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1. INTRODUCTION

Let B be the class of functions w(z) regular in A = {z; |z| < 1} and satisfying the
conditions w(0) = 0, |[w(z)] < 1 in A. We denote by P(4,B), ~-1<B< A4 <1,
the class of functions p(z) = 1 + p,z + p,z*> + ... defined by

for some w(z) e B. This class, introduced by JANOwsKI [4], is a generalisation of the
classical result (see NEHARI [7, p. 169]) that any regular function p(z) = 1 + p,;z +
+ p,z* + ... such that Re {p(z)} > 0 in A can be written in the form

p(2z) = M(_z)’ w(z)eB.
1 — w(z)

Let p(z) = 1 + p,z + p,z* + ...€ P(4, B) and put 0 = arg p,. Then p(e™"z) =
=1+ | P1| z + ... € P(4, B). Hence there is no loss of generality in limiting our study
to functions in P(4, B) with a non-negative real first coefficient. Also, it is known
that |p,| < A — B (see LiBERA and LivINGsTON [5]). From these observations,
we define the following subclass of P(4, B):

P,(A, B) = {p(z)e P(4, B); p'(0) = b(A — B), 0 < b < 1}.
In this paper, we shall be concerned with the extremal problem A

(1.1) min Re {a p(z) + Bz p'(z)/p(z)}, «=0, B=0

|z]=r<1

over P,(4, B). Two special cases of this problem, namely,

min Re {p(z) + z p'(z)/p(z)} and lz|n=1i’11 1Re {zp'(2)/p(2)} ,

|z]=r<1
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where p(z) varies in P(A4, B), were considered by Janowski [4]. However, Janowski
solved these problems making use of a result due to ROBERTSON which relies on varia-
tional techniques, while our approach to (1.1) is classical and based on Dieudonné’s
lemma (see DUREN [1, p. 25]). The results by Janowski [4] correspond to the cases
a=pf=>b=1and a =0, f =b =1, respectively, of the solution to (1.1) (see
Theorem 2.1).

For some applications of (1.1), we shall consider two subclasses of univalent
functions with fixed second coefficient associated with Pb(A, B), namely,

Sy(A,B) = {f(z) = z + b(4 — B) z*> + ...; zf'(2)/f(z) € Py(4, B), ze A},
Py(4,B) = {f(z) =z + (4b) (A — B) 2> + ...; f'(z) e Py(4, B), ze A}.

By special choices of A4, B, these classes reduce to well-known subclasses of univalent
functions; for example,

Sy(1 — 20, —1) = {f(z) = z + 2bz* + ...; Re{zf'(2)[f(z)} >, OSa <1, ze A},
P(1 —2a,—-1) ={f(z) =z+bz+..; Re{f'(2)} >0, 0 < I, ze A}.

We shall investigate how the second coefficient in the series expansion of functions
in S;(A4, B) and P,(4, B) affects certain properties such as distortion, covering and
convexity of these functions. This type of problems was first studied by GRONWALL
[3] on univalent and convex functions. FINKELSTEIN [2] obtained distortion theorems
for $y(1, —1). These results were generalised to S;(1 — 20, —1) by TePPER [8],
who also derived the radius of convexity of Sl’f(l, —1). The radius of convexity
of Sy(1 — 2, —1) was found by McCARTY [6]. The latter author also obtained

corresponding results for Py(1 — 2, —1). Our results for S;(4, B) and Py(4, B)
will naturally cover all these as special cases.

2. THE FUNCTIONAL Re {az p(2) + ﬂzp'(z)/p(z)}, «= 0, f= 0, OVER Py(4, B)

For p(z) € P,(A, B), we may write
@.1) p(z) = L+ Aw(z)

, z€A,
1 + Bw(z)
for some w(z) € B so that

w(z) = —L:—I)ﬁ= bz +...=2zy(2),

Bp(z) — A
where Y(z) is regular and |[y(z)| < 1 in A with y(0) ='b. Now, since 0 < b < 1,
we have

*'//(Z)- b <z, zeA.

1~ bu(2)

where f(z) < g(z) means “f(z) is subordinate to g(z)”.
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Hence z+ b
z zeA,
1+

which yields
_I_L J_[__E ! (z)l < Izl _Zl+_b

2.2 Re {y(z =< .
We next put D = (r + b)/(l +br),0<r<l1, and define
H,(z) _ 1 +ADz, zeA:
1+ BDz
then it is clear that
(2.3) p(z) < H(z), |z[ <r.
And so, p(z) maps lzl < r into the disc
(24 p(z) — @ < dy,
where '
—_— 2 —_
(2.5) o= 1-4BC , _(A-BC . _ r+bh
1 — B*C? 1 - B*C? 1+ br

It follows immediately from (2.4) and (2.5) that if p(z) € Py(A, B), then on |z| =
=r<l,

29) T2 < Re (o) 5 [pla)] =
The first inequality is sharp for the function
T =R
while the third inequality is sharp for the function
1+ b(1 4+ A)z + AZ? I

z) =
?(2) 1+ b(1 + B) z + Bz*

Also, putting E(b) = a, — d, = (1 — AC)/(1 — BC), F(b) = a, + d, =
= (1 + AC)/(1 + BC), C being as given by (2.5), we have
C r(l - r2) dE A—-B dC
—=——>0, —=-——0.—<0,
db (1 + br) db (1-BC)} db

db (1 + BC? db
Thus for a fixed r in (0, 1),
(2.7) ab—dbgal—dl, ab+dbgao+d0.
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We now prove

2.1. Theorem. If p(z) € P(4, B), « = 0, § = 0, then on |z| =r<l,

{ Re {cx p(z) + ﬂzP(Z)}
(2)
A+ B 1
BA_B+(A __m(l—_rz).
= '[L"%{*f—;%“("i::g‘zﬁ(l—ABrz)], R <R},
Bji§+ (4~ B)2(1 - r?) [(L.K))"* - B(L — 4Br’)], Ry <Ry,

where R, = (L,/K;)"?, Ry = (1 — AC)|(1 — BC), L, = B(1 — 4)(1 + Ar*),K, =
=o(d — B)(1 — r*) + B(1 — B)(1 + Br?), C = r(r + b)[(1 + br). The result is
sharp.

Proof. From the representation formula (2.1) we may write

ap(z)+ﬁzp(z)=a1+Aw(z) (4 — B)zw'(z) .
?(z) 1 + Bw(z) [t + Aw(z)] [1 + Bw(2)]
Applying Dieudonné’s lemma to the second term of the right-hand side, we find
z p'(2) A+ B
2.8 Re {a p(z) + = +
(29) RGN

+ L Re{[a(A B) — BB] p(z) — o )} .y B p(z) — A — [t = p(z)]’ .

A - (4= B)(1 =) |p(z)]
In view of (2.4), we put p(z) = a, + u + iv, |p(z)| = R, then
r|Bp(z) — AP = |1 = p(z)* =
= —(1 = B’r*)R* + 2(1 — ABr*)(ay + u) — (1 — 4%r%) =
—(1 = B*r*) R* + 2a,(1 — B*r*)(a, + u) — (1 — B*r?*)(a} — d}).
Thus, denoting the right-hand side of (2.8) by S(u, v), we get

A+B
S(u,v) = p 212
(u, v) ﬁ B .

— B2 2 _ 2
+ﬁ1———2L R—2q, 2 8 G- AN
1-r R R

{[a(A B)~ p] oy + )~ PABE
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=ﬂi+——B+ IB{[a(A—B)—BB—fz—/::I(a,,+u)+

A—-—B A-—
2
+‘B.111\B: i[(ab+u—tll)2+vz—d%}
-7
This gives
oS B v
2.9 — =" — T(u,v
(29) v A-B R* (. 0)
where
T(u,v) = 24 L= B ps _ R[a? - 2 - a3} =
(4,8) = 240y + ) + + 2 (R = R[a} = 2ay + w)a, - ]} =

1 — B?*? 1 — B*? :
= 2(ay + u) (A + PR a1R> t T [R® — R(a} — d})] .

Since R = a, — d, = a, — d; as seen from (2.7), it follows that

+ l_BZrZ

(2.10) A - .aR2 A+ (a; —d,)? =
_(1+B)(1 — 4r)* + (A — B)(1 — ABr?) 5 0.
(1 — Br)? '
Consequently, .
1 — B%*? 1—B*?* ) 2
T(u,v) 2 2(a1—d,)<A + T a,R) + e rz—[R ~ R(a; — d})].

Denote the right-hand side by G(R), then

_ p2.2
g_]i:%—_fi—;[(a,—dl)z+3R2]>O.

Thus, by (2.10)
1 — B*? Q)2
G(R)gG(al—-d,)=2(al _dl) A+T‘~‘2‘-(al"' l) >0.

Hence T(u, ) > 0, and in view of (2.9), we see that minimum of S(u, v) on the disc
[p(z) = a,| < d, is attained when v = 0 and u € [—d,, d,]. Setting v = 0, we get
A+B 1 p(l—A)(1+Ar2)‘ 1

A—B A-B 1 -7 a,+ u

+ (A — B)(1 — r21)+ﬁ2(1 - B)(1 +Br2)(ab+u)_2ﬁll— ABZrZ}
-r -r

+

S(u, 0) = B

306 .



which yields

dS(u,0) 1 [_“L LK ]
du (A=B)(1—=r)]L (a+u)

It is clear that the absolute minimum of S(u, 0) occurs at the point uy = (LI/K1)1/2 -

— ay if ug lies in [ —d,, d,], its value being

A+ B 2
A-B (A-B)(1-r)

S(uo,0) = 8 [(LiK,)"* = B = AB)].

Now, from the conditions —1 < B< A <1,a >0, gz 0, r <1, itis clear that

2 Ar?
(a +u)25(1 A)(l-l——A—r—)<ﬁ—J;'
(1—B)(1+Br?) 1+Br

Thus, together with (2.7), we find

2 _ 2
(ap + up)? < -i+B—2—00+d0=ab+db§(ab+d”)'

Thus u, < d,. However, it is not necessary that u, > —d,. For the case u, < —d,,
that is, if R, < R}, the absolute minimum of S(u 0) occurs at the end-pointu = —d,,
the value of which is

A+ B

S(—dy,0) = p2F2 4 L.
A-B (A-B)(1 -7
. Ll-l—Bc+K1-1—AC~2ﬁ(1—ABrZ) .
1 - AC 1 - BC
The result is sharp for the function
1+ bA4-1)z — AZ?
p(z) = (4-1) i

1+bB—-1)z— Bz

at the point z = —r for R; £ R} and at the point z = re'’ for R, < R,, where 0

is determined from the equation

_ 0 _ 4.2.2i0y .
Re 1+ b(4 1)re. Are. —R,.
1 + b(B — 1) re*® — Br?e**
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3. TWO SUBCLASSES OF UNIVALENT FUNCTIONS WITH FIXED
SECOND COEFFICIENT

We first establish certain distortion properties for the class S;(4, B). These refine
several results obtained previously by Janowski [4] on the class $*(4, B).

3.1. Theorem. Let f(z) € S;(A, B); then on |z| =r<l,

rG(r) < |f(z)| < rH(r)
1+ b(1 +A)r+ Ar?
1+ b(l + B)r + Br*

1'*'b(l“A)"—Ar2 )
1+b(1-3)r_B,z'G(’)§|f(2)|§

H(r)
where

exp {H,(r; A, B)}, for B <0 or {B > 0 and b*> = 4B/(1 + B)*},
exp {Hy(r; A, B)}, for B> 0 and b* < 4B/(1 + B)?,

exp{A[ﬁ+(l —b—lz)log(l + br)]},for B=0and b0,

exp {34r*}, for B=0and b =0;

H(r) =

-exp {H,(r; —A, —B)}, for B> 0 or {B <0 and b* 2 —4B|(1 — B)*},
exp {Hy(r; —A4, —B)}, for B <0 and b* £ —4B|(1 — B)?,

G(")= r 1 _
exp{—A E+(1 ——p)log(l + br) },for B=0and b+0,

exp { —3A4r*}, for B=0 and b = 0;
A—-B

H(r; 4, B) =

log (1 + b(1 + B)r + Br?) +

1)

(4= B)(1=B)b__[b(L+B)+ 2Br(1 +—c,) b(l+B)—2Br—c,
4B%r \/—¢, {b(l + B) + 2Br(1 — \/—¢;) b(l + B) + 2Br/—c,

A -
2B

~(4-B-Bb [tan—-l (ML’?)) ~ tan"! (M)]

2B’r /¢, 2Br \Jc, 2Br /¢,

oL b+ BT
YT opy? 2Br |

Proof. The structural formula for the class S;(4, B) is

Hy(r; 4,B) = 2" Blog (1 + b(1 + B)r + B?) —

fz) =z epr: Lﬁ){———l d¢, p(z) e Py(4, B).
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Hence

) oo [ 29714

Substituting £ by zt in the integral we get

(3. L(z—) = epr-1 Re {Mi—l} de.

z t

An application of (2.6) yields, on |zt| = rt,

Re{B@:}g—(A—B) br + r’t

t 1+ b(1 - B)rt — Brie*’

Replacing this bound into (3.1) and carrying out the integration will give the lower
bound for | f (z)| The upper bound may be obtained similarly. From the definition
of §;(4, B) we have

(32) @) =

P2 ). popia ),

Hence making use of the bounds derived above for |f| (z)| together with inequalities
(2.6), we obtain the corresponding bounds for |f'(z)|.
The lower bounds for l f (z)] and ‘ f ’(z)l are sharp for the function

- L (A-B(b-9
f(z) = zepr'0 T hB - 1) _B{Ldéf,

while their upper bounds are attained for the function

=zexp| A-BG+
/) pJ‘01+b(1+B)6+B§2

3.2. Remark. For an application of the above theorem, let us consider the function
9(z) = 1)z 4+ byz + b,z* + ... which maps the unit disc onto a domain whose
complement is starlike with respect to the origin. Then the function f(z) defined
by f(z) = 1/g(2), z € A, is starlike in A and has the series expansion

f2) =z +a,2° + a2 + ...

Hence Theorem 3.1 with A = 1, B= —1, b = 0 gives -

< g(2)| =

st =

Equalities occur for the function g(z) = 1/z + ¢z, le| = 1.
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3.3, Theorem. The radius of convexity of S;(A, B) is given by the smallest root
in (0, 1] of
(i) A*r* + b(24> — 34 + B)r® + [b*(1 — A)> — 44 + 2B]r* +
+ b2+ B-34)r+1=0, for R, <R},
(i1) (4/12—5A+B)r4—2(2A2—3A+2—B)r2+4—5A+B=0,
for Ry SR,
where R,, Ry are as given in Theorem 2.1 witha = f = 1.

Proof. For f(z) e $;(A, B), we may write
2p'(2)

g_(z_) = p(z) 4 =

/'(2) p(z)

for some p(z) € Py,(A4, B). Thus an application. of Theorem 2.1 with a = f = 1
yields immediately the equations giving the radius of convexity of S;(4, B). The
result is sharp for the function fy(z) determined from z f;(z)/fo(z) = p(z), where
p(z) is extremal for Theorem 2.1.

Theorem 3 of McCarty [6] corresponds to the case A = 1 — 2¢, B = —1. We
note that the two bounds in Theorem 2.1 are attained by the same function at two
different points. Thus the function f,(z) defined above serves as an extremal function
for both cases of Theorem 3.3. The second extremal function given by McCarty
[6, Theorem 3], in fact, does not belong to the class.

In [5], Libera and Livingston found the radius of convexity for functions f(z)
satisfying

1+

2f'(2) _
/(2)
for « = 1. The complete result which includes the range 3 < « < 1 may be obtained
by putting 4 = 1, B = 1/a — 1, b = 1 in Theorem 3.3 above.

We next consider the class P,(4, B).

al <a, zeA

3.4. Theorem. Let f(z) € Py(A, B); thenon |z| = r < 1,

L+ b1+ A)r + 4Ar*
1+ b(1+ B)r+ Br*’

A

1+b(1—A)r——Ar2< e{f'(z)} £lf'(z
1+b(1—3)r—Br2=R{f()}=lf()|

G,(r; A, B), for B <0 or {B >0 and b* 2 4B/(1 + B)*},
[Gz(r; A, B), for B> 0 and b* < 4B/(1 + B)?*,

b 2 B2
VG = %-+(1+A—§>r+¥log(l+br),forB=0,b=t=0,
2

r+ Ar®[3, for B=0, b =0;
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G,(r; =4, =B), for B> 0 or {B <0 and b* > —4B/(1 — B)*},
G,(r; —A, —=B), for B< 0 and b* < —4B/(1 — B)*,

f(z)] 2 Ar? A A(1 - b?
I()I —i-i—(l~A+P>r—(—b3—)log(l+br),forB:O,b#o,

r— Ar’[3, for B=10, b =0;

where

r _b(4 - B)

A4 A-B
Gl(r; A, B) = F 2B .

2B?

log (1 + b(1 + B) r + Br?) +

_ 1_b2(1+B)] L op|2Br+ b(L+B) +2By/~c, b(1+B)—2B—c,
I: \/‘cz

2B [2Br + b(1 + B) — 2B /—c, b(1+B) + 2B /—c,|’
Gy(r; 4, B) = Ij; b(éB 5) log(1 + b(1 + B)r + Br?) — %—B .

[ P00 [ (B 28028 et 281

_ 1 _[p(1+ BT
B 2B |
Proof. Since f'(z) € Py(A, B), the bounds for Re {f'(z)} and |f'(z)| follow imme-
diately from (2.6). The bounds for |f(z)| are derived from the fact that

: 21 ,
f(z) = J fl(¢de = f f’(te"’) e dt .
o 0
Thus, on |z| =r,

P "1+ b(L+ A+ AP
ol [[lreenans [ oo e

r - r1+b(1—A)t—A12
= [ et e 1A

Carrying out the integration we get the bounds for | f (Z)I
The upper bounds for |f'(z)| and | f (2)| are attained for the function

z 2 )
f(z)=J 1+ b(l + A) & + A 4 at
o1+ b(l + B)¢ + BE
while the lower bounds for Re {/'(z)} and |f(z)| are attained for the function

[ )E - ag .
f(z)_Jol+b(B~1)§—B£2d€ at z= —r.

z=r,
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For f(z) € Py(4, B), we have )
2/"(2) zp(®)
1+ =1+ , zeA
1@ T e

for some p(z) e P,(A, B). Thus an application of Theorem 2.1 with « =0, f =1
gives

3.5. Theorem. The radius of convexity of Py(A, B) is given by the smallest root
in (0,1] of
()  ABr* — 2b4(1 — B)r* + [b*(1 — A)(1 — B) + B — 34] r* +
+2b(1 — A)r+1=0, for R =R},
(i) AQ-B)r*+(1—-A)(1-B)r*—(1—A)=0, for R,

IIA

R,,
where Ry, R} are as given in Theorem 2.1 witha =0, f = 1.

The result is sharp for the function f,(z) = [§ p(¢) d¢, where p(z) is extremal for
Theorem 2.1.

Putting A =1 — 20, B = —1, we obtain Theorem 2 of McCarty [6]. Again
here, we remark that the function f(z) defined above is extremal for both cases
of Theorem 3.5. The second extremal function given by McCarty [6, Theorem 2],
in fact, does not belong to the class.
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