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The notions of weak homomorphism and weak isomorphism of general algebras
have been introduced by GoErz and MARCZEWSKI (cf. [3], [7], [8]). The concept
of weak isomorphism of general algebras has been contained implicitly in MALCEV’s
papers [5], [6]; CsAKANY [1] denotes this concept as equivalence of algebras.

Several authors investigated weak homomorphisms and weak isomorphisms of
concrete types of algebraic structures (for references, cf. e.g., GEAZEK and MI-
CHALSKI [2]).

In this note it will be shown that if ¢ is a weak isomorphism of an abelian lattice
ordered group ® onto a lattice ordered group ®,, then 1) ¢ is an isomorphism with
respect to the group operation, and 2) ¢ is either an isomorphism or a dual isomor-
phism with respect to the partial order.

We recall some relevant basic notions concerning weak isomorphisms.

Let A = (A; F ) be a general algebra with the underlying set A and with the system F
of fundamental operations. Let i, n be positive integers, i < n. We define an n-ary
operation a} on the set A by putting aj(x,, ..., x,) = x; for each n-tuple x,, ..., x, of
elements of A. We denote by 2(2) the least set of operations on the set 4 such
that:

(i) F < 2(%) and a} € 2(N) for any positive integers i, n with i < n;
(ii) 2(N) is closed with respect to superpositions.

The system 2(U) will be called the system of all polynomials of the algebra .

Let A = (A4, F) and A, = (4,, F,) be general algebras and let ¢ be a one-to-one
mapping of A onto A,. For each n-ary operation f € F and n-tuple y,, ..., y, € 4;
we define

F*0as e ) = o(f (07 (1), - 07 () -
Similarly, for each n-ary operation f, € F, and each n-tuple x,, ..., x, € A we put
FH(X15 oo %) = 07 (fo@(x1), - @(x2))) -
The mapping ¢ is called a weak isomorphism of U onto Ay, if f* e P(U;) and
f1€P(W) for each f € F and each f; € F,.
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Without loss of generality we can assume that 4 n 4; = 0. In this case we can
identify the elements x and ¢(x) for each x € A. Thus we can suppose that the al-
gebras U and U, have the same underlying set and that the identity mapping is a weak
isomorphism of the algebra 2 onto ;. Hence f = f* e 2(A,) and f, = f] € Z(NA)
for each f e F and each f, € F,.

Now let us investigate the case when A = G = (G; +, —, A, v) and A, =
= 6, = (G; +,, —, Ay, V) are lattice ordered groups. The positive cone and the
negative cone of ® will be denoted by G* and G, respectively. The symbols G;
and G; have the analogous meaning with respect to ®,. The relation of the partial
order in ® or in &, will be denoted by < and <,, respectively. If a € G, a, =
=a,=...=a, = a,thenwedenotea; +a, +... +a,=na,a, +,... +,a, =
= n o a. The following result has been established in [4]:

(%) Suppose that (i) A, v e Z(®,), A,, v, € P(6), and (ii) the neutral element
of ® coincides with the neutral element of ®;. Then we have either

(1) Gt =G and G =Gy,
or
) G*=G; and G~ =Gj.

In what follows we assume that the identity is a weak isomorphism of ® onto ®,.
Further we suppose that ® is abelian. The case card G = 1 being trivial we assume
that card G > 1. From the basic algebraic rules valid for lattice ordered groups it
follows that each binary operation belonging to #(®) with variables x,, x, can be
expressed in the form
(3) AV (mijxl + nisz),

iel jeJ

where I, J are nonempty finite sets and n;;, m;; are integers for each iel, je J.

ij>
Lemma 1. The neutral element of ® coincides with the neutral element of ®,.

Proof. Let 0 be the neutral element of . Then 0 +, 0 can be expressed in the
form (3) with x; = x, = 0. Hence 0 +, 0 = 0 and thus 0 is the neutral element
in ®, as well.

From (*) and from Lemma 1 we obtain:

Corollary 1. Either the relations (1) or the relations (2) are fulfilled.
The following two assertions are immediate consequences of the fact that the
identity mapping is a weak isomorphism of ® onto ®,.

Lemma 2. Let A = G. If A is closed with respect to all fundamental operations
of ®, then A is closed with respect to all fundamental operations of &, and con-
versely.

Lemma 3. Let R be a congruence relation of ®. Then R is a congruence relation
of &, and conversely.
From Lemmas 1 and 3 we obtain:
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Corollary 2. Let A = G. If A is an l-ideal of ®, then A is an l-ideal of G, and
conversely.

We denote by N, N* and N, the set of all positive integers, the set of all non-
negative integers and the set of all integers, respectively.

Lemma 4. Let 0 < t € G. Then nt = n ot is valid for each positive integer n.

Proof. Suppose that the condition (1) is valid (in the case when (2) holds we can
use the dual argument). Denote A = {nt},.y,. Then A is the least /-subgroup of &
containing the element ¢. Hence according to Lemma 2, A is also the least I-sugroup
of ®, containing the element ¢, thus A = {n o t},.y,. This together with (1) implies

(4) {nt}uen = {not}pen -

Suppose that x; + x, is expressed by (3) for each x,, x, € G. Consider the system S
of all planes z = m;;x + n;;y in the three-dimensional euclidean space with co-
ordinates x, y, z. Let P be the set of all points P(x, y, z) with x > 0, y > 0, having
the property that P(x, y, z) belongs to the intersection of two distinct planes of the
system S. Then either P = @ or there exists Py(xo, Vo, Zo) € P such that yoxg ' < yx~!
for each P(x, y, z) € P. In the first case we put M = N* x N™; in the second we
denote M = {(m,n)e N x N* :nm™! < yox5'} U {(0,0)}.

From the definition of the set M it follows that there exists a plane z = m;
+ n;y;,Y € S having the property

x +

ojo

(5) mt + 4 nt = mgj(mt) + nig;(nt) = (my;om + nygjon)t

for each (m, n)e M.
Let me N, n = 0. According to Lemma 1 we have mt +, 0 t = mt, and hence
(5) yields

(6) Mo = 1.

There exists m e N with (m, 1) e M; let m, be the least positive integer with this
property. If m > m,, then (m, 1) also belongs to M.

Clearly n;;, # 0. Assume that n;;; < 0. Then 0 < mgt +,t = (my + ny;) ¢,
hence my > —n;,;,. For each i € N with i £ m, we have (cf. (4))

it+,t=kt, k;>0;

put k=maxk; (i=1,2,...,my — 1). We can easily verify that all elements
met + not(n=1,23 ...) belong to the set {¢,2t, ..., kt}. On the other hand,
the set {mot + not}, is infinite and so we arrived at a contradiction. Hence
N, > 0.

Assume that n,;, > 1. Let m > m,. By calculating mt +t, (mt +,1) + 1, ...
we obtain that

mt+not=(m+ ng;n)t

iojo
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for each n € N. From this and from n > 1 it follows that the set

iojo
{nt}penN{mt +,not},cy =B
is infinite. Now (4) implies
B={not}eyN{mt+,not}y

and this set has only a finite number of elements, which is a contradiction. Therefore
;o = 1. In view of (5) and (6) we obtain

7 mt +,nt =(m+ n)t

for each (m, n)e M.
Let m, be as above. According to (4) there exists mge N with mgt = mg o t.
Thus (7) implies
(mo+ Vot =myot +,1=(mg+ 1)1,

and by induction we obtain
(8) (mo + n)ot = (mg + n)t

for each n e N.

Let a positive integer p > 1 be given. For each i€ {0,1,2,..., p — 1} we denote
A; = {(mo + i + np) t},en+. Further, for each x € G we denote by A(x) the [-sub-
group of ® generated by the element x. Then x = pt satisfies the following condition:

(o) There exists i€ {0,1,2,...,p — 1} such that 4; € A(x) and 4; 0 A(x) = 0
for each je{0,1,2,...,p — 1} with j =+ i.

According to Lemma 2, A(x) is also the I-subgroup of ®, generated by x. Put
A; = {(mg + i + np)o t},y+. From (8) it follows that A; = A4; for each ie
€{0,1,2,..., p — 1}. Thus from (o) we infer that the following condition is fulfilled:

(ot;) There exists i € {0,1,2,..., p — 1} such that A; = A(x) and 4 N A(x) = 0
for each j€{0,1,2,...,p — 1} with j + i.

Moreover, from (4) we get that there is p’ € N with x = p’ o t. From the definition
of A; we obtain that the following assertion is valid:

(B) Let g be a positive integer. Suppose that there exists i€ {0,1,2,...,p — 1}
such that 4; < A(qot) and A; N A(q-t) =0 for each je{0,1,2,....,p — 1},
j #i. Then g = p.

(In fact, from A; < A(q o 1) it follows that there is a positive integer m with p =
= mgq; from A; N A(qot) = O we get m = 1.)

From () and (B) we conclude p’ = p. Hence pt = p o t is valid for each positive
integer p.

Lemma 4'. Let 0 < t € G. Then nt = n o t is valid for each integer n.
Proof. In view of Lemma 4 it suffices to verify that —t = — ,¢. Further, we can

suppose that (1) holds (in the case (2) the proof would be analogous). The set M =
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= {nt},en, is the [-subgroup of G generated by t. Hence this set is also the I-sub-
group of G, generated by t. From (1) it follows that t >, 0, whence —,t <, 0,
thus there exists a positive integer m such that — ;¢ = —mt. The I-subgroup of G,
generated by — ¢ coincides with M. Hence the I-subgroup of G generated by —mt
coincides with M. Thus m = 1.

Corollary. Let t € G be such that either t 2 0 or t £ 0. Then nt = not is valid
for each ne N,.

For each xe G we denote, as usual, |x| = (x v 0) — (x A 0). We have x =
=(x Vv 0)+(x A0). If my, mj, my, m, are integers and k, = max {my, m,},
k, = min (m,. m,), I, = max (mj, m}), I, = min (m}, m}), then

(v1) (my(x v 0) + mi(x A 0)) v (my(x v 0) + my(x A 0)) = ky(x v 0) +
+ I(x A 0),

(v2) (my(x v 0) + mi(x A 0)) A (my(x v 0) + my(x A 0)) = ky(x v 0) +
+ I (x A 0).

(This is an easy consequence of the fact that x v 0 and x A 0O are disjoint, i.e.,
(x vO) A (=(x A0)=0)

In the following lemma we assume that for all x,, x, € G, x; 4+, X, is given by

the expression (3).

Lemma 5. Let r be a positive integer such that r > 2[n,-j| is valid for each iel
and each je J. Let x,y€ G, x 2 r|y|. Then X +,y = x + y.
Proof. We have
x+.y=A V(mjx + n;y).

iel jeJ
Denote m;jx + n;y = t;. Let i,i,€l, j,j e J.
First, suppose that m;; + m; ;. We shall verify that in this case the elements t;
and t;,;, are comparable in . In fact, let m;; > my,j,. Then
(miy — myy)x = x 2 rly],
(ni,, — ny) y < |(niy — mi) =
= |niJ, — | |y| £ (|niil + |nij]) ¥l < rlyl,
whence #;; > t;;,.
In the case m;; = m,,;, we have according to (Y)
ty V iy, = (myx + nyy) v (mgx + ngy;p) =
=myx + (nijy v nyy) = myx + k(y v 0) + I(y A 0),
where k, I € {n;;}icr,je;- From this and from (v,), (72) we infer that there are integers
m, k, 1 with m € {m;;}icr,jes, k, 1 €{n;;}cr js such that
X+ y=mx+k(y v0)+ Iy a0
is valid whenever x = ry.
If we put y = 0, x > O, then we obtain m = 1. Thus
xzrly=x+,y=x+kly v0O)+ Iy A 0).

1J1
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Choose y > 0, x ~ ry. Then in view of Lemma 4,

(r+ 1)y=(r+ l)oy=ry +.y=ry+ ky,
whence k = 1. Further choose y < 0, x = ~ry. According to Corollary of Lemma 4’
we obtain

(=r+Dy=(-r+)oy=—=ry+,y=—-ry+ly=(-r+1)y,
thus I = 1, completing the proof.
Lemma 6. Let y;, y,€G. Then y; +,y, = y; + y,.
Proof. Let r be as in Lemma 5. There exists x € G such that the relations
x 2 rl)’x + )’2|’ x = rl}’ll’ X+ 2 "IY1|
are valid. This and Lemma 5 yields
x+1(}’1+y2) x+(}’1+}’2),
(x+Y1)+1)’2 (x+)’1)+)’2,
X+ YVi=x+1)Y:1»

Il

I

whence y; + y, = yi +1 ¥s.

Lemma 7. Suppose that (1) is valid. Let y,, y, € G. Then y; < y, if and only if
Y1 =1 )2

Proof. From y,; £y, it follows that there exists ze G* with y, + z = y,.
According to Lemma 6 we have y; +; z = y,, whence y; <; y,. Similarly, from
y1 =, y, we infer that y; < y,.

Now suppose that (2) is valid. Let < be the partial order on G that is dual to <,.
By applying Lemma 7 to the lattice ordered groups G and G; = (G; +,, —, <)
we obtain:

Lemma 7'. Suppose that (2) is valid. Let y,, y, € G. Then y, <y, if and only if
Y121 Y2

Lemmas 6, 7 and 7' imply:

Theorem. Let ® = (G; +, —, A, v) and &, = (G; +;, —;, Ay, V,) be lattice

- ordered groups. Let < and <, be the corresponding partial orders of ® and &,

respectively. Suppose that ® is abelian and that the identity mappings is a weak
isomorphism of ® onto ®,. Then (i) the operations + and +, on G coincide, and
(ii) either < coincides with <y, or < is dual to <.

Corollary 2. Let & = (G; +, —, A, v) and 6, = (Gy; +4, —y, Ay, V4) be
lattice ordered groups. Assume that ® is abelian. Let ¢ be a weak isomorphism
of ® onto ®;. Then (i) ¢ is an isomorphism of the group (G; +) onto the group
(Gy; +1), and (ii) ¢ is either an isomorphism or a dual isomorphism of the lattice
(G; A, v) onto the lattice (Gy; Ay, V). :

Remark. It can be shown that the assertion of Lemma 4 remains valid without
assuming the commutativity of the operation +. The question of the validity of Corol-
lary 2 for a non-abelian lattice ordered group ® is open.
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Let & =(G; +, —, A, v) and ®, = (G; +,, —;, Ay, V) be lattice ordered
groups with the same underlying set. Assume that ® is abelian. Let f be an (n + m)-
ary polynomial belonging to 2(®,), n = 1. Suppose that f can be expressed by using
merely the operations +; and —, (i.e., without using the operations A, Vv ).
Let ay, ..., a,, be fixed elements of G. Consider the n-ary operation

g(xgs ees X)) = f(X1, ees Xy Ay, ..o, @)
on G and let investigate the problem whether g can belong to 2(®).

Since ®, is abelian, there exists a fixed element b € G and an n-ary operation f, €
€ #(®,) such that

(9) g(xl"“’xn)=f1(x1""9xn)+1b;
the polynomial f, does not contain the lattice operation A, and v ;.

Proposition. Let &, ®,, f, b be as above. Suppose that the zero element of ®
coincides with the zero element of &, (this element will be denoted by 0). If ge
€ #(6), then b = 0 (i.e., f does not depend on ay, ..., a,).

Proof. Assume that g € Z(®). Denote h(x) = g(x, ..., x). Then h € Z(®). Hence
h(x) can be expressed in the form
(3/) h(x) =AYV m;;x,
iel jeJ
where I, J are finite sets and m;; are integers. Thus h(0) = 0. From (9) we obtain
h(0) = f1(0,...,0) +; b = 0 +, b = b. Therefore b = 0.

Question. Does the above proposition remain valid without assuming that ®,
is abelian or without assuming that the zero element of ® coincides with the zero
element of ¢,?
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