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Czechoslovak Mathematical Journal, 29 (104) 1979, Praha 

MINIMAL SETS OF VECTORS WHICH GENERATE R, 
WITH EXCESS к 

MIROSLAV FIEDLER, Praha 
(Received November 18, 1975) 

It is the purpose of this note to give a simple proof of the fact that, for fixed integers 
n ^ 1 and /c ^ 0, the smallest set of vectors in an n-dimensional real vector space 
R„ which generates R„ as its convex hull and preserves this property even after re
moving any к of the vectors, has cardinahty n + 2k + 1. An equivalent result is 
proved in [ l ] . 

1. Preliminaries. In the whole paper, Я„ will denote an n-dimensional real vector 
space. The cardinality of a set S will be denoted by card S. 

(1.1) Definition. We shall say that a finite set S of vectors in R„ generates jR„ if 
any vector in R^ is a linear combination of vectors in S with nonnegative coefficients. 

The following lemma is well known: 

(1.2) Lemma. Let S = {v^, ..., %} be a set of vectors in R„. Then the following 
are equivalent: 

(i) S generates R„; 
(ii) S contains a basis of R„ and, there exist positive numbers a^, ..., â y such 

that 
N 

(in) any open halfspace of R„ contains at least one vector from S. 

(1.3) Definition. Let n ^ 1, /c .^ 0 be integers. We shall say that a finite set S 
of vectors in R„ generates R„ with excess к if for any subset S' cz S with к elements, 
iS \ S' generates R„. 

The following assertion is an easy consequence of (1,2): 

(1.4) A finite set S of vectors in R^ generates R„ with excess к iïï every open half-
space of R„ contains at least к + 1 vectors from S. 
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(1,5) Lemma. / / y , , . . . , y„ (m ^ 2) are mutually different numbers then 

yl X ~ = 0 for s = 0 , . . . , m - 2 . 

'•" Uiyi-yj) 

Proof. By the Lagrange interpolation formula [2], any polynomial/(x) of degree 
at most m — 1 satisfies the identity 

' ' U{yi- 3^,)i*^ 
J = l 
i + i 

Choosing / (x) = x^ s e {0, . . . , m — 2} and comparing the coefficients at x'""^ on 
both sides, we obtain the desired equalities. 

2. Results. (2Д) Theorem. Let n ^ 1, к ^ 0 be integers. Let S be a set of vectors 
in R„ which generates R„ with excess k. Then 

card S ^ w + 2/c + 1 

and this bound is sharp for all к and n. 

Proof. Let S be a set of vectors in R„ which generates R„ with excess к and assume 
that 

card S ^ n + 2k . 

Then there exists a subset SQ ^ S consisting of n — 1 linearly independent vectors. 
Let RQ be the hyperplane spanned by the vectors in SQ. Since S \ So contains at 
most 2/c + 1 vectors, at least one of the open halfspaces of R^ with boundary RQ 
contains at most к vectors from S. By (1,4), S does not generate R^ with excess k, 
a contradiction. 

It remains to find, for any и ^ 1 and /c ^ 0, a set of n + 2/c + 1 vectors which 
generates R„ with excess k. This will be done in the following theorem. 

(2,2) Theorem. Let n ^ 1, к ^ 0 be integers, let x, > X2 > .. . > x„^2k + i be 
real numbers. Then the 2k + I row vectors 

( — 1 ) ((Xj — X2fc + 2J , V^s ~ ^2к + з) ? • • • Д ^ 5 ~ ^2k + n+l) ) •> 

S = 1, ..., 2lc + 1 , 

together with the n unit vectors ( l , 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, 0, ..., 1), form 
Ü set which generates the space R^ of all row vectors with excess k. 
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Proof. Denote by Б = (bpi) the (« + 2/c 4- 1) x и matrix with entries 

2k+i 

if 
p = 1, ..., 2fc + 1 , Ï = 1 , . . . , n, 

2k+l 

^Pi = {Yl(^P~ ^q))~^ ^i,p-2k-l 
q=l 

if 
jf? = 2/c + 2, ..., П + 2Ä: + 1 , 1 = 1 , . . . ,« , 

where 6^^ are the Kronecker symbols. 
It is easily seen that the rows of the matrix В are positive multiples of the vectors 

defined above. 
By Lemma (1,5), the product 

(1) ra = 0 

where V = {v^p) is the (2/c + 1) x (« H- Ik + 1) "Vandermonde matrix" with entries. 

^'ap -^p , peM = {1, 2 , . . . , n + 2/c + 1} , 
oieK = { l , , . . , 2 / c + 1 } . 

On the other hand, there exists an | 1 x (2/c + 1) matrix 

where (7*1, ..., jj^) is a combination of к elements of the set of indices M and осе K^ 
such that 

(2) y F = Z = (zo., ,,)p) 

with 

(3) Z(,., j^y^ = П(^P - xjf , peM. 
S = l 

Indeed, the numbers Уи^,.,.^\)а ^^^ the coefficients in the polynomial 

к 2k+l 

s = l a = l 

From (1) and (2), we have 
ZB = 0. 
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Since any matrix ((p^ - qj)'^), i, j = 1, . . . , s, is nonsingular whenever pi, . , . , p^, 
^ 1 , . . . , ^^ are different from each other, any-w rows of the matrix В are Hnearly 
independent. By (ii) of (1,2) and (3), for every subset M' = {ju • • •» Л} of ^ having к 
elements the rows b(p) of the matrix В with peM \ M' generate R'^. Consequently, 
the rows of JB, and hence also the vectors given in the theorem, generate R'n with 
excess /c. The proofs of both Theorems (2,2) and (2,1) are complete. 

(2.3) Corollary. Let n ^ 1. Then there exists a sequence of systems SQ, 5^, ^2, ... 
of vectors in R^ with the following properties: 

Г card Sk = n + 2k + 1; 
2° S, c:S,+ i,k = 0, 1 , . . . ; 
3° Sk generates R„ with excess k. 
We shall add four more theorems which are, by (1,4), equivalent to (2,1). 

(2.4) Theorem. Let n ^ I, I ^ 1 be integers. Let N non-zero vectors in R„ have 
the property that every open halfspace of R^ contains at least I of these vectors. 
Then 

N ^n + 21 - 1 

and this bound is sharp for all n and I. 

(2.5) Theorem. Let n ^ 2, к ^ 1 be integers. Let N non-zero vectors in R„ have 
the property that any non-zero vector of Reforms an acute angle with at least к 
of the given vectors. Then N ^ n + 2k — 1 and this bound is sharp for all n and k. 

Remark . This theorem can also be reformulated in terms of distance graphs 
introduced in [3]. 

(2.6) Theorem. Let p ^ I, q '^ I be integers. Let Ж be a finite system of N open 
halfspheres on a p-dimensional sphere Sp which covers Sp q-times, i.e. every point 
of Sp is contained in at least q halfspheres from Ж. Then N ^ p Л- 2q and this 
hound is sharp for all p and q. 

(2.7) Theorem. Let m ^ I, I ^ I be integers. Let N points on an m-dimensional 
sphere S^ have the property that every open halfsphere of Sj^ contains at least I 
of the given N points. Then 

N ^m + 21 + 2 

and this bound is sharp for all m and I. 
Considering the Gram matrix of such systems of vectors, we obtain the following 

formulation: 
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(2,8) Theorem. Let a positive semi-definite real nby n matrix A have the property 
that whenever one row aud column is added in such a way that the resulting matrix 
remains positive semidefinite and of the same rank as A then the new row contains 
at least к positive entries. Then the rank of A is at least n — 2k + 3 and this bound 
is sharp. 
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