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1. INTRODUCTION

In 1957 J. LEENER and M. WING published a paper, [8], in which a complete
description of the spectrum of the linearized one-velocity Boltzmann operator in an
infinite slab was given. They later in [9] applied their results to the neutron transport
equation. In these papers it was shown that there is a continuous spectrum for the
Boltzmann operator and that there may also be eigen-values in the half-plane Re 4 >
> —A* where A* = 0. Lehner showed in [7] that the situation is completely different
if one considers a bounded domain G in place of an infinite slab and he actually gave
some important results concerning the one-velocity Boltzmann operator in a sphere.

Further progress has been made by K. JORGENS [ 3] who has analysed the linearized
energy-dependent Boltzmann equation under an additional assumption that both
the space domain G and the velocity domain V are bounded and that V is bounded
away from the origin.

A very important result is due to S. ALBERTONI and B. MONTAGNINI who have
shown in [1] that if G is a convex bounded body whose volume is sufficiently small,
then the point spectrum of the linearized velocity-dependent Boltzmann operator is
empty.

A series of papers devoted to a detailed study of the spectrum of the linearized
velocity-dependent Boltzmann' operator has been published by I. VIDAv, see e.g.
[19], [20].

Further progress can be traced in recent work by S. UKAI [18] and Y. SHIZUTA
[16]. In [16] the theory for linear problems is extended and applied to some non-
linear problems. ‘

1) This report was completed during the author’s visit to the Institute of Computational
Mathematics at Brunel University. The author would like to express his thanks to the British
Council for the financial support and Professor J. R. WHITEMAN for the convenient and creative
atmosphere which dominates the Institute headed by him.
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The aim of this report is to show some asymptotic properties of certain semigroups
of cone preserving operators of class (CO). These properties are based on a lattice
order in the space Y and consequently on the induced lattice order in Z(Y) (see
Section 2). The results obtained have rather important applications in the transport
theory of particles. We note that in particular our theory covers the detailed descrip-
tion of the peripheral part of the spectrum of the linearized velocity-dependent
Boltzmann operator. This gives a solution to Problem 10 of Kaper’s Collection of
Problems in [4].

2. DEFINITIONS AND NOTATION

Let Y be a real Banach space and let X = Y @ iY be its complexification. By Y’
and X’ the corresponding dual spaces are denoted and by £(Y) and £(X) the spaces
of bounded linear operators mapping Y and X into Y and X respectively.

It is assumed that K < Yis a closed, generating and normal cone ([5]); that is K
has the following properties:

(a) x,yeK=x + yeK, orelse K + K = K,

(b) xeK, o 2 0= axeK, orelse oK < K,

(c) xeK, (—x)eK =x =0, orelse K n (—K) = {0},

(d) y e Y= there are y* €K such that y = y* — y~, orelse Y =K — K,
(e) thereis 6 > 0 such that x, yeK = [x + y
(f) x,€K, lim |x, — x| = 0=>xeK.

A partial ordering is introduced into Y by setting x < y (or equivalently y > x)
whenever (y — x) e K.

An operator Te $(Y) is called positive (more precisely K- positive) if TK < K.
A partial order is introduced into £(Y) by settmg SET (or T = S) whenever
(T- S)K c K.

An operator Te #(Y) is called K-irreducible, if for every pair xeK, x # 0,
x' €K', x' # 0, where K' = {x' € Y' : x'(x) = 0 for all x €K}, there is a positive
integer p = p(x, x’) such that x'(7”x) > 0. Let us note that in [13] the concept
semi-non-support operator was used originally.

Remark. The set K’ also forms a closed normal generating cone in Y’ and is
called a dual cone with respect to K, [5].

An operator Te $(Y) is said to be K- zrreduably primitive, if T* is K-irreducible
for every positive integer k = 1.

If for every x and y in Ythe sup {x, y} and inf {x, y} exist in the sense the ordering
given by K, the space Y is called a Riesz space, or a Banach lattice, [14, Ch. II,
pp. 46—153, in particular p. 81].
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3, AUXILLARY RESULTS

We briefly summarize some fundamental results concerning K-positive operators.

For a closed densely defined linear operator 4 mapping 2(4) = X into X the
symbol 6(A4) denotes its spectrum. The complement of ¢(4) in the complex plane
is called the resolvent set and is denoted as ¢(4). For Te #(X) the quantity r(T) =
= sup {|| : A € o(T)} is called the spectral radius of T.

Let A be a linear operator mapping 9(4) < Yinto Y. Then the operator 4 defined
by Az = Ax + idy for z = x + iy, x, y € Y, is called the complex extension of A.
By definition we let 6(4) = o(4 ) and r(T) = r(T) for Te £(Y).

Proposition 1. Let Te #(Y) be K-positive. Then r(T) € o(T).

Proposition 2. Let Te £(Y) be K-positive and e o(T), |A| = r(T), imply that A
is a pole of the resolvent operator. Then in the Laurent expansion

(1 = 1) = R T) = 5 AG) (= 2+ % B (0 = )7

where A(A) and B(4) are in £(X), B,,(r) is K-positive; here r = r(T) and g(A)
is the multiplicity of A as a pole of R(u, T). In addition, q(r) 2 q(2).

Corollary. There exist eigen-vectors x, € K and xy € K’ such that Tx, = rx, and
T'xq = rxg.

Proposition 3. Let Te ,Sf’(Y) be K-irreducible and assume the assumptions of
Proposition 2 hold. Then the sets /" = {yeY:(T—rl)*y =0 for some k =
=0,1,...} and /" ={y'eY :[(T-rI)]*y =0 for some k=0,1,...} are
one-dimensional. Moreover, Tu = vu, ue K, u £ 0, implies that v=r and
similarly, T'v' = vwi', u' €K', u’ + 0, implies thatv = r.

Corollary. B,(r) = 0 for k > 1 and By = By(r) is K-irreducible.

Proposition 4. Let Te £(Y) be K-irreducibly primitive and let the assumptions
of Proposition 2 hold. Then A€ o(T), |A| = r(T), implies that A = r(T).

Remark. It can be shown that Propositions 1—4 are valid in general Banach
spaces whose ordering is given by a normal generating cone, not necessarily a lattice
generating cone.

The validity of the next results depends essentially upon the lattice structure of Y.

Proposition 5. Let Te £(Y) be K-positive and such that its spectral radius is
a pole of the resolvent operator R(u, T) of order q with the residue By(r), where
r =r(T), g = q(r), having a finite dimensional range. Then all points A€ o(T)
for which [/1| = r(T) are poles of R(u, T) with multiplicites at most q. Moreover,
(1/r)eo(lfr), k =1,2,... whenever Aea(T), |4| = r(T).
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Proposition 6. Let Te £(Y) be K-irreducible and r(T) be a pole of the resolvent
operator. Then all other points ). € o(T), |A| = r(T), are simple poles of the resolvent
operator.

The properties of K-positive operators shown above in Propositions 1—4 and the
Corollaries can be found in the literature, e.g. [14, Chap. V], [13], [10], while Pro-
position 6 is shown first in [12]. A complete theory has been set up in [14, Chap. V,
pp. 322-337].

4. MAIN RESULTS

Should the reader require any information regarding semigroups of operators.
he is referred to [2].

It is always assumed here that the cone K producing the order in Y is a lattice
generating cone. We note that our investigation is based on the following hypotheses.
the fulfilment of which is assumed appropriately.

(i) 4 is the infinitesimal generator of a semigroup of operators T(t; A) of class
(CO)-

(ii) There is a # > 0 such that r(T(#; 4)) is a pole of R(u, T(#; A)) with a finite
dimensional generalised eigenspace 4", (a Fredholm eigenvalue).

(iii) Let Ay be such that
(4.1) ieo(A)=>Red < Rely =4,
and there exists a 1 e 6(4) with Re 1 = 1,.

(iv) The semigroup T(t; 4) is K-positive for ¢ > 0.
(v) The semigroup T(t; A) is K-irreducible for t > 0.

Theorem 1. Let the hypotheses (i)—(iv) hold. Then

(4.2) a(4) 0 {A:Red = Ao} = {Ao}

and

(4.3) T(t; A) = *'[B, + Z(1)] + W(1),

where

(4.4) B, = B, = (n(T(3; 4))), B, Z(t) = Z(1) B, = Z(1),
(4.5) B, W(t)= W(t)B, = 0,

(4.6) B, T(t; A) = T(t; A) B, .
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Moreover,
1

(g—1)

t7IMZ(1) - By,

)

(4.7) lim e”**|w(t)| =0, lim
>+ t>+ o

where q is the multiplicity of X, as a pole of R(p, A).

In addition,
By, = lim (¢ — A)"R(¢, 4)

e~ 40,> 4o

is K-positive and, consequently, every vy = B, u, where ueK, B, u + 0, is an
eigen-vector of A : Avy = Ayv,.

Proof. For every t > 0 the spectral radius r(t) = r(T(t; A)) is by Proposition 1
in the spectrum o(T(t; A)). It is obvious that r(t) = e*. According to assumption
(ii) 7(2) is a pole of R(u, T(3; A)) and by the Niiro-Sawashima-Lotz-Schaefer theorem
(Proposition 5) the whole peripheral spectrum of T(%; A) consists of a finite set of
poles fg, ..., iy, Ho = €™ = 1(t), p; = e¥’, Re A; = Ay, j = 0, ..., p. The existence
of a Zin the spectrum of A4 such that Re 1 = Ay, 4 = A,, implies the existence of an
infinite set of eigenvalues {4;} of A with Re 4 ; = Ao and consequently contradicts the
finiteness of the rank of B,. Hence p = 0 and (4.2) follows.

Let
d q
R(, A) = ¥ 43 = o) + 3 By — 20)™*,
k=0 k=1

1 =g < + oo, be the Laurent expansion of the resolvent operator about the
point A, (see [17, p. 305]) and let B = 4 — H, where H = [1,B, + B,].

It is easy to see that B is the infinitesimal generator of a semigroup of operators
T(t; B) of class (C,) and that

T(t; A) = exp {tH} T(t; B), t=0.
Since BB, = 0, k = 1, ..., q, we derive that
T(t; A) = exp {tH} + T(t; B) — I
and consequently,
T(t; A) = Pexp {tH} + T(t; B)— P = Pexp {tH} + (I — P) T(1; B),
where P = B, .
The point A, is isolated and so we conclude that there is an ¢ > 0 such that

|T(5; B)| < 9, 120.
If we let
W(t) = (I — P) T(t; B)
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and evaluate the exponential exp {tH}, [17, p. 319] and use the fact that g(j) = q(0)
(Proposition 5), we obtain (4.3)—(4.7) immediately. The positivity of By 4o, is
guaranteed by Proposition 2 and this completes the proof of Theorem 1.

Theorem 2. Let the hypotheses (i)—(iii) and (v) hold. Then the relations (4.2) to
(4.7) specify as follows

(4.8) o(4) A {A:Re 2 = Ao} = {40} »

(4.9) T(1; A) = *'B, + W(t),

where

(4.10) T(t; A) Bo = By T(t; A), By W(t) = W(1) By = 6,
and

(4.11) Jim e” ™| w(r)| =0.

Moreover, q = 1, where q is the multiplicity of A, as a pole of R(A, A).

Proof. K-irreducibility of T(¢; A) implies that g = 1 so that (4.8)—(4.11) follows
as a consequence of (4.2)—(4.7). The proof is complete.

5. DECAY MODE AND ASYMPTOTIC PROPERTIES

The following Cauchy problem
d
(5.1) d—u(t) = Au(t), u(0)=u,
t

is considered, where A4 is a given linear operator. It is known that if A4 is the in-
finitesimal generator of a semigroup of operators of class (C,) then, [2, p. 308]

u(t) = T(t; A)uq .

In various areas of applied mathematics and mathematical physics one needs to
know the asymptotic behaviour of the solution u(t) as ¢ approaches + 0.

Let A be the infinitesimal generator of a semigroup of operators T/(t; A) of class
(Co) and let pq be its eigenvalue and Avy = povg, vy =+ 0. Then w(t) = €*°v, is a solu-
tion of (5.1), where u, = v,. Such a solution of (5.1) is called decay mode of the semi-
group T(t; A). A decay mode w(t) is called K-fundamental if wo(0) € K, where K
is a closed generating normal cone in the 'space Y.

Theorems 1 and 2 offer the following result.
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Theorem 3. Let the hypotheses (i)—(iv) hold. Then there exists at least one K-
fundamental decay mode.

If moreover, the assumption (v) holds, then up to a multiplicative factor there
exists exactly one K-fundamental decay mode v(t) and we have that

(5.2) lim e™**" u(1) = cv,

t—>+ o
for any solution u(t) of (5.1), where vy = By, ve K, v + 0. Here
53 R
where v is such that vy(v) = w'(Bov) for all ve K with some u’' €K', u' + 0 and

(5:4) vy(v0) = 1.

Proof. First, let the hypotheses (i)—(iv) hold. Then according to Theorem 1
B, , = 0 and there is a u € K such that v, = By ju =+ 0. It follows that v(t) = e*',
is the desired decay mode, where ¢’ = r(t) = r(T(t; A)).

If in addition T(t; A) is K-irreducible for t > t, = 0, there is by Proposition
3 exactly one normalized eigenvector of 4 in K, say v, = Byu, u €K, u + 0. Let
u' €K', u’ # 0. Then by setting vg(v) = u'(B,v) for all v € Y we have that T(t; 4) v, =
= ™', and vp(T(t; A) v) = €’ vj(v) for all v e Y. It follows from (4.9) and (4.11)
that (5.2) holds with (5.3) and (5.4). This concludes the proof.

Remark. As we may see from (5.2) the asymptotic behaviour of any solution of
(5.1) with u, such that Byu, + 0 is nonoscillatory.

6. NEUTRON TRANSPORT EQUATION

In this section we give some applications of the previous theory to the linearized
Boltzmann equation describing the transport of neutrons.

It is assumed here that G is a bounded convex domain with a lipschitzian bounda-
ry 0G.

Let N denote the neutron density. The following equation

(6.1) —LN=SN+FN + Q

is considered, where

(6.2) .\ LN = —vgrad N —vX(r,v)N in G
and
(6.3) N(r,v) =0 for redQ
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and (v n) < 0. where the normalized vector n has the direction of the outer normal;
v is the length of v

(6.4) SN = J. V' E(v > v, r)N(r,v) &3
v .
and
(6.5) FN = f V() Zv) (v > v)N(r,v') dv' .
1 4

In the above formulae X denotes the total macroscopic cross-section X the scat-
tering cross-section kernel, X, the macroscopic fission cross-section, y the fission
spectrum, v(v) the number of particles created by a particle with velocity v and Q
denotes the external sources. The integration is carried out over the whole velocity
space V, V = [0, + oo) X o, o is the unit sphere.

In this paper it is assumed Q to be zero. We remark that F = 0 if the medium
under consideration is non-multiplying (a moderator).

Let Ybe any I?(G x R>, w)for pe(1, + o), where w is a suitable weight function.

It is known (e.g. [19]) that the Boltzmann operator A = L+ S + F is the in-
finitesimal generator of a strongly continuous semigroup of bounded operators.
In fact Lis the infinitesimal generator of a semigroup of operators T(t; L) and the
operators S and F are both bounded. The semigroup T(t; L) can be evaluated
explicitely by integrating the corresponding first-order differential equation and one
can conclude that T(t; L) is a semigroup of K-positive operators; that is T(t; L)
leaves invariant the cone K of elements in Y with non-negative representatives. We
also have that

|T(s; L) < e,
where

A* =inf{v2(r,v):reR? veV}.

Since both operators S and F are defined by non-negative kernels, the semigroup
T(t; A) is also R-positive [2, p. 403]. Moreover, since the kernel of S is almost
everywhere positive, we may conclude that T(t; A) is K-irreducible for large t > 0.

The spectrum o(A) has the following structure: Every 4 for whichRe A £ —4* < 0
belongs to the continuous spectrum ({A:Re i < —21*} = Co(4)). On the other
hand, A, tor which Re 1 > —A* + (S + F), belongs to the resolvent set g(4).

If the body G is sufficiently small, there are not additional points in (A4) except
thosein {4 : Re A £ —2*}, [1]. Therefore, we must assume that the strip {4 : —4* <
<Rel £ —2* + r(S + F)} has a nonempty intersection with o(4). Let i, be
such that any A for'which Re A > 1, belongs to the resolvent set o(A4), while there
exists a 4, € 6(4) with Re 4, = 4,.
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A standard procedure of investigating the behaviour of N(t) as t - + oo (see
[15, pp. 201—213]) consists of estimating the semigroup operators by using the
resolvent inversion formula [2, p. 349]

1 v+ia
T(t; A) Ny = lim — e* R(2, A)dA,
a—»w 271 v—ia
where v > max (0, 49) and A, = Re 4, is such that Re A > 1, implies that A € o(A4).
For such an approach complete information is needed about that part of the spectrum
of A in the region Re 4 > A*. Contrary to this our theory developed in the previous
sections is more straightforward and much simpler.

In order to apply our previous theory we have to show only that the point A,
the bound of the spectrum of O'(A), is an isolated pole of the resolvent operator
R(p, T(t; A)). We emphasize this fact because a complete analysis of the existence of
decay modes and the uniqueness of the fundamental decay mode can be carried
through with no additional information about the spectrum of 4. This makes our
approach different from the analysis proposed by others. On the other hand, we
describe only the peripheral part of the spectrum of the semigroup T(t; A). If we
make assumptions involving compactness about ST(t; L) S, [20], or other closely
related assumptions, we can give a complete description of o(A4). Actually, under
certain assumptions concerning compactness of T(t;; L) S ... T(t,; L) S it has been
shown [19], [20], [15] that every u € o(T(t; A)), for which || > e™*", has the form
u = e*, where J is an isolated pole of R(v, A) with finite-dimensional generated
eigenspace N(1) = {ueY: (A4 — AI)* = 0 for some k = 1,2,...}. However, these
assumptions are not fulfilled in general, e.g. for some models which allow also the
case of inelastic scattering in the high-energy range [6].

The scattering operator S in (6.1) has the following structure

S=35.+ S,

where the operator S,, is compact and both S, and S;, are K-positive. It can be shown
easily that

R(a, A) = R(a, L+ S.) + R(a, A) (Sin + F)R(a, L + S.),

where a €¢(4) no(L+ S,.). It has already been mentioned that the semigroup
T(t; A) is R-irreducible. It follows that R(a, A) is also R-irreducible if a > max (0,
o). This can be shown in a manner similar to Theorem 11.7.2.in [2, p. 353].

A crucial assumption for the applicability of our theory is the fulfilment of the
strict inequality :

(6.6) r = r(R(a, A)) > r(R(a, L+ S,) =r,,

the relation r = r; being trivial.
Actually we have
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Lemma. Under the hypothesis (6.6) for some a > max (0, —2* + (S + F))
the point €’ is a pole of R(n, T(t; A)), t > 0, with a finite dimensional generalised
eigenspace, where A, denotes the spectral bound of the infinitéesimal generator A.

Remark. We note that the validity of (6.6) is guaranteed by the compactness
and K-primitivity of (S + F) T(t; L) (S + F) or by some other similar compactness
and positivity assumptions as those mentioned above. The converse is obviously not
necessarily true, as we have mentioned, in the case of inelastic scattering in the
high-energy range.

Proof of the Lemma. From (6.6) we derive that
o(S, + L) = {A:Re X < vy},
where

1

a—y,

= r(R(a, L + S,))

and also

1

a — 4o

= #(R(a. 4)).

The compactness of C = S;, + F implies that C is (L + S,)-smoothing and hence
([16]) every point ¢ € o(T(1; A)) with |o| > e®°*?*, where vy €& < Ao, is a pole of
R(u, T(t; A)) with a finite dimensional generalised eigenspace. This in particular
applies to e*’ and completes the proof.

The conclusion of the Lemma implies that Theorems 1—3 apply to those cases
of neutron transport theory where the assumption (6. 6) holds. In our opinion, this
is the case in most of the models used to date.

As a consequence we have the following final result.

Theorem. If (6.6) holds then there exists A, > A* such that Re Ay = 1y € a(A)
and J € o(A) implies that either Re A < Aq or 2 = Aq. The quantity A, is a Fredholm
eigenvalue of A with a one-dimensional generalized eigenspace N,. Therefore
there exists exactly one normalized K-fundamental decay mode (1, M,) and we
have that for every solution N of

g*N(t) = AN(1), 0+N(0)=N, =0,
t

that
lim [e™** N(t) — cM,| =0,

t=>+ o0

where ¢ = 0 is a constant independent of t. More precisely, cM, = PN,, where P
is the residue of the Laurent expansion of R(u, A) about the point 4.
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We remark that this last theorem gives a solution to Problem 10 of Kaper’s Collec-
tion of Problems in [4].

It should be noted that besides the already mentioned splitting (L + S,) + (Si, + F)
some other splittings of the Boltzmann operator may exist such that 4 = V + Q,
where Q is V-smoothing in the sense of [16]. Naturally, our wish is to have Q as
possible large with respect to the magnitude of the spectral bound of V. This means
thatif A =V, + Q; = V, + Q,, Q; is V;-smoothing, j = 1, 2, and

1

a—Vvy

= r(R(a. V) < r(R(@, V2) = - L < H(R(a,4)

where a > max (0, —A* + r(S + F)), then the splitting V; + Q, gives more
complete information than ¥V, + Q,. We have that every point A € 6(4) for which
Re 2 > v, is a Fredholm eigenvalue of A.
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