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INTRODUCTION

In preparing this paper about compact embedding theorems concerning Sobolev
weighted spaces (SW-spaces) I have been guided by some recent papers in which
such theorems are successfully used.

Some papers (see for instance [5], [6], [13]) deal with the discreteness of the spec-
trum of certain linear partial differential operators in unbounded domains in R".
Others build up an existence theory for some boundary value problems with non-
linear perturbating terms [6], [9].

The usefulness of employing the SW-spaces in the studies of singular boundary
value problems is well known (for related references see [2]).

The results obtained in the above mentioned papers in the fields of spectral theory
and nonlinear analysis stimulate further investigations on compact embeddings.

Here we want to establish a general compact embedding criterion (Theorem 2.1)
which may be transferred also to Orlicz-Sobolev weighted spaces. Such a criterion
becomes a very useful tool when we can use Gagliaido-Nirenberg interpolation
inequalities, as shown in Theorem 3.4.

1. PRELIMINARIES

Let Q, and Q, be two non void open sets in R"; by
Q ccQ,
we mean that Q, is bounded and Q, < Q,. If B, and B, are two B-spaces,

*) The paper was presented by the author as a lecture on the spring school “Nonlinear Analy-
sis, Function Spaces and Applications” held at Horni Bradlo, Czechoslovakia, in May 1978.
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means that B, is (isometric to) a subspace of B, and that the natural injection of B,
into B, is a continuous map. We shall write

B, GG B,

if B; Q B, and the natural injection of B, into B, is a compact map, that is, if every
B;-bounded sequence has a B,-convergent subsequence.
Let us recall now some fundamental results (see [1], [11]).

Theorem 1.1 (Sobolev embeding theorem). Let Q be a domain in R” with the cone
property; let j, m be non-negative integers and p e [1, + oo[; if mp < n then

WitmnQ) Q W(Q) for p<q<—P2—.
n— mp

Theorem 1.2 (Rellich-Kondrashov theorem). Let Q be a domain in R" with the
cone property; let j, m be non-negative integers and p e [1, +oo[; if mp < n then
for every bounded subdomain Q, of Q we have

Witmr(Q0) QQ Wi(Qo) for p<q<—"—.
n — mp

Let us now recall the following results.

Proposition 1.3. If Q is an unbounded domain in R" with a finite volume and if
m=1and q > p = 1, then the embedding

wmr(Q) CQ L(Q)
cannot hold.
The proof may be found in [1]. For the sake of simplicity we prove this proposi-

tion in a very simple special case.
Let

Q = {(x1.x;) e R*| x; €]1, + o[ and 0 < x, < f(x,)}

where f is a positive element of C°(]1, + oo[) such that
+ o
2| =J fH)dt < +o0.
1
We assume that f has a finite order zero at infinity, i.e. there exists « € R, such that

+ + o
‘[ f()*dt = +o0 and J‘ f(®)*#dt < +o0 forevery B<ua.
1 1
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Given g > p = 1 we consider the function u defined in Q by
u(x) = |x|1, xeQ.

It is easy to see that u € W™P(Q) for any m € N; but we have u ¢ I}(Q).

It is necessary to complete Proposition 1.3 by observing that if Q has a finite measure
and is unbounded, it cannot have the cone property. Actually, Theorem 1.1 fails
to be true if Q has not the cone property (see [1] Chap. V). In fact, if Q has too sharp
cusps (for instance exponential cusps) a proposition holds which is similar to Proposi-
tion 1.3; when @ has finite order cusps, then the assertion of Sobolev Theorem 1.1
still holds provided it is modified in the folowing way:

Given 1€ [1, +oo[ and an integer k < n — 1, let us consider
Ors = {xeR"‘ x4 XE < XE gy Xear > 0,...,x,>0,
X2+ b xp A+ (X XD < 1)

Q.1 is a standard cusp and Q, ; a standard cone. It is easy to see that Q,_; ; is
a usual cone and Q,_; , is a conical domain; the greater A is, the sharper is this
domain at its vertex. Q, , for A > 1 has not the cone property. Now let

2=UG, GcR"

Gell

where I has the finite intersection property, and for every G € I' there exists a C*-
homeomorphism Y, from G into a standard cusp Q, ;. We assume that

supk(A — 1) =v < + o,

Gell

and that there exists 4 € R, such that
AV < |pg| £ A4 forevery Gerl.
Theorem 1.4. Under the above hypotheses and provided mp < n + v we have
" (n+v)p
W Q) QINQ) for p<q S ——r.
n+v—mp

In the sequel, v will be called the measure of nonregularity of Q.

Let us recall now that an unbounded domain Q is quasibounded if it fulfils the
. following condition: )

Condition 1.5.
lim  dist (x, é’Q) =0.

xe,|x| >+
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It is easy to prove

Proposition 1.6. If Q is neither bounded nor quasibounded, then the embedding
wmr(Q) QQ Q)

cannot hold whatever the integer m = 1 and the numbers p, g € ]1, + o[ may be.

Proof. If Condition 1.5 is not fulfilled then
lim sup dist (x, 9Q2) > 0.

xe,|x| >+

In this case it is possible to find a disjoint sequence of open balls (Bk)keN with the
same radius, all contained in Q. Given a non-zero function u; € 2(B,), we define
u, € 9(B,) as a translate of u, for every ke N.

It follows that

”ukﬂwm,pm) = ”u,”Wm',,(Bl) for every keN,

[un = wi|ray = 21|us]|Los,y for every h,keN, h+k.

Therefore the sequence (1 )y is bounded in W™?(Q), but it has no subsequence
which I¢-converges. The proof is thus complete.

We infer: if Q is unbounded the compact embedding W'?(Q) CC I¥(Q) for
q > p may be true only if Q is quasibounded and of infinite measure. The quasi-
boundedness of Q implies the unboundedness of the boundary of Q. An example

of such a domain is given by
Q= {(x,y)eR? |xy| < 1}.
Nevertheless, let us observe that quasibounded domains may be rather complicated,

as the following example shows:

Example 1.7.

where
S, = {(x1,x;) e R?| |x| 2 k and arg (x; + ix,) = nn27%, n =1,...,2¢+1}

‘We have to mention at this point that
W (@) QG 1)
if and only if the following condition is fulfilled (see [7], Theorem 2.8):

Condition 1.8.
lim [B(x,1) n @ = 0.
[x| = o0
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Condition 1.8 implies that €, if it is unbounded, it is quasibounded. Moreover,
the unbounded quasibounded domain from Example 1.7 does not satisfy Condition
1.8; nevertheless we have

wh(Q) QG (@)
as is proved in [1], Theorem 6.13.

Let us now observe that among other advantages, the use of weighted Sobolev
spaces offers certain compact embeddings which hold with weaker conditions on &
or without the condition of boundedness. Actually, the following assertions may be
derived from our Theorems 2.1, 2.2 and from the results by R. A. ADAMS mentioned
above.

Theorem 1.9. Let Q be a non-empty domain of R" with a finite measure of non-
regularity v; let py, p, q be real numbers with

(n + v) po .

IL=po<n+v, psp<qg=
n+v-—pg

If p is a continuous positive function on Q such that pe I*(Q) with q/(q — p) <
< a < +o00, then
Wh(2) QQ (€. ).
Theorem 1.10. If 1 < py < n and py £ p < npo[/(n — po), then

wEr(R") GG (R (1 + [x[)77)
for every B > 0.%)

2. SOME EMBEDDING THEOREMS

We shall limit our considerations to SW-spaces of order one, W'P(, uo, it1);
Ho» 3, 0 are positive continuous functions on Q: u € W'P(Q; p,, u,) means that

”"”Wl-v(n,uo,m) = (““uivm,m + ”V“HEP(Q,M)”” < +o00.

Theorem 2.1. Let pe [1,n[ and p < q < np|(n — p); then

(2.1) WhP(Q, 1o, 1) QG IS, 0)

if and only if for every bounded sequence (f,),y of elements of W*(Q, o, 1)
the set functions

(2:2) E »—)J Ifi@)|e(x)dx, n=1,2...
E
are uniformly absolutely continuous.

1) These results can be improved by a more general theorem by V. BENcI and D. ForRTUNATO
(see [4], Theorem 2.8 and [6], Theorem 2.7).
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Proof of the “if”” part. We can select a subsequence of (f,.),.ezv, say ( q'l,,),,sN, which
converges almost everywhere in Q to a function f belonging to L, ().
This follows by standard procedures, by using the embeddings

wh(K) GG L(K)
for K = < Q regular enough.
Further, the uniform absolute continuity of the set functions (2.2) implies

lim
n—w )2

The “if” part is proved.

¢u(x) — f(x)| e(x)dx = 0.

Proof of the “only if” part. To this end we employ the following results:

Cafiero theorem (see [8]). A sequence of completely additive set-functions (u,),cy
on a o-field J is uniformly additive if and only if to every sequence (Ik)keN of disjoint
sets in J and every ¢ > 0 there exist ky and v such that

n>v=p(l,)<e.

Caccioppoli theorem (see [8]). A uniformly additive family of absolutely contin-
uous set functions on a measure space (J, p) is uniformly absolutely continuous.

We suppose now that (2.1) holds and that there exists a sequence ( fu)nen bounded
in WP(Q, po, py) for which the set functions (2.2) are not uniformly additive. In
this case there would exist, by the quoted Cafiero theorem, a sequence of measurable
disjoint subsets of Q, say (I)wy> an &, > 0 and a subsequence of (f,).y (denoted
again by (f,),ey) such that

J fix)|"e(x)dx = &, forevery neN.

In

But this leads to a contradiction via the compactness in I/(2, ¢) of the sequence

(f n)IIEN .
In fact, let (f,, )iev b€ a subsequence of (f,),ev convergent to a function g in I/(, o);
we have

o 5[ Il o) a5 207 109 — o9l )+ 20 [ lato et ox.
It is enough to observe that the right hand side tends to zero, because

tim [ o9l os) dx = 0.

@
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Theorem 2.2. Let Q be a non-void subset of R"; let p and q be two integers such
that 1 < p < q < +oo; let p and @ be two functions in C°(Q), which are positive
at each point of Q. Then

(2.3) 159, 0) Q I2(2, 1)
if and only if
J‘ (ﬂ(x) Q-p/q(x))q/(q~p) dx < 400,
2

that is
(2_4) #ql(q—p)e—p/(q—p) e LI(Q) .
Proof. Let us suppose that (2.4) holds. If ¢ € 2(Q), the Holder inequality yields
[ T PPy [ e

and (2.3) follows because of continuity.
Vice versa, let us suppose that (2.3) holds; then a positive constant exists such that

1oy < €| f||iaoe forevery feIX(Q, o).

Let E be any compact subset of Q and set

(2-5) ')J(E) = ”ug—p/q“m/(q—p(x» .
Next we fix f in such a way that
(2-6) |/ (®)|” @”4(x) = (u(x) @™ 7/9(x))@™P~! for every x€E.

An easy calculation yields

Hf “LP(E.u) = (n(E)'” ”f “ La(E,0) *

On the other hand, if we denote the characteristic function of the set E by X&, we
have

”XEf ”LP(Q,u) = ”f ”L’(E,M) = (V(E))”p ”f “L«(E,g) = C”XEf ”L‘!(Q,g)
which implies (y(E))"/? < ¢, and finally we obtain
(2.7) j (#(x) Q—P/q(x))q/(q—p) dx < cola-p)
E

Since the right hand side does not depend on E, (2.4) follows from (2.7), and the
theorem is completely proved.

Remark. In particular, it follows that
(e, 0 G Q)
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for ¢ > p = 1 if and only if
Q-p/(q—p) e LI(Q) .

Theorem 2.3. Let Q be an open subset in R"; let u and g be two positive and con-
tinuous functions in Q and let1 < p < q. If

IX(Q, o) G I2(Q, 1)

then for any sequence (f,)uen Of elements of I}, ¢) which is bounded in I4(, o),
the set functions

E HJEV,,(x)IP u(x) dx

are uniformly absolutely continuous.

Proof. In fact, we have

f If,,(x)|“ o(x)dx < M? forevery neN,
Q

which yields easily
(a—-p)/a
j |f"(x)lp ,u(x) dx < MP (J. uq/(q-p)(x) Q—p/(q-p)(x) dx) .
E E

This implies the above theorem by virtue of the absolute continuity of the integral
function of a summable function.

Theorem 2.4. Let Q satisfy the cone property; let
0eC Q)N CLQ), 00,0, €CLR)
and let py € [1, n[ be such that ] _
IVQI < cg(l,/p"gi/("—"") ,0 < cg';/("_p")l .
Then
wt 'po(g’ Qo- 91) C U(Q, Q)
provided q < np,/(n — po).
Furthermore, let pe C%(Q) and p, < p < q be such that
”q/(q—p)a—p/(q—p) € LI(Q) :
then
WhP(Q, 00, 01) Q GIP(2, 1) .

The proof easily follows from Sobolev Theorem 1.1 and Theorems 2.1 and 2.2.

The hypothesis ¢ € C*(Q2) may be substituted by ¢ € Lip (). So we can have results
concerning SW-spaces whose weight function depends on a distance, that is on
dist (x, E) with E < 0Q.
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Finally, we want to point out that the above results extend to non-isotropic
SW-spaces.

3. COMPACT EMBEDDINGS: SPECIAL DOMAINS

Let Q be an unbounded set of R" and § € C3(R) a positive continuous function
divergent for |x| - + o we put
2, ={xeQ|i(x) <1},
Q, = {xe Q| §(x) > 1},
Q, =0,
Aixo) = {xe @ |x — xo| < 6(x0)}, i=0,1,2.
We assume that Q and ¢ satisfy the following axioms by M. TRroISsI:
T,) There exists ¢, € R, such that

et 8(xo) S 8(x) < ¢y 8(xp) for every x € Axo) .
T,) If x4+, x,) is the characteristic function of the set 4,(x,), then the inequalities

;! 8"(x) §J-Q xi(x, Xo) dxo < ¢, 8"(x)

hold for every x € A{(x,), where c, is a positive constant independent of x.
It is easy to see that if Q is unbounded, has the cone property and if we put

O(x) = +dist(x, M) with 0+ M c 0Q,

then Q;, £ 0, i = 1,2 and T}, T, are satisfied.

More generally, instead of T, we may introduce the following axiom:

T;) For every x, € Q; the set A(x,) has the cone property with a cone I'(x,) such
that the interior of I'(x,) and the ratio h(x,)/5(x,) are independent of x,, where
h(x,) is the height of I'(x,).

We can prove that if © has the cone property and §(x) is the distance from a subset

of 0Q, then T, is satisfied. Furthermore, it is easy to see that, because of T,

T,=>T,.

Let pe J0, + o[, s € R and let E be a measurable subset of R"; we put

s = ([ Jecop &)™

Given 6 € C%(E), LE(E) is defined by

u e L2(E) <> 6'u e I’(E),
and

[llps.e = 5] ocay = [5°ulp.s
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Now we show some examples of (@, §) which satisfy axioms Ty and T,.
Let M4, ..., M,, be m arbitrary subsets of dQ, and let f be a uniformly Lipschitz-

continuous function in R . By introducing a multiplicative constant we may assume
that

1) =116 éﬁ,;; [of = | forevery v,0" e RY.

It is easy to verify that if Q has the cone property and we put

8(x) = f(dist (x, M), dist (x, M), ..., dist (x, M,,)),
then (2, ) satisfy Ty, T,.

Lemma 3.1. (Lemmas 1.1 and 1.2, [12]). If (2, 8) satisfies Ty and T, p € [0, + oo
and s € R, then there exist c5, ¢4 € R, such that

(1) [, G Mo o 2 elilinnnpn
for every function u for which

& (x) |”|p.Ai(x) e I2(Q)).
Furthermore,

(3.2) L (*(x) ‘”lp,Ai(x))q dx = c4‘“‘§.s+n/q,ni
i
for every q =z p and ue L%,/ 0 -

Proof. In order to prove (3.1) we have to estimate from below the integral

Liasp(x) dx J Ai(x)lu(y)ll’dy = Limiésp(x) ()P 10> %) dx dy .

Using T; and then T,, we obtain

L. Lo [u()|P 2y, x) dx dy 2 ef 'S“’L_Qx ()] (v) (> %) dx dy =

X i

= [ W0k 00 [ a0 ax z e[| oo o) ey
2 2 Q;

Thus (3.1) has been proved. We put

r=f o as(], ol o). 1= o[ ora)”
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‘We have

’- J‘masp(x) h(x) dei(x)!v(y)lv dy = L

Q:S“’(x) h(x) xi(y, x) [v(y)l” dxdy <

i

< c'ls"’Limiés”(y)Iv(Y)l” h(x) iy, x) dx dy =
= [ PO RO o[ )29 0 <
< e[ 0o ar( [ oo as) ([ nm) o) s

< cgreg o0 [ g o) ay.

Hence (3.2) easily follows.
For p = g we deduce from (3.1) and (3.2) that

1/
(J. (6°~P(x) Iu[p’Ai(x))” dx) ’ is equivalent to ”u”w,g‘ .
2; .

This means that we can estimate the weight norm of u by a weight norm of a certain
mean value of u. Really, if we put

(420() = (576 [ utf ar)”

Ai(x)
we can assert that under the hypotheses of Lemma 3.1 the two norms "u”m and

“Mju”p,s are equivalent.

Theorem 3.1 ([12], Theorem 21). Let (2, ) satisfy Ty and T,, pe[l, +oo[,
let r be a positive integer, s € R; then there exists a constant C such that

(33) Iakulp,s—kw’ni = C(|a'” ';/,;,m|“|11»,;£/r',m + |”lp,s—r,n.-)
holds for k = 0,1, ...,r — 1 and for every u € D(Q) with the properties
uel? (Q), uelLl(Q) for |« =r.

‘We will not prove this theorem here in detail, but we wish to give an idea of its proof
which is useful for other more general cases.

It starts from the well know Gagliardo-Nirenberg interpolation inequalities for the
domain

J(x) = {€eR"| (¢ — x)8(x) = y — x with ye 4,(x)}.

645



Next we obtain (3.3) by transforming the integrals over 4,(x) and using Lemma 3.1.
It is important to observe that if we use a weight such as J and, for instance, define
the Sobolev weight space W7?(Q) by means of

Ju w2 = %

the behaviour of the elements of W7'?(Q) at infinity and at a point of the boundary

at which 6 is zero are closely connected. We can improve this result by using the
weight function

o (%) = Fr (&Th x| > oo
v L+ 8874 |x] > xoe{y] 6(y) = 0}.

DPyS—k+r,2 >

We consider the seminorms
I“‘p.s,l = |Qs.1"|p,n .

Then the following theorems hold:

Theorem 3.2. Under the hypotheses of Theorem 3.1 there exists aconstant ¢ such
that

(34) |0 |50 < cl|ulp 550 a |Oulils s + [u]ps-r.)

for k=0,1,...,r — 1.

Theorem 3.3. Under the hypotheses of Theorem 3.1 and for every ae[k|r,
1[N[k[r, k[r + n|pr] we have the estimate

(35) ‘aku!pn/(n—(ar—k)p),s—(l-a)r,). é c(l(’/'ull;,s,).luli,:gr,l + Iulp,s-r,l) .

We now define the space W;5(Q) in the following way:
ue WiA(Q) e (uell, (Q) and duell,,,,(Q) for |of =k),

r
Wrp, 4(Q) = (2 lak“|;,s—k+r,z)1“’ .

lu
k=0
The following embeddings hold:
(3.6) ) WeB(Q) Q Wib—,,14+{(Q) forevery 720,
(3.6) WiR(Q)Q Wizt (R) forevery ©=0.

Theorem 3.4. Let (Q, 6) satisfy Ty and T,; then given p e |1, + o[, real numbers
s, A and an integer r,

(3.7) WH(Q) QQ Witk (Q) for every >0
holds for k =1,2,...,r.
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Proof. It suffices to consider the case k = r because of (3.6"). Using Theorem 2.1
we have to prove that for every sequence (u,)acy bounded in W2'2(Q), the set functions

E+ las—r,).+runl1p;,E , h=12,..

are uniformly absolutely continuous.
Assume that
ltnlw, ro S M, n=1,2,..

and put
K, ={xeQ|d(x) < h}, K,=Q\K,.
We have
p h ° P
(3'8) Igs—r,l-i'run’p,l('h é (1 + hz) M .

Let us put now
E,=EnK,;

then the Holder-Schwarz inequality and interpolation inequalities (3.5) yield
(3-9) 'Qs—r,l-*-:ul:,lfh = C’Eh|a'/"

where a is a positive real number less than both n/pr and t/r. From (3.8) and (3.9)
our assertion follows. .
For further details see Sec. 6 of [3]?).
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