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Czechoslovak Mathematical Journal, 31 (106) 1981, Praha 

EMBEDDING GRAPHS IN THEIR COMPLEMENTS 

R. J. FAUDREE, C. C. ROUSSEAU, R . H . SCHELP, Memphis, 
and SEYMOUR SCHUSTER, Carleton 

(Receiving March 3, 1979) 

INTRODUCTION 

Several recent papers have dealt with the problem of placing two graphs on n 
vertices edge disjointly in X„. This is sometimes called a mutual placement of the 
two graphs. In particular Catlin [5], Sauer and Spencer [7] have shown independently 
that if the two graphs have maximal degree ф and ß respectively with 2фß < n, 
then the two graphs are mutually placeable. Also Bollobas and Eldridge [2] have 
shown that if the graphs have maximal degree n — 2 and collectively no more than 
2n — 3 edges then, except for a few special pairs of graphs, the two graphs are again 
mutually placeable. A summary of many of the recent results appear in [4]. 

In this paper a more special problem will be considered, namely, mutual placement 
of two copies of the same graph in X„. Placing two copies of the same graph G 
edge disjointly in K,^ is really an embedding or an isomorphic mapping of the graph G 
into its complement G. Throughout this paper the embedding of a graph G into G 
will be referred to as an embedding of G; or it will be said that the graph G is embed
dable. 

There are two principal results in the paper. The first completely characterizes those 
graphs with n vertices and n edges which are embeddable. The second shows that if 
a graph G with n vertices is not a star, contains no more than (6/5) n — 2 edges, and 
has no cycles of length 3 or 4 as subgraphs, then G is embeddable. It is conjectured 
that the second result is true when the restriction on the number of edges is com
pletely deleted. 

Notation within the paper is kept to a minimum. A graph with p vertices and q 
edges will be called a (p, q) graph. Also /<G, к a positive integer, will refer to к vertex 
disjoint copies of the graph G. Additional notation will be the usual as found in [1] 
or [6]. 

Within the paper frequent reference will be made to three classes of graphs. To 
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define these classes, two classes ^^ and ^^ ^^ forbidden graphs are first defined. 
Let ^^ be the set of graphs 

[K^KJK^, K,U2K,, K,UC^, ^1,1 и ^ з , ^i,«-i(^ ^ 2 ) , 

These graphs are shown in Figure 1. To identify the graphs in #"2 several special 

Ki,n-i^ ПШ 2 K^^^.i, и K^, n ^ в 

< > 

к, и 2К, 

* * 

• • 

K,uc^ 

к, UK, к, и к. Fig. 1. The Class ^^. 

graphs need be constructed. Let K^ # K^ „ denote the graph obtained by inserting 
an edge between two end vertices of the star K^ „. Let K^ oK^^^ denote the graph 
obtained by identifying a vertex of-K3 with an end vertex of the star i^i^„. Let X3 * 
* Xj ^̂  denote the graph obtained by inserting an edge between an end vertex of a X^ „ 
and a fixed vertex of a iC3. Finally let C4 П i^i ,„ be the graph obtained by identifying 
a vertex of C4 with the central vertex of K^ „. The graphs in #"2 include these special 
graphs. All the graphs in #"2 ^^^ shown labeled in Figure 2. It is now appropriate 
to define the three classes of graphs mentioned earlier. These classes are denoted 
by ^ 1 , ^2? ^nd ^3 and are defined as follows: The class ^^ consists of those (n, n — 1) 
graphs which do not appear in J^^. The class ^2 consists of those (n, n) graphs which 
are not members of the collection #"2. The class "̂ 3 consists of graphs with n vertices 
and no more than 6nj5 — 2 edges which are not stars and contain no cycles of 
length 3 or 4. 
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C^D '<.,. .„" è 4 К, # /<,,„.,иКз, n e 6 

> 
ф • 

/С̂  и Кз и 2/С, 

m Ф 

• • 

/С. U2/C, K^UK^UKi 

1^ 
((K^UKJ^x)\JK, 

Ш 9 

К^ и 2К, 

-щ щ 

(/C.-XJu/Ca 

Fig. 2. The Class J^2- / ^ 0 3 ^ '<i f/(^-x}U/C, 

It is clear from the results proved in the sequel that the classes ^^, ^2? ^^^ ^3 
are descriptions of classes of embeddable graphs. The first two of these classes are 
precisely those (n, n — 1) graphs and (n, n) graphs that are embeddable. Thus the 
graphs in J^i are the only (n, n — 1) graphs which fail to be embeddable and those 
in ^2 are the only non-embeddable (n, n) graphs. It should be noted that except 
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for a few small order cases all the forbidden (non-embeddable) graphs are obtained 
from a i^3, a C4, and a star, frequently identifying vertices of the cycle with those of 
the star. For this reason, it is conjectured that each non-star graph which contains 
no cycles of length 3 or 4 as subgraphs is always embeddable. 

RESULTS 

To prove the two main theorems mentioned in the introduction, two embedding 
results are needed. They are stated without proof, with proofs found in the given 
references. 

Theorem 1. [2, 3] Each (n, n — 2) graph, is embeddable. 

Theorem 2. [8] Each (n, n — l) graph, in ^^ is embeddable. 

With these results the first principal result can be proved. 

Theorem 3. All graphs in class ^2 ^^^ embeddable. 

The p roof of this theorem will follow by induction on the order of the graphs 
in ^2- For simplicity four lemmas will be proved. Observing that all graphs of small 
order in ^2 ^^^ embeddable, the first, third, and fourth of these lemmas give an 
immediate inductive proof of the theorem. Thus the proof follows from the next 
four lemmas. For convenience throughout the statements and proofs of these 
lemmas G will always denote a graph in ^2 with n vertices. 

Lemma 4. / / G has an isolated vertex, then G is embeddable. 

Proof. Let V be an isolated vertex of G and let Я = G — t;. Since G is a (/?, n) 
graph, Я is a (/Î ~ 1, n) graph. Thus Я contains a vertex of degree 3 or more. Let w 
be a vertex of maximal degree. The graph H ~ w is a (n — 2, q) graph with q S 
S n — З.Ву Theorem 1 if ^ ^ ?i — 4, then there exists an embedding a of H — w. 
This embedding can be extended to an embedding of G by mapping v to w and vv 
to V. Hence the proof is complete unless q = n — 3. By Theorem 2, Я — w is again 
embeddable unless Я — we^i. Therefore the only case that remains is when 
G e^2^ ^^ch vertex of Я is of degree 3 or less, and H — w G ̂ •^. Although there 
are several cases to consider, it is easily checked that such graphs are embeddable 
completing the proof of the lemma. 

Lemma 5. Let G contain tY^o vertices of degree 1 with disjoint neighborhoods. 
If every graph in ^2 with fewer than n vertices is embeddable, then G is embeddable. 

Proof. Let V and w be vertices of degree 1 in G with disjoint neighborhoods and 
Я = G — i; — w. If Я is embeddable, then since the neighborhoods of v and w are 
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disjoint, this embedding can be extended to an embedding of G. Thus the proof is 
complete unless H e ^2- This reduces G to a graph such that the deletion of each 
pair of vertices of degree 1 with disjoint neighborhoods gives an element of ^2-
Although it is somewhat tedious, one can check that such graphs G are always 
embeddable. Hence the result follows. 

Lemma 6. / / G is disconnected, has a tree as a component, and every graph in ^2 
with less than n vertices is embeddable, then ^ is embeddable. 

Proof. From Lemma 4 there is no loss of generality in assuming that G has no 
isolated vertices. Let T be a tree which is a nontrivial component of G and H = 
= G - T. Thus T is a (t, t - 1) graph and H is SL (n — t, n — t + 1) graph. By 
Lemma 5 if Tis not a star or H has a vertex of degree 1, then G is embeddable. 
Hence the proof is complete unless T = K^ ^„i, t ^ 2, and H has no vertices of 
degree L Let v be the central vertex of T = K^^t-i ^^^ w be a vertex of maximal 
degree in Я. Clearly the degree of w in Я (or G) is at least 3. If the degree of w is at 
least 4, H — w is a. (n — t ~ 1, q) graph with q ^ n ~ t — 3, so by Theorem 1 is 
embeddable. For this case and more generally when Я — w is embeddable the embed
ding is extendable to an embedding a for G by defining a(v) = w, (7(w) = v, and 
a[x) = X for each vertex x in T — v. Thus the proof is complete unless T = К^^^.^, 
t ^ 2, each vertex of Я is of degree 2 or 3, and H — w e J^^. For each of these pos-
sibihties one can easily check that G is embeddable so that the result follows. 

Lemma 7. Let G be such that each of its components contains a cycle. If each 
graph in ^2 with fewer than n vertices is embeddable, then G is embeddable. 

Proof. Since all components of G contain a cycle, each component must be a (k, k) 
graph. Thus each component is a cycle or contains a vertex of degree L Observe 
that G may be connected. By Lemma 5 the result follows unless all but at most one 
of the components of G is a cycle and this component on к vertices and к edges has 
all its vertices of degree 1 adjacent to a single vertex. To describe G precisely let 
Н{г, s — 1, )̂ be the graph obtained by identifying a fixed vertex of the cycle Q 
with an end vertex of the path P^ on s vertices, and identifying the other end vertex 
of P5 with the central vertex of the star K^ ^. Note that H{r, 0, 0) is simply the cycle Q . 
Therefore G has one component which is a H(r, s, t) graph with the remaining com
ponents cycles. It is straightforward to check that the graph H(r, s, t) is embeddable 
if r ^ 5, or r = 4 and 5, t ^ 1, or r = 3, s ^ 3, and t ^ 0. Also observe that each 
of the following graphs are embeddable: С^.{г ^ 5), H(r, s, t) u Q(5, t ^ 0, r ^ 4, 
/i ^ 3 or r, /c ^ 3, s,t '^ 1), H(r, s, t)Kj CkU Ci{r^ k, / ^ 3, s, t '^ 0). With this 
information it is easy to check that G is always embeddable. This completes the proof 
of the lemma and consequently the proof of Theorem 3. 

The next objective is to prove the second main result of the paper. This proof is 
quite involved and requires several intermediate results. 
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Theorem S. If G e ^2, then G is embeddable. 

This result, as that of Theorem 3, is proved by induction on the order of G. If G 
has 10 vertices or less, then G has no more than n edges and is embeddable by Theorem 
3. The inductive proof will be a consequence of the next set of seven lemmas. In 
particular it will follow from Lemmas 12, 14 and 15. Throughout the proof of these 
lemmas the following be assumed. 

(1) G is a graph on n vertices in "^3, and 

(2) each graph with fewer than n vertices in ^3 is embeddable. 

The next lemma is a simple embedding result which is used repeatedly in the 
lemmas that follow. 

Lemma 9. Let H' be a subgraph of G' and K' = G— H\ Further let B' be the 
set of those vertices of H' adjacent to at least one vertex of K' and A' the set of the 
remaining vertices of H'. If there exist embeddings т of H' and a of K' such that 
Т(Б ' ) ^ A', then there exists an embedding в of G' which extends both t and a. 

Proof. Simply let 9(x) = a(x) for all vertices x in K' and в(х) = т(х) for all vertices 
.X in H'. The map 9 is an embedding since т is an embedding of H', a is an embedding 
of X', and G' contains all edges betv/een A' and the vertices of K'. 

Lemma 10. / / G has an isolated vertex, then G is embeddable. 

Proof. Let V be an isolated vertex in G and w a vertex of maximal degree in G. 
If the degree of w is no more than 2, then G has at most n — 1 edges. Since G contains 
no cycles of length 3 or 4, G ф F^ so it is embeddable. Hence it is assumed that the 
degree of w is at least 3. Let H be the graph with vertex set [v, w} and empty edge 
set and let К = G — H. Since G e ^ 3 , it is clear that К contains no cycles of length 
3 or 4. Also К is not a star, otherwise w is adjacent to at least 3 vertices of the star 
implying that G contains a cycle of length 3 or 4. The graph К has n — 2 vertices 
and no more than 6/i/5 —5 edges. Since 6n/5~5 ^ (6/5) (/1 — 2) — 2, it follows 
that К G ^3 and is embeddable. Thus by mapping t; to w and w to v the embedding 
of К is clearly extendable to an embedding of G. This completes the proof. 

Lemma 11. / / G has adjacent vertices v and w, both of degree 2, such that the 
neighbors of v andw are of degree greater than 1, then G is embeddable. 

Proof. Let the neighbors of v be [v^, w] and those of vv be (t;, Wi}. Also let H = 
= (j), w, Vi, Wi>, the subgraph induced by [v, w, v^, Wi}, and define L= G — H. 
If Lis a star, each of v^ and w^ are adjacent to at most one vertex of L, otherwise G 
would contain a cycle of length 3 or 4. But then Lis a iCi,„_5 graph so that G is an 
(n, n) graph in G2 and hence embeddable. Thus we may assume that Lis not a star 
and contains no cycles of length 3 or 4. Further L contains at most (6/5) n — 7 ^ 
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^ (6/5) (n — 4) — 2 edges so that Le ^3 and is thus embeddable. The map т defined 
by T(V) = v^, '^(^i) = 5̂ ^{^1) — ^̂ ? ^^^ '^W — >̂ i5 is an embedding of H. Since 
T{Î;I, Wi} = {y, w}, Lemma 9 applies and gives an embedding of G. 

Lemma 12. / / G /zas ПО vertices of degree 1, ^/len G /s embeddable. 

Proof. By Lemma 10 it is assumed that each vertex has positive degree. If G 
contains t vertices of degree 2, no pair of which are adjacent, then It ^ 6n/5 —2 
and It + Ъ{п ~ t) ^ 2(6/i/5 —2). Since these inequalities are incompatible, there 
exists at least one pair of adjacent vertices of degree 2. Hence this result follows from 
Lemma IL 

Lemma 13. / / G has two vertices of degree 1 which have no common adjacency, 
then G is embeddable. 

Proof. Let V and w be vertices of degree 1 with v adjacent to v^ and w adjacent 
to Wi,Vi Ф w^. Since ^2 — ^3 ^^^ elements of ^2 ^^^ embeddable, it will be assumed 
throughout the proof that G has more than n edges. 

If v^ is of degree 1, then let w e G — t; — t;i of maximal degree in G. Since G has 
more than n edges, the degree of и is at least 3. Let H be the subgraph <t/, v, v^y 
and let L = G ~ Я. Embed H by the map т where T(W) = v, T:(V) = u, and T{V^) = 
= v^. The graph L has n — 3 vertices, at most (6n/5) — 6 ^ (6l5)(n — 3) — 2 
edges, is not a star, and contains no cycles of length 3 or 4. Hence L is embeddable, 
so that this embedding and the embedding т of Я can be extended to an embedding 
for G by Lemma 9. 

Next consider the case where the degree of v^ is 2. Let v and V2 be the neighbors 
of Vi. Select a vertex w in G — i; — i;̂  — ^2 such that и is not adjacent to V2 and such 
that the degree of и is as large as possible. This choice of и is possible since G has no 
cycles of length 3 and G is assumed to have at least n + 1 edges. Let Я be the graph 
{v, v^, V2, u} and let L = G — Я. It is easy to see that Lhas n — 4 vertices and at 
most 6n/5 — 7 ^ (6/5) [n — 4) — 2 edges. Also Lis not a star and contains no cycles 
of length 3 or 4 so that Lis embeddable. The graph Я can be embedded via the map т 
defined as follows: т(и) = v, T(V2) — î» " (̂̂ i) = ^̂  ^(^) = Î̂ 2- ^У applying Lemma 9 
this embedding of Я together with the embedding of L can be extended to an embed
ding of G. 

Finally the remaining case when the degree of î̂ i is at least 3 is considered. From 
the cases considered there is no loss of generality in assuming that w^ is of degree 
at least 3. Let Я be the subgraph {v, v^, w, w^) and let L = G — Я. As before L 
is not a star, contains no cycles of length 3 or 4, has n — 4 vertices, and no more than 
(6/5) (n — 4) — 2 edges so that it is embeddable. The mapping T(V) = w ,̂ T(I'I) = v, 
T{WI) — w, T(W) = Vi is an embedding of Я. Applying Lemma 9 again gives an 
embedding of G. 
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Lemma 14. / / G has at most two vertices of degree 1, then G is embeddable. 

Proof. From Lemmas 12 and 13 it will be assumed that G has either one or two 
vertices of degree 1 and these vertices are adjacent to a common vertex. Let v be the 
vertex of G adjacent to the vertices of degree 1. The case when t; is of degree 2 was 
considered in the body of the proof of Lemma 13. Hence it will be assumed that the 
degree of v is at least 3. Further, by Lemma 11, if G contains two adjacent vertices 
of degree 2, G is embeddable. But if there are t vertices in G of degree 2, no two of 
which are adjacent, both 2t ^ 6n/5 — 2 and 

max {1 + 2/ + 3(n -'t - 1), 2 + 2t + 3{n - t - 2)} ^ 2 ( 6 ф - 2) . 

Since these inequalities are incompatible, G is always embeddable. 

Lemma 15. / / G has at least three vertices of degree 1, then G is embeddable. 

Proof. By Lemma 13 it can be assumed that there is a vertex z; of G adjacent to the 
vertices of degree L 

First consider the case where G has two vertices и and vv of degree 2 neither of 
which is adajcent to v. Because of Lemma 11, it is assumed that и and w are not 
adjacent. Let the neighbors of w be ŵ  and и2 and of w be w^ and W2 with и2 = W2 
if the neighborhoods of n and w intersect. Also let v^, V2, v^ be three distinct neigh
bors of V of degree 1. Let Я be the subgraph (v, v^, V2, v^, u, w, w ,̂ W2, Wj, W2> and 
L = G — H. Again by Lemma 11 it can be assumed that each of u^, 1/2, w ,̂ W2 are 
vertices of degree 3 or more. Hence since G has no cycles of length 3 or 4, Lhas at 
most (6/5) [n — t) — 2 edges with t the number of vertices in H. Also L is not a star. 
To see this suppose the contrary. Then the nonexistence of cycles of length 3 or 4 
imphes that there are at most five edges joining vertices of H to vertices of L. Thus, 
since all the vertices of degree 1 in G are adjacent to v, the star L has at most five 
end vertices. Each of the possibilities force G to have more than (6/5) n — 2 edges, 
a contradiction. Hence Lis not a star and therefore is an embeddable graph. 

To apply Lemma 9 an appropriate embedding т of Я is needed. This embedding 
will be given only when Я has 10 vertices, i.e. when U2 Ф W2, since the embedding 
when U2 = W2 and Я has 9 vertices is similar. Define т on Я as follows: i^u^ = v^, 
T(W2) = V2, T(WI) = v^, T(W2) = u, T{V) = w, T{V^) = V, T(I;2) = Wi, т(г;з) - 1̂ 2, 
T(W) = Wi, T(W) = W2. Lemma 9 now applies and G is embeddable. 

It remains to consider the case where all except possibly one of the vertices of 
degree 2 in G are adjacent to v. Thus if r denotes the number of vertices of degree 2 
in G and t denotes the number of vertices of degree 1, vertex i; is at least of degree 
r + t — 1. Furthermore, a lower bound on the sum of degrees of all vertices of G 
is r + 2r + r + ^ - 1 + 3(n - r ~ ^ - 1) ^ 2(6n/5 - 2) implying that t ^ 3n/5. 
Thus G contains at least 3/i/5 vertices of degree 1. Let T = {v^, V2,..., v^}, t ^ 3n/5, 
denote this set of vertices and let L be the subgraph of G induced by the vertices 
{x\x фТи {v}]. Since G is not a star, there exists a vertex w in L which is not adjacent 
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to V. Further let M = {v[, v'2, ..., î }̂ be the set of vertices of L adjacent to v and S = 
= (wi, W2, ..., w j be the vertices of Ladjacent to w. Since G contains no cycles of 
length 4 it is clear that M and S have at most one element in common. Also since 
t ^ 3n/5, if L has / vertices, then / ^ InjS — 1. Embeddings of G will be given 
separately when M and 5 are disjoint and when they have an element in common. 

Consider the case when M n S = ф. Since G has no cycles of length 3, the set 
T u S is an independent set of vertices of G. Also since s + 1 ^ / ^ InjS — 1 and 
r ^ 3n/5, select a subset T^ of T of cardinality I — s. Let a be any bijection of the 
set of vertices of Lnot belonging to S onto T^. Extend a to any bijection for G such 
that a{v) = w, and (7(y) = y for each y e S. It is easy to see that a is an embedding 
of G. 

Finally, the case where M and S have an element in common will be considered. 
Let M n S = {y}. In this case it is first shown that there exists a vertex и in L, 
и Ф M Kj S Kj {vv}. Suppose the contrary. Since G contains no cycles of length 3 or 4 
each vertex in S dilïerent from y is of degree 2 and not adjacent to v. But by as
sumption all but one vertex of degree 2 is adjacent to v. Hence, since w is not adjacent 
to V and therefore not of degree 1, S must contain exactly two elements one of which 
is degree 2 and not adjacent to v. This vertex and w are both of degree 2 and non-
adjacent to V, a contradiction. Thus the assumption is false and there exists a w in L, 
ифМ \j S и {w}. 

It remains to describe an embedding for G. Select a subset T^ of T of cardinality 
I — s. Let cr be any bijection of those vertices of L disjoint from (S \ {y}) u [u] 
onto T^. Extend a to any bijection of G such that (j(v) = w, a{u) = y, and cr(z) = z 
for each z e S\{y}. Again using the independence of T u S in G it is easy to check 
that (7 is an embedding of G which completes the proof of the lemma and con
sequently the proof of Theorem 8. 

Conjecture. Each graph which is not a star and contains no cycles of length 3 
or 4 as subgraphs is embeddable. 

The reason for proving Theorem 8 is to provide some evidence that the above 
conjecture might hold. This conjecture, if true, would fit nicely with many other 
characterization theorems which specify that all but a family of forbidden graphs 
satisfy a given property or are of a given type. 
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