgroup of D,(G).
(ii) D(A(G))is an I-ideal in D{(G).
(iii) If x € G and X is a nonempty subset of x + A(G) such that X is upper bounded
in x 4+ A(G), then there is x, € D;(G) with sup X = x,.

(iv) For each x, € D,(G) there exist x€ G and X < x + A(G) such that X is
upper bounded in x + A(G) and x, = sup X.

Under these conditions Dy(G) is said to be a generalized Dedekind completion of G.
The following results have been obtained in [8]:

(a) Each lattice ordered group possesses a generalized Dedekind completion.

(b) If Dy(G) and D,(G) are generalized Dedekind completions of G, then there
is an isomorphism ¢ of D,(G) onto D,(G) such that ¢(g) = g for each g € G.

Again, let G be abelian and let H be as above. Denote G, = {h € H : thereis x € G
and there are g4, g, € x + A(G) with g; < h < g,}.
3.4. Lemma. G, is an l-subgroup of H.

Proof. Let hy, h, € G,. There are elements x, y,g; € G (i =1,2,3, 4) such that
g, g2€x + AG), g3, gs€y + A(G), g1 < hy < g5, g3 < h, < g, Then —g, £
< —h; £ —g,and —g,, —g, belong to —x + A(G). Let fe { A, v, +}. We have

g1fgs=hi fhy <9g,f9a
and both g, f g3, 92 f g4 belong to (x f y) + A(G). Hence G, is an I-subgroup of H.

3.5. Proposition. G, is a generalized Dedekind completion of G.

Proof. According to 3.4, the condition (i) is valid. From the construction of H it
follows immediately that c¢(A(G)) is the Dedekind completion of A(G), hence (ii)
holds.
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Let x and X be as in (iii), X = {x;}. Denote X; = {x; — x}. Then X; = A(G).
There is y € x + A(G) such that y is an upper bound of X. Thus y — x is an upper
bound of X, in A(G). Hence sup X; = X, exists in D(4(G)) = ¢(A(G)). Put x, =
= x; + x. We have

Xo = sup {x; — x} + x = sup {x;} = sup X

in H and clearly x; < x, £ y for each x; € X; thus x, € G,. Hence (iii) is valid.

Let xo € G,. Then there are elements x, g;, g, € G such that g;ex + A(G) (i =
=1,2)and g, £ xy < g,. At the same time we have X, € H, hence there is a subset
X < G with X # 0 such that

sup X = x,

holds in H. Put X = {x;}, Y= {(x; V g1)A g,}. Then § + Y = x + A(G) and
sup Y = x,

is valid in G,. Therefore the condition (iv) holds. Hence G, is a generalized Dedekind
completion of G.

In [8], the question was proposed what relations exist between the maximal
Dedekind completion M(G) and the generalized Dedekind completion D,(G) of G.
From 3.4 and 3.5 it follows that D,(G) is an l-subgroup of M(G). The following
example shows that D,(G) does not, in general, coincide with M(G).

3.6. Example. There exists a linearly ordered group G such that D{(G) = G #*
+ M(G).
Let N and A be as in 3.3. For each ne N let 4, = A and consider the lexico-
graphic product
G0 = I~—1nEN An

(cf. [6]). For g € G, put s(g) = {neN : g(n) % 0}. Let G be the set of all g € G,
such that the set s(go) is finite. Then G is an l-subgroup of G,, thus G is linearly
ordered. Obviously 4(G) = {0} and hence according to [8], we have D(G) = G.
Let go € G, be such that go(n) =1 for each neN. Put

X={geG:9g<go}, Y={geG:9>go}, Z={y—x:yeY, xeX}.

Let 0 < u € G. There is ny € N such that u(ny) > 0 and u(n) = 0 for each ne N
with b < ng. Let x, y € G, be defined as follows:

x(n) = 1 for each n < n, and x(n) = 0 otherwise;

y(n) =1 for each n < ny, y(ny + 1) = 2, and y(n) = 0 for n > ny + 1.
Thenxe X,y e Yand y — x < u. Thusinf Z = 0. Hence by 1.3 there exists h € M(G)
such that sup X = h = inf Y holds in M(G). Assume that h belongs to G. Then

sup X = h is valid in G. But it is not difficult to verify that sup X does not exist
in G, which is a contradiction. Hence G + M(G).
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3.7. Lemma. Let Xo€ H, X = G, sup X = Xy, 0 < g€ G. Then there is xe X
with x + g non < Xo-

Proof. Suppose that x + g < x, for each x € X. Put X = {x;}. Then
Xo < Xo + ¢ =sup {x;} + g =sup{x; + g} S x,

a contradiction.

3.8. Proposition. Let G be linearly ordered, A(G) + {0}. Then M(G) = D(G).

Proof. Let 0 < xoeM(G). There exists X < G such that sup X = x, is valid
in M(G). Choose 0 < a € A(G). According to 3.7 there exists x € X such that
X + anon = x,. Hence

XSXo<Xx+4a

and thus xo € G; = Dy(G). Therefore (M(G))* = D,(G) and this implies M(G) <
< Dy(G). Thus M(G) = Dy(G).

3.9. Example. There exists a lattice ordered group G’ with A(G’) # {0} such that
D\(G') = G' + M(G).

Let G be as in 3.6 and let G, be the additive group of all reals with the natural
linear order. Put G’ = G, x G. According to [9], we have

Dy(G') = Dy(Go) x Dy(G) = Gy x G = G,

since A(Go) = Gy, D4(G,) = D(G,) = G, and A(G) = {0}. On the other hand,
from 2.7 we infer

M(G') = M(Go) x M(G) = G, x M(G) + G,

since M(G) + G (cf. 3.6).
A convex I-subgroup B of G is said to be a large I-subgroup of G if B n K + {0}

for each convex I-subgroup K =+ {0} of G. In other wo.ds, B is large in G if for each
0 < g €G there exists 0 < g, e Bwith g, < g. ‘

3.10. Proposition. Let G be a direct product of linearly ordered groups. Suppose
that A(G) is a large I-subgroup of G. Then M(G) = Dy(G).

Proof. Let G = H?E, G;, where all lattice ordered groups G; are linearly ordered.
Without loss of generality we can assume that G; % {0} for each i e I. Since A(G)
is large in G, A(G) N G; * {0} for each i e I. Clearly A(G;) = A(G) n G, and hence
according to 3.8 we have M(G;) = D,(G;) for each i eI. Hence using 2.7 and [9],
2.17 we obtain

M(G) = ?el M(Gi) = ?EI Dl(Gi) = Dl(G) .
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3.10.1. Open question: Let A(G) be a large I-subgroup of G. Is then M(G) =
= DI(G)?

3.11. Proposition. Let A(G) = 0. The following conditions for G are equivalent:

(a) If X, Y are nonempty subsets of G such that (i) x < y for each xe X and
each ye Y, and (ii) inf{y — x: x€ X, ye Y} = 0, then there are elements 0 < a €
eA(G) and g € G such that for each xe X and ye Ywe havex v g £ y, X < y A
A (g9 + a).

(b) M(G) = Dy(G).

Proof. Suppose that (a) holds and x, € M(G). According to 1.3 there are subsets
X, Y of G such that (i) and (ii) are valid and sup X = x, = inf Y. From (a) we obtain
g < xo < g + a and hence xo € G, = D{(G). Thus M(G) = D,(G) and therefore
M(G) = D,(G).

Conversely, suppose that M(G) = D,(G) and let X, Y be subsets of G fulfilling (i)
and (ii). According to 1.3 there is x, € M(G) with sup X = x, = inf Y. By the
assumptions we have x, € Dl(G) and hence there are elements ge G and 0 < a e
€ A(G) such that g £ x, < g + a. Hence for each x € X and each y € Y we have
gVvx=y,x=<yA(g9+ a) Thus (a)is valid.

A lattice ordered group G is said to be generalized complete [9] if D,(G) = G.

3.12. Proposition. If G is M-complete, then it is generealjged complete.

Proof. Suppose that G is M-complete. From 1.4 it follows that each convex
I-subgroup of G is M-complete. Hence A(G) is M-complete and so, being archi-
medean, it is complete. Therefore, according to [8], G is generalized complete.

In [10] it was shown that in each lattice ordered group G (that need not be com-
mutative), the greatest convex generalized complete I-subgroup d,(G) exists. From
3.12 we obtain immediately:

3.12.1. Corollary. Let G be an abelian lattice ordered group. Then m(G) <=
< dy(G).

3.12.2. Example. There exists an abelian lattice ordered group G such that m(G) =
< d,(G). Let G be as in Example 3.6. Then D{(G) = G, hence G is generalized
complete and so d,(G) = G. It is not hard to verify that m(G) = {0}.

4. SOME FURTHER PROPERTIES OF M(G)

Let G be an abelian lattice ordered group. In this section some relations between G
and H = M(G) will be investigated.

4.1. Proposition. G is a dense l-subgroup of H.
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Proof. For each 0 < x,€ H there exists § + X = G such that sup X = x,
holds in H, hence for each 0 #+ x € X we have 0 < |x| =< Xo, xl eG.

It is easy to verify that if X = {x;} = H, x, € H, sup {x;} = X, then for each
positive integer n we have sup {nx;} = nx,, and dually.

4.2. Proposition. If G is divisible, then H is divisible.

Proof. Suppose that G is divisible. It suffices to verify that for each positive in-
teger n and for each 0 < x, € H there exists y, € H with ny, = x,.

Let n be positive integer and let 0 < x, € H. There exist subsets X, Y of G* such
that supX = x, = inf Y holds in H and infZ = 0, where Z = {y —x:y€y,
xeX}. Let X = {x;}, Y= {y;}. Denote X, = {(1/n) x;}, Y; = {(1/n) y;}. Then
x; < y; for each x; e X; and each y, € Y;. Put Z, = {y, — x; :x, € X, y, € Y}
For each z, € Z, we have 0 < z, and there is z € Z with z; = (1/n) z; from this and
from inf Z = 0 we infer that inf Z;, = 0. Thus according to 1.3 there exists y, € H
such that

sup X, =y, =inf Y; .

4.3. Proposition. Let G be a vector lattice. Then H is a vector lattice.

Proof. Let 0 < x, € H and let r be a positive real. Let X, Yand Z be as in 4.2.
Put X, = {rx;}, Y, = {ry;}, Z, = {9, — x, :x, €X,, y, € ¥;}. We have y; > x,
for each x; € X and each y, € Y;. Suppose that inf Z; = 0 fails to hold in G. Then
there is 0 < u € G such that u < z, for each z, € Z,. Hence 0 < (1/r)u < (1r) z,
for each z, € Z, and thus (1/r) u < z for each z € Z, which is a contradiction. Thus
inf Z; = 0. Hence there is y, € H with

supX; = yo =inf Y; .

Now we define rx, by putting rx, = y,. If t, is any element of H, then we put
rto = rtg — rtg and (—r)t, = —(rto). It is a routine to verify that under this
definition of multiplication of elements of H by reals, H turns out to be a vector
lattice such that G is a vector sublattice of H.

Let K be a convex I-subgroup of G with the property that g > k for each k€ K
provided 0 < g € G\ K. Under this assumption G is called a lexicographic extension
of K and we write G = <(K). If, moreover, G £ K, then G is said to be a proper
lexicographic extension of K. From G = <K it follows that the factor I-group G/K
is linearly oidered and that, for gy, g, € G with g, + K =+ g, + K, the relation
g, + K < g, + Kis valid in G/K if and only if g, < g, holds.

4.4. Proposition. Let K be a convex l-subgroup of G, {0} + K # G, such that
G = (K). Then H = {¢(K)) and C(K) + H.

Proof. Since G # K, there exists g € G* \K. Then g > k for each k e K, thus g
does not belong to ¢(K) and hence ¢(K) + H. Let x, € H\ ¢(K). Put
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X={xeG:x<xp}, Y={yeG:y=xp}.

If X nK # 0+ YnK, then x, € ¢(K), a contradiction. Assume that Y n K = 0.
Then y > k for each y € Yand each k € K. Hence K < X. Now we distinguish two
cases.

(2) Suppose that there is x € X such that x > k for each k € K. Since x, = sup X,
we have x, > k for each k € K and thus x, > x, for each x, € ¢(K).

(b) Suppose that no x € X exceeds the whole set K. Then for each x € X, either
x € K or x < k for each k € K. From this and from K < X we obtain

Xo =sup K.
There exists 0 < k € K. Put K = {k;}. Then in H we have k + K = K and
xo < k 4+ xo =k + Vk; = V(k + k;) = x,

which is a contradiction.
The case X N K = 0 is analogous. We have verified that H = (c(K)} is valid.

4.5. Proposition. Let K be a convex l-subgroup of G, {0} # K + G, G = (K.
Then the linearly ordered groups G/K and H|c(K) are isomorphic.

Proof. According to 4.4 we have H = {¢(K)), hence H/c(K) is a linearly ordered
group. For g € G we denote

¢(g + K) =g + o(K).

Let g,,9,€G. If g, + K = g, + K, then g, + ¢(K) = g, + ¢(K), hence ¢ is
a mapping of the set G/K into H/c¢(K). Suppose that g, + ¢(K) = g, + ¢(K);
_ hence g; — g, €¢(K) and thus g, — g, € K. Therefore ¢ is a monomorphism.
Obviously ¢ is regular with respect to the operation +.If g, + K < g, + Kin G/K,
then g, < g, and hence g, + ¢(K) < g, + ¢(K); conversely, if g; + ¢(K) < g, +
+ ¢(K), then g, + K < g, + K. Hence ¢ is an isomorphism of the linearly ordered
group G/K into H/c(K).
Let xo, X and Y be as in the proof of 4.4. Put

X={g+K:9eG, (g +K)nX *+0}

and let Y be defined analogously. There exists 0 < ke K. If X is a join of some
classes g + K, then x + k € X for each x € X and thus x + k < x, for each x € X,
which contradicts 3.7. Hence there is g € G such that

W+K)nX+0, g+K¢EX.

Thus there is g, €9 + K such that g, € X. If g'€ G, g’ + K < g + K, then g’ +
+KcX. If g"€G, g" + K> g + K, then g” cannot belong to X, since g”" € X
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would imply g + K < X, which is a contradiction. Hence
X=[¢g+KnXx]uX,

where X' is the join of all g’ + K with g’ + K < g + K. Thus g” + K < Y for each
g” + K > g + K. Similarly as we did for X we can now verify that Y cannot be a join
of some classes g” + K with g” € G. From this we infer that (g + K) n Y £ 0.
Thus there is g, € g + K with g, € Y. Then we have

gi—9g=X—9g=g,— 4

and g, — g, g, — g €K, thus x, — ge¢(K) and so xo€g + ¢(K), xo + ¢(K) =
= g + ¢(K). Hence ¢ is an epimorphism. This completes the proof.

4.6. Lemma. Let {Pi} (i EI) be an upper-directed system of convex I-subgroups
of G. Then Uier ¢(P;) = c(Uier Py)-

The proof is a routine and so it will be omitted. From 4.6 and from 1.11 (ii) we
obtain

4.6.1. Corollary. Let {P;} (i€l) be an upper-directed system of convex l-sub-
groups of G. Then ;o M(P;) = M(U . P)).

A subset B = {g;},; of G is said to be a basis for G if B is a maximal disjoint
subset of G and the interval [0, g;] of G is a chain for each i 1.

4.7. Proposition. Let B = {g,};; be a basis for G. Then B is a basis for H.

Proof. Let i e I and let A; be the interval in H with the endpoints 0, g;. Suppose
that A; fails to be a chain. The there are elements 0 < x, and 0 < y, in A; such
that x, A yo = 0. Hence there are elements x;, y; in G such that 0 < x; = X,,
0 <y, =y, Then x; A y, =0 and both x,, y, belong to the interval 4; in G
with the endpoints 0 and g;; since A4; is a chain, we have a contradiction. Hence 4;
is a chain for each i €I. Let 0 < z, € H. There is z; € G with 0 < z; < z,. Further
(since B is maximal disjoint in G), there exists i €I with 0 < g; A z,. Hence 0 <
< g; A zo. Thus B is a basis for H.

Let us consider the following condition for G (cf. [3]):

(F) Each disjoint subset of G that is upper bounded in G is finite.

4.8. Proposition. Suppose that G fulfils (F). Then H fulfils (F).

Proof. Let 0 < x, € H. Assume that there exists an infinite disjoint system
{x:} (iel) in H such that x, exceeds all x;. There is ye G with x, < y. For each i€l
there is g; € G with 0 < g; < x,. Hence {g;} (i € I) is an infinite disjoint system in G
and y exceeds each g;; this is a contradiction.
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4.9. Definition. (Cf. [3].) A lattice ordered group G is said to be a lexicographic
sum of the system I'® = {47} (i el,) of its convex I-subgroups if there exists an
ordinal f and convex I-subgroups A* of G for each a with 0 < « < f such that the
following conditions are fulfilled:

(i) A° = Y47 (iel,), A = A* whenever 0 < o; < f (i = 1,2) and a; < ay;

(ii) Uaep A4° = G;

(iii) for each ordinal o with 0 < « < B there exists a system I'* = {4}} (i €1,) of
convex I-subgroups of G with A* = Y °A} (i € I) such that

(a) if o is non-limit, « = y + 1, and if A} eT" then either A} equals to some
I-subgroup belonging to I'?, or there exists a subset I of I, with card I > 0 and
a convex [-subgroup A of G such that

A=Y°4) (iel)
and Aj is a proper lexicographic extension of 4;

(b) if « is a limit ordinal and A} € I'% then there exists a system {4},} (y < o)
such that A}, belongs to I'” for each y < a, 4},,, € A},,) whenever y; <y, and
A7 = Uy<a A?(y)'

Now let us again suppose that G fulfils (F). Let G # {0}. It is easy to verify that
then G possesses a basis {b;} (i €I,) and for each i €I, there exists a largest convex
linearly ordered subgroup A? of G containing b;. The following theorem has been
proved by Conrad [3]:

4.10. Theorem. Under the above notation, G is a lexicographic sum of the system
{43} (i o).
From 4.8, 4.10 and 4.7 we obtain:

4.11. Theorem. Let G =+ {0}. Suppose that G fulfils (F) and let {b;} (i €l,) be
a basis for G. For each i €I, let BY be the largest convex linearly ordered subgroup
of H containing b;. Then H is a lexicographic sum of the system B? (i EIO).

A more detailed description of the representation of H as a lexicographic sum of
linearly ordered groups is contained in the following theorem. Let G be as in 4.10.
Hence there is an ordinal f and there are systems A* (oc < ﬁ) of convex [-subgroups
of G such that the conditions (i)—(iii) from 4.9 are fulfilled. Then the following
assertion is valid:

4.12. Theorem. For each ordinal « with 0 < a < B, ¢(A”) is a convex l-subgroup
of H such that the following conditions are fulfilled:
(iy) ¢(4°) = Y2 (A7) (i €I) and c(A™) < ¢(A™) whenever 0 < o; < B (i = 1, 2)
and o, < o,;
(iiy) Up<p c(4%) = H;
(iii;) for each ordinal o with 0 < a < f we have c(A%) = Y% c(43) (iel) and
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(@) if « is non-limit, a = y + 1, and if A5 eT", then either c(A3) equals to some
c(A2) with jel,, or there is a subset I of I, with card I > 0 and a convex I-sub-
group A, of H such that

Ay =20 c(4}) (iel)
and c(A‘{) is a proper lexicographic extension of Ay;

(b) if « is a limit ordinal and i€, then there exists a system {c(A};} (y < «)
with i(y) €I, for each y < a, ¢(AY,,)) S c(4},) whenever y, <y, and c(4}) =
= Uy<a d4i)-

In particular, H is a lexicographic sum of the system c(AY) (i €I) and all ¢(A3)
are linearly ordered. Moreover, if A and A, are as in (iii) of 4.9 or in (iii,), respec-
tively, then c(A%)[A, is isomorphic with Aj|A.

Proof. Obviously all ¢(4%) and all ¢(A}) are convex I-subgroups of H. According
to 1.11 we have ¢(4%) = M(A%), ¢(47) = M(A3). Now (i) follows from (i) and 2.8.
The assertion (ii;) is a consequence of (i) and 4.6 (because H = ¢(G)). From (iii),
2.8, 4.4 and 4.6 we obtain that (iii) is valid. Hence according to 4.9, H is a lexico-
graphic sum of the system c(A}) (i € Io). If A and A, are as in 4.9 (iii) or in (iii,),
respectively, then by 4.5 the linearly ordered groups c(A4})/4, and Aj/A are iso-
morphic. Since a maximal Dedekind completion of a linearly ordered group is linearly
ordered, ail ¢(A7) = M(A?) are linearly ordered.

Hence H is constructed from the system {c(47)} (i €1,) by the same steps (using
the operations of the direct sum and the lexicographic extension) as G is constructed
from the system {47} (i € I,).
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