Czechoslovak Mathematical Journal

Miroslav Fiedler
Minimal sets of vectors which generate R_{n} with excess k

Czechoslovak Mathematical Journal, Vol. 29 (1979), No. 2, 187-191

Persistent URL: http://dml.cz/dmlcz/101596

Terms of use:

© Institute of Mathematics AS CR, 1979

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

MINIMAL SETS OF VECTORS WHICH GENERATE R_{n} WITH EXCESS k

Miroslav Fiedler, Praha

(Received November 18, 1975)

It is the purpose of this note to give a simple proof of the fact that, for fixed integers $n \geqq 1$ and $k \geqq 0$, the smallest set of vectors in an n-dimensional real vector space R_{n} which generates R_{n} as its convex hull and preserves this property even after removing any k of the vectors, has cardinality $n+2 k+1$. An equivalent result is proved in [1].

1. Preliminaries. In the whole paper, R_{n} will denote an n-dimensional real vector space. The cardinality of a set S will be denoted by card S.
$(1,1)$ Definition. We shall say that a finite set S of vectors in R_{n} generates R_{n} if any vector in R_{n} is a linear combination of vectors in S with nonnegative coefficients. The following lemma is well known:
$(1,2)$ Lemma. Let $S=\left\{v_{1}, \ldots, v_{N}\right\}$ be a set of vectors in R_{n}. Then the following are equivalent:
(i) S generates R_{n};
(ii) S contains a basis of R_{n} and, there exist positive numbers $\alpha_{1}, \ldots, \alpha_{N}$ such that

$$
\sum_{i=1}^{N} \alpha_{i} v_{i}=0
$$

(iii) any open halfspace of R_{n} contains at least one vector from S.
(1,3) Definition. Let $n \geqq 1, k \geqq 0$ be integers. We shall say that a finite set S of vectors in R_{n} generates R_{n} with excess k if for any subset $S^{\prime} \subset S$ with k elements, $S \backslash S^{\prime}$ generates R_{n}.

The following assertion is an easy consequence of $(1,2)$:
$(1,4)$ A finite set S of vectors in R_{n} generates R_{n} with excess k iff every open halfspace of R_{n} contains at least $k+1$ vectors from S.
$(1,5)$ Lemma. If $y_{1}, \ldots, y_{m}(m \geqq 2)$ are mutually different numbers then

$$
\sum_{i=1}^{m} \frac{y_{i}^{s}}{\prod_{\substack{j=1 \\ j \neq i}}^{m}\left(y_{i}-y_{j}\right)}=0 \text { for } s=0, \ldots, m-2
$$

Proof. By the Lagrange interpolation formula [2], any polynomial $f(x)$ of degree at most $m-1$ satisfies the identity

$$
f(x) \equiv \sum_{i=1}^{m} \frac{f\left(y_{i}\right)}{\prod_{\substack{j=1 \\ j \neq i}}^{m}\left(y_{i}-y_{j}\right)} \prod_{\substack{j=1 \\ j \neq i}}^{m}\left(x-y_{j}\right) .
$$

Choosing $f(x)=x^{s}, s \in\{0, \ldots, m-2\}$ and comparing the coefficients at x^{m-1} on both sides, we obtain the desired equalities.
2. Results. $\mathbf{(2 , 1)}$ Theorem. Let $n \geqq 1, k \geqq 0$ be integers. Let S be a set of vectors in R_{n} which generates R_{n} with excess k. Then

$$
\operatorname{card} S \geqq n+2 k+1
$$

and this bound is sharp for all k and n.
Proof. Let S be a set of vectors in R_{n} which generates R_{n} with excess k and assume that

$$
\operatorname{card} S \leqq n+2 k
$$

Then there exists a subset $S_{0} \cong S$ consisting of $n-1$ linearly independent vectors. Let R_{0} be the hyperplane spanned by the vectors in S_{0}. Since $S \backslash S_{0}$ contains at most $2 k+1$ vectors, at least one of the open halfspaces of R_{n} with boundary R_{0} contains at most k vectors from S. By (1,4), S does not generate R_{n} with excess k, a contradiction.
It remains to find, for any $n \geqq 1$ and $k \geqq 0$, a set of $n+2 k+1$ vectors which generates R_{n} with excess k. This will be done in the following theorem.
$(2,2)$ Theorem. Let $n \geqq 1, k \geqq 0$ be integers, let $x_{1}>x_{2}>\ldots>x_{n+2 k+1}$ be real numbers. Then the $2 k+1$ row vectors

$$
\begin{gathered}
(-1)^{s-1}\left(\left(x_{s}-x_{2 k+2}\right)^{-1}, \quad\left(x_{s}-x_{2 k+3}\right)^{-1}, \ldots,\left(x_{s}-x_{2 k+n+1}\right)^{-1}\right), \\
s=1, \ldots, 2 k+1,
\end{gathered}
$$

together with the n unit vectors $(1,0, \ldots, 0),(0,1,0, \ldots, 0), \ldots,(0,0, \ldots, 1)$, form a set which generates the space R_{n}^{\prime} of all row vectors with excess k.

Proof. Denote by $B=\left(b_{p i}\right)$ the $(n+2 k+1) \times n$ matrix with entries
if

$$
b_{p i}=\left(\left(x_{p}-x_{2 k+1+i}\right) \prod_{\substack{q=1 \\ q \neq p}}^{2 k+1}\left(x_{p}-x_{q}\right)\right)^{-1}
$$

$$
\begin{aligned}
& p=1, \ldots, 2 k+1, \quad i=1, \ldots, n \\
& b_{p i}=\left(\prod_{q=1}^{2 k+1}\left(x_{p}-x_{q}\right)\right)^{-1} \delta_{i, p-2 k-1}
\end{aligned}
$$

if

$$
p=2 k+2, \ldots, n+2 k+1, \quad i=1, \ldots, n
$$

where $\delta_{i k}$ are the Kronecker symbols.
It is easily seen that the rows of the matrix B are positive multiples of the vectors defined above.

By Lemma (1,5), the product

$$
\begin{equation*}
V B=0 \tag{1}
\end{equation*}
$$

where $V=\left(v_{\alpha p}\right)$ is the $(2 k+1) \times(n+2 k+1)$ "Vandermonde matrix" with entries.

$$
\begin{array}{ll}
v_{\alpha p}=x_{p}^{2 k+1-\alpha}, & p \in M=\{1,2, \ldots, n+2 k+1\}, \\
& \alpha \in K=\{1, \ldots, 2 k+1\} .
\end{array}
$$

On the other hand, there exists an $\binom{n+2 k+1}{k} \times(2 k+1)$ matrix

$$
Y=\left(y_{\left(j_{1}, \ldots, j_{k}\right) \alpha}\right)
$$

where $\left(j_{1}, \ldots, j_{k}\right)$ is a combination of k elements of the set of indices M and $\alpha \in K$, such that

$$
\begin{equation*}
Y V=Z=\left(z_{\left(j_{1}, \ldots, j_{k}\right) p}\right) \tag{2}
\end{equation*}
$$

with

$$
\begin{equation*}
z_{\left(j_{1}, \ldots, j_{k}\right) p}=\prod_{s=1}^{k}\left(x_{p}-x_{j_{s}}\right)^{2}, \quad p \in M \tag{3}
\end{equation*}
$$

Indeed, the numbers $y_{\left(j_{1}, \ldots, j_{k}\right) \alpha}$ are the coefficients in the polynomial

$$
\prod_{s=1}^{k}\left(x-x_{j_{s}}\right)^{2}=\sum_{\alpha=1}^{2 k+1} x^{2 k+1-\alpha} y_{\left(j_{1}, \ldots, j_{k}\right) \alpha}
$$

From (1) and (2), we have

$$
Z B=0 .
$$

Since any matrix $\left(\left(p_{i}-q_{j}\right)^{-1}\right), i, j=1, \ldots, s$, is nonsingular whenever $p_{1}, ., ., p_{s}$, q_{1}, \ldots, q_{s} are different from each other, any-n rows of the matrix B are linearly independent. By (ii) of $(1,2)$ and (3), for every subset $M^{\prime}=\left\{j_{1}, \ldots, j_{k}\right\}$ of M having k elements the rows $b_{(p)}$ of the matrix B with $p \in M \backslash M^{\prime}$ generate R_{n}^{\prime}. Consequently, the rows of B, and hence also the vectors given in the theorem, generate R_{n}^{\prime} with excess k. The proofs of both Theorems $(2,2)$ and $(2,1)$ are complete.
$(2,3)$ Corollary. Let $n \geqq 1$. Then there exists a sequence of systems $S_{0}, S_{1}, S_{2}, \ldots$ of vectors in R_{n} with the following properties:
1° card $S_{k}=n+2 k+1$;
$2^{\circ} S_{k} \subset S_{k+1}, k=0,1, \ldots$;
$3^{\circ} S_{k}$ generates R_{n} with excess k.
We shall add four more theorems which are, by (1,4), equivalent to $(2,1)$.
$(2,4)$ Theorem. Let $n \geqq 1, l \geqq 1$ be integers. Let N non-zero vectors in R_{n} have the property that every open halfspace of R_{n} contains at least l of these vectors. Then

$$
N \geqq n+2 l-1
$$

and this bound is sharp for all n and l.
$(2,5)$ Theorem. Let $n \geqq 2, k \geqq 1$ be integers. Let N non-zero vectors in R_{n} have the property that any non-zero vector of R_{n} forms an acute angle with at least k of the given vectors. Then $N \geqq n+2 k-1$ and this bound is sharp for all n and k.

Remark. This theorem can also be reformulated in terms of distance graphs introduced in [3].
$(2,6)$ Theorem. Let $p \geqq 1, q \geqq 1$ be integers. Let \mathscr{H} be a finite system of N open halfspheres on a p-dimensional sphere S_{p} which covers $S_{p} q$-times, i.e. every point of S_{p} is contained in at least q halfspheres from \mathscr{H}. Then $N \geqq p+2 q$ and this bound is sharp for all p and q.
$(2,7)$ Theorem. Let $m \geqq 1, l \geqq 1$ be integers. Let N points on an m-dimensional sphere S_{m} have the property that every open halfsphere of S_{m} contains at least l of the given N points. Then

$$
N \geqq m+2 l+2
$$

and this bound is sharp for all m and l.
Considering the Gram matrix of such systems of vectors, we obtain the following formulation:
$(2,8)$ Theorem. Let a positive semi-definite real n by n matrix A have the property that whenever one row aud column is added in such a way that the resulting matrix remains positive semidefinite and of the same rank as A then the new row contains at least k positive entries. Then the rank of A is at least $n-2 k+3$ and this bound is sharp.

References

[1] D. Gale: Neighboring vertices on a convex polyhedron. In: Linear inequalities and related systems. Princeton Univ. Press, Princeton 1956.
[2] B. L. v. d. Waerden: Algebra, 4. ed. Springer, Berlin-Göttingen-Heidelberg 1955.
[3] M. Fiedler: Signed distance graphs. J. Comb. Theory (1969), 136-149.
Author's address: 11567 Praha 1, Žitná 25, ČSSR (Matematický ústav ČSAV).

