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Czechoslovak Mathematical Journal, 31 (106) 1981, Praha 

EXTENSIONS OF LEBESGUE SETS AND 
OF REAL-VALUED FUNCTIONS*) 

ROBERT L. BLAIR, Athens 

(Received March 28, 1979) 

0. Definitions. For a topological space X, C(X) (resp. C*(Z)) denotes the algebra 
of all real-valued (resp. bounded real-valued) continuous functions on X. For 
/ G C{X), A d C{X\ and aeR (the reals), set Z( / ) = {x eX :f{x) = 0}, c o z / = 
= X - Z{fl ^{X) = {Z(/) : / e C(X)}, coz A = {coz/ : / e A}, L^f) = 
= {xeX \f{x) й a}, and П{/) = {x E X :f{x) ^ a}. Sets of the form Z( / ) (resp. 
coz/) w i t h / G C ( Z ) are zero-sets (resp. cozerö-se/^) in X, and sets of the form 
L^(/) or n(f) are Lebesgue sets o/ /(see [M2] and [M3]). (Lebesgue sets of functions 
in C(X) are obviously zero-sets in X.) If S a X, S is C-embedded (resp. C^-embedded) 
in Z if every / e C{S) (resp. / e C*(S')) extends to a function in C(Z), and S is z-
embedded in X if every zero-set in S extends to a zero-set in X. If 5 cz X a n d / G C ( S ) , 
/ i s z-embedded in X if every Lebesgue set of/extends to a zero-set in X (see [B^]). 

For Tychonoff S a n d / G C{S)\ S is absolutely C- (resp. C*-, resp. z-) embedded 
if S' is C- (resp. C*-, resp. z-) embedded in every Tychonoff superspace of S, and / 
is absolutely extendible (resp. absolutely z-embedded) if / extends continuously 
over (resp. is z-embedded in) every Tychonoff superspace of S. 

1. Introduction. The point of this paper can best be described by first citing the 
following four known results: 

(1) A subset S of Z is C*-emibedded in X if and only if any two disjoint zero-sets 
in S are completely separated in X. (This is the Gillman-Jerison version of Urysohn's 
Extension Theorem [GJ, 1.17].) 

(2) A subset S' of Z is C-embedded in X if and only if S is C*-embedded in X and 
completely separated from every zero-set in X disjoint from S (Gillman and Jerison 
[GJ, 1.18]). 

(3) A Tychonoff space S is absolutely C-embedded if and only if, of any two 
disjoint zero-sets in S, at least one is compact (Hewitt [He] and Smirnov [S]). 

*) Preparation of this paper was supported in part by Ohio University Research Committee 
Grant No. 535. 
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(4) A TychonofF space S is absolutely z-embedded if and only if S is Lindelöf or 
absolutely C-embedded (Hager and Johnson [HaJ, Theorem 3] and Blair and Hager 
[BH, 4.1]). 

Each of (]) —(4) is global in the sense that it characterizes simultaneous extendibility 
of every function in G^^S) or in C(S), or of every zero-set in S. Here we locahze (and 
generalize) these results in such a way as to obtain theorems concerning extendibility 
of a single function / in C*(5) or in C(5), or of every Lebesgue set of/. These 
localized versions of ( l )~(4) appear as parts of 3.2, 3.8, 4.1, and 4.7, respectively. 
(Other studies in the same vein are in [M2] and [M4]. In particular, 3.2, for which 
we provide a self-contained proof, is due to Mrowka [M2].) The present paper 
generalizes much of [BH]. 

Separation properties are assumed only in 2.5, 3.10, 3.15, and §4. For notation 
and terminology not defined here, and for general background, see [GJ]. 

2. z-embedded functions. For S SL subset of a topological space X, set C^{S, X) = 
= {f e C(S): / is z-embedded in X}. This section collects the relevant facts about 
approximation and partial extension of z-embedded functions, and about C^(S, X) 
(2.2, 2.3, and 2.5); for the most part, these are implicit in [BH], [Ha2], and [M3]. 

We first note the following: 

2.1. Proposition. Let S a X. S is z-embedded in X if and only if every (bounded) 
f e C[S) is z-embedded in X. 

Proof. Assume every function in C*(S) is z-embedded in X and l e t / G C ( 5 ) . 
Then there is Z e Jf(Xj with S n Z = Lo(|/ | л 1) = Z( / ) . The converse is clear. 

2.2. Theorem. Let S a X and let f e C[S). f is z-embedded in X if and only if f 
can be uniformly approximated on S by continuous functions on cozero-sets in X 
which contain S. 

Proof. Assume first t h a t / G C ( S ) can be so approximated, and let a e R. For 
each integer n > 0, choose P„ e coz C(X) with S a F^ and /„ e C(P„) with |/„(x) — 
—/(x) | ^ ijn for every x e S. Let Z^ = {x e P„ */„(x) ^ a + (1//^)}. Since cozero-
sets are z-embedded [BH, 1.1], there is Z„ e ^(X) with Z„ n P„ = ! „ . Then f]„ Z„ e 
e ^(X) and {f]„ Z„) n S = L^{f); and since n(f) = L^^-f)^ it follows also that 
there is Z'' e ^(X) with L^(f) = 5 n Z'\ The (nontrivial) converse follows im
mediately from the proof of [BH, 2.2]. 

By a C^-set in X we mean the intersection of a countable family of cozero-sets in X. 

2.3. Corollary. Let S c: X and f e C(S), If f is z-embedded in X, then f extends 
continuously over some Cyset in X. 

Proof. The proof is like that of [BH, 2.4]. 
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2»4. Remarks, (a) The converse of 2.3 fails. (As noted in [BH, 2.5(a)], the x-axis S 
of the tangent disk space X is a non~z-embedded Q in X; and by 2.1 there is a non-
2-embedded / e C(S).) 

(b) The converse of 2.3 holds if each Q in X containing S is z-embedded, e.g. 
ÏÏ X is Tychonoff and each Q in X is Lindelöf (see [HeJ, 5.3] or [BH, 4.1]). (As 
noted in [BH, 2.5(b)], each Q in a compact space is Lindelöf.) 

A subset A of C[S) is inversion-closed if Ijf e A whenever /e Л and Z( / ) = 0; 
and Л separates points and closed sets in S if for every closed set F in S and x e S — F 
there isfeA with F с Z( / ) and x e coz/ . 

2.5. Proposition. / / X is Tychonoff and S cz X, then C^{S, X) is a uniformly 
closed, inversion-closed subalgebra of C[S) that contains the constant functions 
on S and that separates points and closed sets in S. 

Proof. By [M2, 4.10], the vector lattice F - {/1 S : / e C*(X)} is uniformly 
closed in C(5), so <S, coz V} is an Alexandroff space [Ha2, 2.2] and the set 
y4(<S, coz Vy) of all Л-maps of (S, coz V} is a uniformly closed, inversion-closed 
subalgebra of C{S) ([Ha2, 2.3] or [M3, 3.5]). But (as one easily verifies)/e C,{S, X) 
if and only if for every a < b in E, f~^{a, b) = S n P for some P e coz C(X), and 
from this it follows that Q(S, X) is precisely A({S, coz F>). Moreover, since V 
contains the constant functions on S and separates points and closed sets in S, 
so does C^[S, X). 

2.6. Remark. An alternative proof of 2.5 (that avoids the theory of Alexandroff 
spaces) can be based on 2.2: Let Q = {(/1 S)l{g \S):f, g e C{X) and Z{g | S) = 0}. 
By 2.2 and [BH, 3.1], it is easily seen that C^(S,X) is the uniform closure of Q in 
C[S); and C^[S,X) is inversion-closed because of formulas like L^l / / ) = l}'^{f) u 
u Lo(/) {a > 0). To see that C^{S, X) is actually a ring, let f, g e C^{S, X) and note 
t h a t / and g are z-embedded in the Stone-Cech compactification ßX of X. By 2.3, 
/ and g extend continuously over some Q-set Tin ßX, and hence/ -h g midfg also 
extend continuously over T. In view of 2.4(b),/ + g and /^ belong to C^{S,X). 

3. Extension theorems. Let S be a subset of a topological space X. The following 
three conditions on the embedding S a X are studied in [BH, §3] and [B^, §4]: 

(a) Disjoint zero-sets of S are completely separated in X. 

(ß) If Zi, Z2 e ^(X) with Zi n Z2 n 5 = 0, then Z^ n S and Z2 n S are com
pletely separated in X. 

(y) 5 is completely separated from every zero-set in X that is disjoint from S. 

These are important because: 

(I) S is C*-embedded in X if and only if (oc) holds [GJ, 1.17]. 
(II) S is C-embedded in X if and only if (a) and (y) hold [GJ, 1.18]. 
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(III) s is C-embedded in X if and only if S is z-embedded in X and (y) holds 
([BH, 3.6B] or [Bi, 4.1B]). 

(IV) S is C*-embedded in X if and only if 5 is z-embedded in X and (ß) holds 
([BH, 3.6A] or [Bj, 4.1A]). 

(For characterizations of (ß) and (y), see [BH, 3.4] and [B^, 4.2].) 
If S с X,fe C(S), and A a X, then A a n d / are completely separated in case A 

and /~^[a , b] are completely separated for every a, b e R. 
Here we consider the following conditions on the embedding S cz X, relative to 

a given function/G C(S): 
(oLj) If a < b in R, then L^(/) and L^(/) are completely separated in X. 
(jf) S is completely separated from every zero-set in X that is completely separated 

from / 
The main extension theorems of this section (3.2 and 3.8) provide necessary and 

sufficient conditions in order that a given function in C*(S), or in C(S), be con
tinuously extendible over X. These theorems are analogues, for (a^) and (y^), of (I) 
and (II) above (and, together with 3.1, quickly yield (I) and (П)). The corresponding 
analogue for (III) fails; see 3.11. We have no such analogue for (IV). 

3.1. Proposition. Let S a X. 
(a) (a) holds if and only if (oif) holds for every (bounded) f e C[S). 
(b) (y) holds if and only ^/(у/) holds for every f e C[S). 

Proof, (a) Assume (a^) holds for every /e C*(S) and let Z, Z' be disjoint zero-sets 
in S-. Then there is feC*{S) with / (Z) с {O}, f{Z') cz {1}. By ( а Д Lo(/) and 
L^(/) (a fortiori, Z and Z') are completely separated in X. The converse is obvious. 

(b) Assume (y -̂) holds for every feC{S) and let g e C{X) with S n Z{g) = 0. 
Then / = ll\g \ S\ e C{S); and for every a, b e R, \g\ ^ Ijb on f~^[a, b], so Z{g) 
a n d / " ^[a, 6] are completely separated. By (y^), S and Z(g) are completely separated. 
Conversely, assume (y), let / e C(S), and let Z G £^(X) with Z completely separated 
f rom/ . Clearly S n Z = Ф, so S and Z are completely separated; hence (уу) holds. 

Theorem 3.2 below is due to Mrowka [M2, 4.11], who deduces it from a very 
general approximation theorem [M2, 2.7]. Since the proof of the latter is omitted 
in [M2], we present a self-contained proof of 3.2 here. (Our proof is based on an 
elegant proof of [M2, 2.7] communicated to the author by H. E. White, Jr.) 

3.2. Theorem (Mrowka). Let S cz X and f e C'^(S). f has a continuous extension 
over X if and only if (a^) holds. 

Proof. Assume (a^) and choose a positive integer m with 1/1 ^ m. For each 
integer n ^ 0 and each integer j with 0 ^j ^ p{n) = 7?i 2""^^ — 1, there is fnj e 
G C*(Z) with/„, = Oon{xeS :f{x) й ~m + j 2 - - i } , / „ . =. 1 on (x 8 S : / W ^ 
^ - m + (j -f 1 )2-" -^} , and Oufnj й L Set Л = ~ m + 2~^-' Y.J%fnP ^« = 
= ((/n+i - /n) A 2 ") V - 2 ", and g = ;^^=o dn, and note that g e C^{X)' Con-
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sider any n and any xeS, Since 0 ^ ( / + /n)/2m g 1, there is an integer к with 
OukS p{n) and fc/m 2'^ + ̂  ^ (/(x) + m)/2m ^ (/c + l)/m 2"^^ Then f„j = 1 
(resp. 0) if J ^ fe - 1 (resp. j ^k+ 1), so/„(x) = - m + 2-"-^(/c +/„^(x)). Thus 
/(x) and /„(x) both lie in the interval [ - m + k2~''~\ -m + (/c + l ) 2 ~ " ~ ' ] , 
and hence j / (x) - /„(x)| g 2~"" ^ It follows that |/„_i - /„| ^ l"" on S, and hence 
9n\S = fn + i - fn- Then ^^^0 gi\S = (/„+i - /o) | S, and we conclude that 
{G + fo)\^ = /• The converse is clear. 

By a truncation of a function/e C(S) we mean a function of the form ( / л a) v 
V — fl, where a e i? and a ^ 0. 

3.3. Corollary. Le^ S с X andfe C{S). (a^-) /io/c/5 if and only if every truncation 
of f has a continuous extenston over X. 

3.4. Remarks. (l) above (Urysohn's Extension Theorem) is an immediate con
sequence of 3.2 and 3.1(a). It is worth remarking that the above proof of 3.2 is quite 
different from the usual proof of (l) (as, for example, in [GJ, 1.17]). Another proof 
of 3.2 is imphcit in the proof of (1 ) => (2) of [BH, 3.4A], and still another can be based 
on 3.5, a result of independent interest. (The proof of the nontrival implication 
(b) => (a) of 3.5 is implicit in the proof of [T, Theorem 2].) 

3.5. Theorem. / / / and g are real-valued functtons on X such that f g g, then the 
following are equivalent: 

(a) There exists h e C(X) such that f й h S g-
(b) For every a < b in R, Lj^g) and ti{f) are completely separated in X. 
To deduce 3.2 from 3.5, assume (ocj) holds for S с X and f E C^^S), and let 

| / | ^ m. Define functions и and г; on X by w = / = i; on S and и = —m and v = m 
on X ~ S. By 3.5 there is h e C(X) with и :^ h ^ v, and t h u s / = h\ S. 

If S cz X a n d / e C(S), then the following result shows that (a^) suffices for a certain 
kind of partial extendibility of/, and that (уу) then suffices for the extendibility over X 
of the already partially extended / . 

3.6. Theorem. Let S a X and f e C(S). 
(a) If {^f) holds, then f extends continuously over some cozero-set P containing S 

such that X — P and f are completely separated. 
(b) / / (jf) holds, and if f = g \ S with g e С{Т), where S cz T, g is z-embedded 

inX, and X — Tis completely separated from f, then f extends continuously over X. 
Proof. Let ф : 7 ? - ^ ( — 1 , 1) be an order-preserving homeomorphism from R 

onto the open interval (—1, l). 
(a) Assume (ocy-). Since for every a e R, 

(*) L„(/) = L ^ ( „ / ^ o / ) , Ly) = Ü(^of), 

Added in proof, February 9, 1981: Theorem 3.5 has been obtained independently (with a proof 
based on techniques of Katëtov) by E. P. Lane, Insertion of a continuous function, Topology 
Proceedings 4 (1979), 463-478, Theorem 2.1. 
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(a^^^) holds. By 3.2, фо/ = k\S for some к e C{X). Let P = X - (L„i(/c) u 
u Ü{k)), and note that P is cozero in X and contains S. Now if a, b e R, then 
L-_i(/c) u L (̂/c) and Й^^'^к) n Ьф^^,^{к) are completely separated in X. Hence, by (*), 
X ~ P and 13{f) n L^,(/) are completely separated, and thus X — P and / are 
completely separated. To complete the proof of (a), note that ф~ ^ о (/< | P) is a con
tinuous extension of/ over P. 

(b) Assume (у^), and let g and Tbe as described in 3.6(b). By (*) (wi th/ replaced 
by g), Ф о g is z-embedded in X. By 2.2, for each integer n > 0 there is a cozero-set P„ 
containing Tand g,^ e C{P,^) with \(ф о g) (x) — ^„(x)| < Ijn for ail x e T; and since 
Ф о g is bounded, we may assume that д„ is bounded. By (y^), there is h^ e C(X) 
with /i„ = 1 on S and /?„ = 0 on Z - P„. Define/„ by/„ = g,,h,^ on ccz h,^ a n d / , = 0 
on Z(/î„). Then / , e C(Z) a n d / , = б̂„ on S, so f„-^ ф о g uniformly on S. By [BH, 
2.3], Ф о g has an extension /? G C ( X ) . Let Z = (x e X : |/г(х)| ^ 1}. Then Z c: 
ci X — Г so, by (yj), there is a e C(X) with w — 1 on 5*, w = 0 on Z, and 0 ^ w ^ L 
Now |w(x) /i(x)j < 1 for all x e X, so ф~^ о (uh) is well-defined. But t//i | S = 
= (^ф о g)\ S, and thus ф"^ о (W/Î) is a continuous extension of/ over X. 

3.7. Corollary. Let S c: X and f E C{S). If {OLJ) holds, then f is z-embedded in X. 

Proof. This is immediate from 3.6(a) and 2.2. (A direct proof can, of course, 
also easily be given.) 

3.8. Theorem. Let S cz X and f e C(S). f has a continuous extension over X if 
and only if (oif) and (y^) hold. 

Proof. Assume first that / = ^15" with g e C{X). Clearly (a^) holds. Suppose 
that Л с X and that A and / are completely separated. For each integer n there is 
/2„ e C{X) such that 

hXL,-2{g) u L"^\g)) ^ {0} , K{E-\g) n L,^,{g)) c= {1} , 

and /i„ ^ 0, and there is /с„ e C(X) such that /<;„(v4) с {O}, 

/ c „ ( L " - X / ) n L „ ^ i ( / ) ) c : { l } , 

and /c„ ^ 0. Let м„ = h^k„. Since 

coz u„ с coz / z „ c : { x e Z : / i — 2 < б (̂х) < n + 2} , 

the family (coz w„)„ is locally finite (in fact, star-finite) in X, and hence и = ^„ w„ 
is in C(X). If X e iS, let m be the largest integer with m ^ / (^)- Then x e L'"~^(/) n 
n L^ + i ( / ) c: L"'~^(ö') n L ^ + i(^), so w^x) = L Thus w(x) ^ 1 for every xeS 
and u = 0 on Л, and hence S and Л are completely separated. Therefore (y^) holds. 
In view of 2.1 and the fact that cozero-sets are always z-embedded [BH, 1.1], the 
converse follows immediately from 3.6. 
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3.9. Remarks, (a) (II) above follows immediately from 3.8 and 3.1. 
(b) 3.2 and 3.8 provide conditions for the extendibility of a function/G C{S) in 

terms of the Lebesgue sets of/. When S is dense in X, techniques different from 
(and more elementary than) those of this paper can be used to provide similar, but 
more tractable, conditions for the extendibility of/; see [B2, Theorem 2]. We note 
also that for a dense embedding S с X and f e C*(S), (a^) holds if and only if 
cl;̂  L^(/) n cl;̂  L^(/) = 0 for every a <b in R. (This follows from (b) => (a) of 
[B2, Theorem 2] and the easy half of 3.2.) 

The remainder of this section is devoted to specialized results connecting extendi
bility of a function/6 C[S) with z-embedding of/ and with the conditions (ß), (у), 
and (y^). 

We show first that (y^) holds for every embedding S a X if and only i f / is bounded: 

3.10. Proposition. If S is a topological space (resp. Tychonoff space) and if f e 
E C(S), then the following are equivalent: 

(a) / is bounded. 
(b) Whenever S is embedded in a space [resp. Tychonoff space), (jf) holds. 

Proof, (a) => (b): Let | / | ^ a and let S a X. If A cz X and if A is completely 
separated from/, then A is completely separated f r o m / " ' [ — a, a] = S. 

(b) => (a): Suppose / is unbounded and let g = | / j v 1. Choose рфБ and let 
X = S и [p], where basic neighborhoods of p in X are sets of the form {p} u 
и [x E S : g{x) ^ n} (n = 1, 2, . . . ) . Since / is unbounded, S is dense in X. Define 
h :X -^ Rby h = Ijg on S and h{p) = 0. Then h E C(X) (which implies that X is 
Tychonoff if S is Tychonoff). If 0, b E R, choose an integer n with n ^ \a\ v |b| v 1, 
Then h(x) ^ \jn for every х е / " ^ [ а , Ь], so {p} is completely separated from / . 
But [p] is not completely separated from S, and thus (y^) fails for the embedding 
S cz X. 

From 3.10 and 3.1(b) we have: 

3.ÎÎ. Corollary [BH, 4.3]. The following conditions on S are equivalent: 
(a) S is pseudocompact. 
(b) Whenever S cz X, (y) holds. 

3.Î2. Remarks. As noted in (ill) above, C-embedding is equivalent to the con
junction of z-embedding and (y). The single function analogue of (III) fails: Let S 
be the subspace {1/n: n = 1, 2, ...} of i? and define/E C[S) by / ( l /n ) = 1 (resp. 0) 
if n is odd (resp. even). Then/ i s z-embedded in R and the embedding S a R satisfies 
(jf) (because/ is bounded (3.10)), b u t / has no continuous extension over R. We 
have been unable to isolate a condition on / (necessarily stronger than (y -̂)) which, 
when coupled with z-embedding of/, yields extendibility of/. But (III) and (IV) 
are partially recovered, for a single funct:on, by 3.13: 
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3.13. Proposition. Let 5 cz X and fe C*(iS) (resp. f e C{S)). If f is z-embedded 
in X and (/(ß) {resp. (y)) holds, then f has a continuous extension over X. 

Proof. Let fe C{S), let a < b m R, and choose Z^, Z2 6 ^ ( X ) with L^f) = 
== S nZ, and Ü(f) = 5 n Z2. Then Z^ n Z2 n S = 0, and therefore, if (ß) holds, 
La{f) and I^(f) are completely separated in X; i.e. (a^-) holds. And if (y) holds, then 
both (ß) and (y^) hold ([BH, 3.3] and 3.1(b)). The result therefore follows from 3.2 
and 3.8. 

3.14. Corollary. Let S cz X and f E C(S), and assume that either S is pseudo-
compact, S is a zero-set in X, or S is G^-dense in X. Then f extends continuously 
over X if and only if f is z-embedded in X. 

Proof. If S is pseudocompact, (y) holds by 3.11, if 5 is a zero-set, (y) holds by 
[GJ, 1.15], and if S is G^-dense, (y) holds vacuously. Now apply 3.13. 

Recall that a Tychonoff space X is an F-space (resp. P-space) if and only if every 
cozero-set in X is C*-embedded (resp. C-embedded) in X [GJ, 14.25 and 14.29]. 

3.15. Corollary. The following conditions on a Tychonoff space X are equi
valent: 

(a) X is an F-space {resp. P-space). 
(b) For each S a X and each f e C*(5) {resp. f e C{S)), if f is z-embedded in X, 

then f extends continuously over X. 

Proof, (a) => (b): If X is an F-space (resp. P-space), then (ß) (resp. (y)) holds for 
each embedding S a X [BH, 4.5]. Now apply 3.13. 

(b) => (a): Since cozero-sets are z-embedded, (b) and 2.1 imply that each cozero-set 
in X is C*-embedded (resp. C-embedded) in X. 

4. Absolute extendibility and absolute z-embedding. In this final section we restrict 
to Tychonoff spaces. The main results (4.1 and 4.7) provide numerous characteriza
tions of absolutely extendible functions and of absolutely z-embedded functions. 

If / e C{S), f^ : ßS -^ Ä* will denote the Stone extension of / , where R* is the 
one-point compactification of R. If A a S, the oscillation of / on Л is defined 
by ose (/, A) = sup {|/(л:) — f{y)\ : x, у e A}. As in [M4], / has vanishing oscilla
tion outside compact subsets of S if for every e > 0 there is a compact subset К of S 
with ose (/, S — К) < 8. 

The equivalence of (a), (b), and (f) of 4.1 is proved by Mrowka (in an entirely 
difi'erent way) in [ M j . 

4.1. Theorem. Iffe C{S), then the following are equivalent: 
(a) / /5 absolutely extendible. 
(b) / extends continuously over every compactification of S. 

70 



(c) / is z-embedded in each compactification of S and f^ is constant and real-
valued on ßS — öS. 

(d) / is constant and real-valued on ßS — S. 
(e) / is bounded and for every a < b in R, either La{f) or É(f) is compact. 
(f) / has vanishing oscillation outside compact subsets of S. 

Proof. (a)=>(b): Trivial. 

(b) => (c): (b) obviously impHes tha t / i s z-embedded in each compactification of S, 
Moreover, by (b), f = g \ S for some g e C{ßS). Since g and / ^ agree on S, / ^ = g^ 
and hence/^ is real-valued. 

Next let p, q E ßS — vS, let X = ßSJlp, q} be the compactification of S obtained 
from ßS by identifying p and q, and let т : ßS -> X he the resulting canonical map. 
By (b), f = h\SfoY some h e C{X). Then h о т = f = f^ on S, so h о т = f^. Hence 
fß(p) = fßi^q)^ and thus / ^ is constant on ßS - vS. 

(c) => (d): Let f" : vS -> R hQ the continuous extension o f / over vS [GJ, 8.7]. 
Since/^ =/^^ on SJ^ I vS = f\ Thus (c) implies tha t / ^ is real-valued on ßS, and 
hence on ßS — S. If S = vS, then (d) follows trivially from (c), so we may assume 
there exists p evS — S. If q e ßS — S, let Z = ßS\{p, q] be the compactification 
of S obtained from ßS by identifying p and q, and let x : ßS -^ X Ы the resulting 
canonical map. By (c) and 2.3, there is a Q-set A in X containing S and g e C[Ä) 
with f = g\S. Write A = Ç\nPn with each P„ cozero in X, If р^т~^(Л), then 
j7 Ф T " ^ ( F J for some w. But then vS — т~^(Р„) is a nonempty zero-set in DS which 
misses 5̂ , a contradiction [GJ, 8.8(b)]. Thus p,qe т~^(Л). Let /z = ^ о (т | Т~^(У1)). 
Then /2 = / ^ on 5, so /i = / ^ I T-^(X). Hence /^(p) = д{т{р)) = ^(т(^)) = / ^ (^ ) , 
and we conclude that/'^ is constant on ßS — S. 

(d) => (e): By (d), there exists reR with /^(p) - r for all peßS - S. Then / ^ 
is bounded, so / is bounded. Next let a < b. If r ^ b, then L^(/) = Lj^f^), and if 
r < b, then L^(/) = Ü{f^); hence either L / / ) or É(f) is compact. 

(e) => (a): Let 5 cz X. By 3.2, it suffices to show that (a^) holds for the embedding 
S cz X. Let a < b in R and assume, say, that L„(/) is compact. Since L^(/) n 
n cl;i:i'(/) = 0, L ^ / ) and L^(/) are completely separated in X [GJ, 3.11(a)], and 
thus (ay) holds. 

(d) => (f): By (d), there is r e R with f^ = ronßS- 5. Let г > 0 and set К = 
= {peßS: \f^(p) - r| ^ г/4}. Then К is compact, X с 5, and | / (x) - f{y)\ < 
< sjl for Sill X, у E s — к. Hence ose (/, S — К) < г. 

(f) => (d): We first show that / is bounded. By (f), there is a compact subset К 
of S with ose(f, S — к) < 1. Since/ is bounded on K, we may assume there is jp G 
ES - К. Then for all x e 5 - X we have | / (x) - f(p)\ < 1, so | / | < \f{p)\ + 1 
on S — K, It follows t h a t / i s bounded, and hence/^ is real-valued. 

Next let Pi EßS - S{i = 1, 2), let г = \f^{Pi) - f^Pi)^ and suppose that г > 0. 
By (f), there is a compact subset К of S with ose (/, S — К) < г/3. Moreover, there 
is a neighborhood F,- of p^ in î S with F,- n К = 0 and |/^(p,) - / ^ ( ^ ) | < г/3 for 
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every q e F ,̂ and there is a point x^eVi n{S -- K). But then \f\pi) — /^(pi)] S 
й IfiP,) -f{x,)\ + \f{x,)-f%x,)\ + 1Дх,) -fipi)] < £, a contradiction. 
The proof is now complete. 

The following corollary is due in part to Hewitt [He] and in part to Smirnov [S]; 
see [GJ, 6J]. 4.3 generalizes [GJ, 3L.2]. 

4.2. Corollary. The following conditions on S are equivalent: 
(a) S is absolutely C-embedded. 
(b) S is absolutely C^-embedded. 
(c) \ßS - S| g 1. 
(d) Of any two disjoint zero-sets in S, at least one is compact. 

Proof, (a) => (b) is trivial, and the implications (b) => (c) => (d) follow readily 
from 4.1. If (d) holds, then S is pseudocompact [GJ, 1G.4], so the implication 
(e) => (a) of 4.1 yields (a). 

A space S that satisfies any of the equivalent conditions of 4.2 is called almost 
compact. 

4.3. Corollary. Let ^ be a filter on S such that cl (S — A) is compact for every 
AE ^ . If f e C(S) and if f{^) is convergent in R, then f is absolutely extendible. 

Proof. We verify 4.1(e): By hypothesis, f{^)-^ r for some r e R, so there is 
Ae ^ wi th / (^) cz (r — 1, г + 1). Then/ i s bounded on A (as well as on cl (S — A)), 
so / is bounded. Let a < b. If a < r, there is Б e #" with f[B) с (a, 4-oo); then 
L«(/) с cl (S — Б), so L^(/) is compact. Similarly, Ê(f) is compact if a ^ r. 

4.4. Corollary. Let S be locally compact Hausdorff and let S* be the one-point 
compactification of S. If f e C[S) and if f has a continuous extension over -S*, 
then f is absolutely extendible. 

We require the following two facts for our characterizations of absolutely z-
embedded functions. 4.5 is due, independently, to Henriksen and Johnson [HeJ, 
5.4] and to Mrowka [ M j . (For other proofs, see [HaJ, Theorem 3] and [Ha^, 
3.10].) For the simple proof of 4.6, see (*) of [BH, p. 50]. 

4.5. Proposition.//S is LindeWf, then C[S) is the only uniforndy closed, inversion-
closed subalgebra of C[S) that contains the constant functions on S and that 
separates points and closed sets in S. 

4.6. Proposition. Let S a X. If Z e S'(S) and S ~ Z is Lindelöf, then there exists 
T E^{X) with Z = S nZ'. 

4.7. Theorem.///G C(S), then the following are equivalent: 
(a) / is absolutely z-embedded. 
(b) / is z-embedded in each compactification of S. 
(c) Either f is absolutely extendible or S is Lindelöf. 
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(d) If a < b in R and if one of the sets Lj^f) or Jl\f) is noncompact, then the other 
is Lindelöf. 

(e) If Lis any Lebesgue set off, either Lis compact or S — Lis Lindelöf. 
(f) / belongs to every uniformly closed, inversion-closed subalgebra of C{S) 

that contains the constant functions on S and that separates points and closed 
sets in S. 

Proof, (a) => (b): Trivial. 

(b) => (c): Suppose t h a t / is not absolutely extendible. By (d) => (a) of 4.1, one of 
the following two cases must hold: 

Case 1. There exists t e ßS - S with /^(r) ф R. 
Case 2. There exist p, qeßS ~ S with fi\p) Ф f^\q). 
Let {G^}^ be a cover of S by open sets in ßS and let G = [j^ G^. In Case 1 (resp. 

Case 2), let F = {ßS - G) u {t} (resp. F = {ßS ~ G) u (p, c/}), let X - ßSJF be 
the compactihcation of 5 obtained from ßS by identifying the points of F, and let 
T : ßS -> X bQ the resulting canonical map. By hypothesis,/ is z-embedded in X, so, 
by 2.3, there is a Q-set A in X containing S and g e C{A) such that f == g \ S. Let 
T = T-\A) and note that S a T. Since /^' \T = f=go {T\A) on S, / ^ | Г -
= g о (T \ A). Suppose there is x G T - G. Then т(х) G A and x e F. In Case 1 we 
have т(г) = т(х), so t e Tand/^(r ) = ^(т(г)) G i?, a contradiction; and in Case 2 we 
have T{P) = т(х) = т(^) so p, q e T and f^^p) - д{т{р)) = ^(т((?)) = f^{q), again 
a contradiction. Thus T a G. Now Tis a Q in ßS and hence Tis Lindelöf (see 2.4(b)). 
Therefore countably many G '̂s cover T, and we conclude that S is Lindelöf. 

(c) => (d): Let a < b. I f / i s absolutely extendible, then, by (a) => (e) of 4.1, either 
L,,(/) or Ü{f) is compact; and if S is Lindelöf, both L,^(/) and !?(/) are Lindelöf. 

(d) => (e): Let a G i? and suppose that L,,(/) is not compact. By (d), W^^^^^^f) is 
Lindelöf for every integer ?i > 0, so S - L^(/) = П«>о L^'^^^^"Xf) is Lindelöf. The 
argument for I^(f) is similar. 

(e) ==> (a): If S a X and a e R, we claim that L^(/) extends to a zero-set in Z . 
By 4.6 we may assume that S — L^{f) is not Lindelöf. Then A = E'^^^''^\f) is not 
compact for some positive integer m, so, by (e), S — A is Lindelöf. By 4.6, there is 
Zi G S'(X) with A — S n Zĵ . By (e), L^(/) is compact and hence completely separated 
from Zi [GJ, 3.M(a)], so there is Z2 G <^(X) with L^f) <= 1^ and Z^ n Z2 = 0. 
Next, (S — Л) — L^(/) is Lindelöf because it is an F^ in S — A, so, by 4.6, there is 
Z3 G ^ ( X ) with LXf) = (S - Л) n Z3. Then Z2 n Z3 G &{X) and L / / ) = 5-0 
n Z2 П Z3. The argument for l^{^f) is similar. 

(f) -> (a): If 5* с X, then / G C , ( S , X ) by (f) and 2.5; i.e. / is z-embedded in X, 
(c) =>(f): Let Л be a subalgebra of C{S) of the kind described in (f). If 5 is 

Lindelöf, then A = C(S) by 4.5, and t h u s / G A. I f / i s absolutely extendible, let Л* = 
~ {^ge A\ g is bounded}. As shown in [I] (see also [HaJ, 2.3]), there is a com
pactihcation Я(Л*) of S with the property that /1* - {̂  | 5 : ^ G С(Я(У4*))}. S ince/ 
extends over Я(Л*), we h a v e / G Л* cz Л, and the proof is complete. 
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The preceding theorem (together with 2.1 and 4.2) quickly implies most of the 

known characterizations of absolutely z-embedded spaces (see [HaJ, Theorem 3] 

and [BH, 4.1]). We state these in 4.8, but suppress the easy proof. 

4.8. Corollary. The following conditions on S are equivalent: 

(a) S is absolutely z-embedded. 

(b) S is z-embedded in each compactification of S. 

(c) S is either Lindelöf or almost compact. 

(d) If Z^ and Z2 are disjoint zero-sets in S, either Z^ is compact or Z2 is Lindelöf. 

(e) If Z is a zero-set in S, either Z is compact or S — Z is Lindelöf. 

(f) C[S) is the only uniformly closed, inversion-closed subalgebra of C[S) that 

contains the constant functions on S and that separates points and closed sets in S. 
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