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ON QUASI-RIEMANNIAN FIBER MANIFOLD

ANTON DEKRET, Zvolen
(Received August 14, 1979)

Let = : E — M be a fiber bundle with a total space E, a base space M and a projec-
tion 7. Let w be a symmetric regular bilinear form on E. Denote by y the quasi-
Riemannian connection of the quasi-Riemannian fiber manifold (E, a)). Let I' be
the generalized connection on n: E — M the horizontal vector of which at any
u € E are such vectors X € T,E that (Y, X) = 0 for every vertical vector Ye T,E.
The purpose of this paper is to find the necessary and sufficient condition for y . I’
to be reducible to the connection VI on VE — M, where VI is the vertical prolonga-
tion of I', VE is the vector bundle of vertical vectors on E and y . I is the composition
of yand I'. '

1. First we recall two equivalent definitions of the generalized connection I’
on a fiber bundle E.

(a) Let J'E — E be a fiber bundle of the 1-jets of all local sections ¢ : M — E.
Then a generalized connection on E is a global cross-cestion I' : E — J!E, see for
example [4] In the case of a vector bundle E, a connection I is linear if the map-
ping I' : E — J'E is linear on every fiber of E.

(b) A generalized connection on E is a splitting I' of the exact sequence

0->VE-TEsSTTM - 0.
In local coordinate charts (x¥) on M, (x, y*) on E, (x',y* &, n") on TE, (x', &)
on TM, (xi, %, yf) on J'E a generalized connection I' on E is determined by
(x', ) o (x%, y% y7 = di(x, y)) or
(xi, yaz) N [(xi’ éi) Ny (xi’ v, éi, 1= a”;(x, y) éi)]
or quite shortly by the equation
dy* = ai(x, y)dx'.

Let X e T,M, he E,,. Then I'X € T,E is called a I'-lift of X at h. Denote by I', the
subspace I')(T,,M) = T,E of all the so called I-horizontal vectors at h. We have
T,E = V,E + I, and two canonical projections v, :TE — VE, hy:TE — H[E,
where H-E is the vector bundle of all I'-horizontal vectors on E.
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Let us recall that the curvature of I' is a global cross-section @ : E - VE ®
® A>T*M, which has the coordinate form

da;  da}
— 4
ox; oy

(1) 4>=<

a?)dxiA dx/ ® ofoy*.

In the case of a generalized connection I’y on a subspace 7, : E; > Mofn: E - M
we say that a generalized connection I' on E is reducible to E; or to I'y if F[ E, 1S
a connection on E, or if I'ly, = I'y, respectively.

Let p,: F; - E, i = 1,2, be vector bundles over a fiber bundle E. Let p: F; @
@® F, — E be the direct sum of F; and F, over E. Denote by %;: F; ® F, - F;
the canonical projection on the i-factor. Let Y; € T,F, Y, € T,F,, where Tp, Y, =
= Tp,Y,. Then there is such a unique vector Y=Y, @ Y, € T‘,J,,,(F1 @ F,) that
Tx(Y) = Y,. The construction of the direct sum y; + y, of two connections y,
on F; > E and 7, on F, — E is well known, see [3]. Now, let y; be a connection
onn.p;:F;— M,i=1,2, projectable over a connection I on E — M, i.e., every
vector Tp;X is I'-horizontal for any y,-horizontal vector X € TF;. Let ;X be the
yi-lift of X € TM at a; € F;. We will say that a connectiony :=y; @ y,onnp: F, ®
@ F, —» M is the semi-direct sum of y, and y, if

X =7 X @ 7.X,

where X is the y-lift of X at a, + a, € F; @ F,. Let us recall that a connection y,
on F; » M projectable over I' on E is semi-linear if the morphism y; : F; > J'F;
over I' : E —» J'E is linear, see [6]. Identifying F; = F, @0 c F, ®@ F,, F, =0®
@® F, c« F{ ® F, we have ~
Lemma 1. Let 4, ¥3, 7 be semilinear connectionson np, : F; - M, np, : F, - M,
np:F, ® F, > M projectable over I' on n:E — M. Then y =y, ® v, if and

only if y is reducible to y, and to y,.

2. Let T be the tangent functor from the category .# of differentiable manifolds
to the category ¥"# .4 of vector bundles: if M € .4 then TM is the tangent bundle
of Mandif f:M > N(M,Ne J) is differentiable then Tf is the tangent mapping
of f. Let X = a(x) 0/0x' be a vector field on M with a flow ®,. Then T®, determines
the field

TX = a' 0/ox' + 94’ &k ofoet
ox*
on TM. For any h € TM it yields a linear morphism
7, 2 JY(TM),, > T,TM ,
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where p:TM — M is the fiber projection. Let h = (x%, &), u = (x', ¢!, c}) e
€ J'(TM),;. There is such a vector field Yon M that u = j.Y. Then t,(u) = T Y(h) =
= (x, &, ¢!, ¢i&/). In the case of a general prolongation functor the mapping 1,
was established by Kolaf [5].

Let (x, ¢') > (x', ¢, ¢} = al(x, ¢)) be a connection on TM. Then the mapping
14 TyM — T,TM,

(x', ey 52 (x, ¢, b = aj(x, ¢) »™ (xF, &L, ¢, aj(x, ) &),

is a connection on TM if abd only if 2 is linear, ie., iff ai(x, ¢) & = I'ji(x) ¢*&.
This yields

Proposition 1. If % is a linear connection on TM, then h > 1, is the connection
transposed to A.

Let I be a connection on n: E - M. Let X be a vector field on M and let I'X
be the I'-lift of X on E. Denote by J'I'X the set of all 1-jets of the cross-section I'X :
:E > TE. Then hw> 1,(J'I'X) is a vector field on TE. In coordinates, I' : dy* =
= al(x, y)dx', X = a'(x) 0[ox’, h = (x', y*, &', #¥), hence

(xi5 yaa ci’ Ca’ Cj" C;: C‘:, C;) - (xis }"1, éi9 ’11’ Ci’ Cza C}ng + carla’ Caiéi + C;’?”) .
So the equations of J'TX <= J!(TY - Y) are

i
i_aa

F=x', =y, d=d', *=a%a", ¢i=—, =0,
y y P
R U
T ox PoxiT P gyt
Then
. . . . da’ .. .
3) t(J'TX) = a' 9]ox' + a%a’ dJoy* + @_aj & ojoc +
x
dat ., da' . dal
+(—a'¥ + at = + — a'nf)o/oy*.
(6x’ ox’ oyf ') ooy

After restricting 7,(J'T'X) to VE, (3) describes lifting with respect to a unique con-
nection VI on VE — X, see [6]:

(A) dy* = ai(x, y)dx', dp* = %a 1 xt.
oy*

Let Z = ¢! 0[ox" + b' 0/0&" € TranTM. There is such a local vector field X = a(x).
.0[ox" on M that TX(Trnh) = Z, ie. a'(x) = ¢, (da'(x)[0x’).¢& = b'. Putting
TI(Z) = ©,(J'I'X) we have a splitting TT" of the exact sequence

0- VTE 5> TTE s™ TTM - 0,
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i.e., we have a connection TI' on Tx : TE — TM:
. da% . oa* . .
dy* = aj(x, y)dx', dn* = i E o+ dad] n”) dx’ + a7 dét.
ox? oy*

(Another construction of TI" is given in [7].)
Let A :d&" = aj(x, &) dx’ be a generalized connection on TM. Then the composi-

tion TI" . A
“4) dé¢t = aj(x, &) dx/,
dy* = ai(x, y) dx*,

da; .. dat ; ;
dn* = L+ P 4 a%al ) dx
(W o Y

is a connection on TE — E — M, restricting T to H-E we obtain the morphism
¢ : HrE - TM which on H E — E determines the induced connection ¢@*l. As
n* = ai(x, y) & are the equations of the subspace H.E c TE, then a vector
dx’ 0fox' + dy* 9|dy™ + d&' 9[o¢" + dn* o[on* is tangent to HE if and only if

dat ,; oaf ;
5 dp* = L &hdxk + =L EdyP 4 g2 dEf.
®) n ok P y S

That yields the following equations of ¢*A:

(6) - d&' = al(x, &) dx’,
0a5 ., : . da* .
dp* = [— & + a%al ) dx' + — & dyF .
1 <6x‘ ! ) 6y"€ Y
Then
(7) dé' = aldx/, .
dy* = a® dx*,

('J’a"f . aaa.' . . .
dp* = (& + —L &dP + alal ) dx’
1 <6x’ oyf ~ !

are the equations of the connection ¢*1 .1 on HE — E — M. The connections VI’
and ¢@*1.I are projectable over I'. Since TE = VE @ H.E, (x', )" &, %) =
= (x}, p% 0, 9" — &%) + (x%, y%, &, a&’), then

(8) dy* = a%dx’,
d¢t = af(x, &)dx’,
da® o 8at . Y i )
dp* = | = (0 — afe)) + = & + ajal + L all | dx!
[ayf’( ) ox! ! ay*
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is the semi-direct sum VI' @ @*1.T of VI" and ¢*1.I'. Comparing (4) with (8) we
obtain

Proposition 2. VI @ ¢*A . I = TI' . A if and only if the connection I is integrable.

3. Let y:
(9) (AUCJ + A,ﬁn’]) dxt + (A“kf" =+ A“yn)') dy? |
f = (A kék + Alﬂ"la) dx’/ + (A/;kfk + A/; '1y) d} s

be a connection on E, i.e., a linear connection on TE — E. Denoting the absolute
derivative with respect to y by V we have

Voroxi(0]0x") = —Aj; 0]
Vyoxi(0]0y*) = — Al 0]ox* — A4F, 0]oy”
Voseye0]0x7) = — A, 0fox* — AL 6oy,
Viso,0]0y") = — ALy 0]ox" — AL, 0]0y" .

oxk — Af, d)oy*

Let us recall that y is symmetric if and only if Al = A, AY, = AL, A% = A3,

Al = Ap Ay = Ang, Aj, = A,B From (9) it follows that y is reducible to VE if and
only if

(10) Ajp=0, A5, =0,

i.e., if and only if VY is vertical for any vector X on E and any vertical vector
field Yon E.

Let I, dy* = aj(x, y) dx’, be a generalized connection on E — M. Then the com-
position y. I of y and I is a semilinear connection on TE - E — M, projectable
over I'. Putting dy* = af dx’ in (7), we obtain the equations of y.I. Then the
necessary and sufficient conditions

(11) Al + Apal =0

for y . I' to be reducible to VE yield

Lemma 2. The connection y . I' is reducible to VE if and only if VyY is vertical
for any vertical vector field Y on E and any I'-horizontal vector X on E.

Restricting the equations of yand y . I' to HE and using (5) we obtain the following
coordinate necessary and sufficient conditions:

«a

(12) AL+ A%yal = 5% a4y + Ay,
a Y a I
AI!J + Apa; = ay + ak(AIU + AﬂY J
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for y to be reducible to H/E, and

a

(13) A5 + A?ﬂ“f - ”k(Au + Alﬂaﬂ) +

a

a a aa j 3
+ [Alij + Aj,a; — (_3_}”; — ay(4y; + A:ﬂ'a;/'):l al =0
for y. I to be reducible to HE.

Lemma 3. y . I' is reducible to HyE if and only if VY is [-horizontal for any I'-
horizontal vector field Y and any I'-horizontal vector X on E.

Proof. For X = 0[ox' + af 0|0y, Y = 0[ox’ + a%[dy®, VxY is I-horizontal if
and only if the relations (13) hold. This gives our assertion because VyfY = X(N) Y+
+ fVyY.

Lemma 4. Let y be symmetric. Then y . I is reducible to HyE iff I is integrable
and VyY + VX is I'-horizontal for any I'-horizontal vector fields X, Y on E.

Proof. Denote by (13’) the relations which follow from (13) by interchanging
i < j. Using the symmetry of y and calculating (13)~(13’) we obtain
dat d0as
dai _ daj | Oaf o G b —

*
) ax) axTayﬂ’ ayp

For X = 0/ox' + a} 0[0y*, Y = 0[ox’ + a3 0[0y*, VxY + VyX is I-horizontal if
and only if the equations (13) + (13’) hold. This completes our proof.

Let A :d¢& = a} dx/, a} = I'l,(x) &, be a linear connection on TM. As above we
construct the connection ¢*1 on H E. Using (4), (9) and (6), (9) and (7), (9) we obtain:
y . I' is reducible to VI iff

0.

(14) A2+ A%yal = % ALy + Alyal = 0,
y is reducible to ¢*1 iff
(15) Ap + Apal =0, Al + Alal =T,
oa’ a
A"‘+A“‘a”—a +aiIs;, A +Aﬁy'=a_a;’,
x* dy
y . I' is reducible to ¢*A . I iff
da; | 0aj
(16) AL+ Aah + (45 + Apal)af = T Thgh g gt

ax! ayk
Aj + Ajgal + (Ap + Apjal)al =T

Let y be transposed to *. Then the conditions (14), (15), (16) yield
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Proposition 3. Let I' be a generalized connection on E. Let y or A be a linear con-
nection on TE or on TM, respectively. Then y is reducible to ¢*A if and only if y . I’
is reducible to *A . T and y' . T is reducible to VI.

Corollary. A symmetric connection vy is reducible to ¢*1 if and only if y.I is
reducible to ¢*A . I and to VI.

By Lemma 1, y. I’ =VI @ ¢*A.I iff y. I is reducible to VI' and to ¢*1.T.
Then we have

Proposition 4. [f y is symmetric theny . I’ = VI @ ¢*A . T iff y is reducible to ¢p*A.

4. The first order absolute differentiation with respect to a generalized connection I"
on E is of the same form as in the classical case, see [8], [1], [3]. For example, in
the case of a vertical vector field Y = b*(x, y) 0/0y* and X = a’0/ox' e T,,M, the
author [1] established at h e E, nh = m:
ob* , 0b* da}

- bﬁ> a' 8loy*,

VyY = Iv, (TY(I'X =< ; .
X VI'( ( )) ayg Ox! ayp

where I'X is the I'-lift of X at h and I is the canonicalvidentiﬁcation 1:V,V,—> V,E.
Considering @ = a,(x, y) dy* ® dy? : E > VE* @ VE* we put

(17) Vio(Y, Z) = I'X(a(Y, Z)) — o(VyY, Z) — o(Y, ViZ) =
¥ v
= a_aif’ + ggﬂa: + avﬂ% + aay% b*cfat,
ox’ oy’ 0y* oy?

where Y = b* 0[0y", Z = ¢* 8|0y* are vertical vector fields on E, X = a' 0[ox e T,M
and I'X is the I'-lift of X at he E, th = m. It means that V/w is a section E —
— (VE* @ VE*) ® T*M. We say that o is I'-parallel if V'w = 0.

Let (E, w) be a quasi-Riemannian space, where o is a symmetric regular bilinear
form on E. Let y be the quasi-Riemannian connection on E determined by (E, w),
i.e. y' =y and Vo = 0, where V denotes the absolute differentiation with respect
toy. If o = a;x, y) dx' @ dx’/ + a;,(dx' ® dy* + dy* ® dx') + a,, dy* ® dy” and
(9) are the equations of y then the well known classical relations between the coef-
ficients of w and 7, see for example [9], in the case of the quasi-Riemannian connec-
tion on (E, w) have the following form:

day day da '
(18) 5";-; + ijﬁ - a—‘;’k—f + 2a,4% + 24,45 =0,
Oajy  9ai _ 0a;

(19)

— : F oy 20,45 + 205,45 =0,
oxt axt oy ! !
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da; da;;
B Iy 20, A% + 2a,,48, =0,
oxi oxi oy i »

(20)

da; da; a

(21) Shin g S Ty 20, A% + 20,40, = 0,
oy*  ayf  ox!
da. . Py

(22) day _ O, + oaa? + 2a445; + 2a,A40, = 0,
oy*  ayf Xt
0 I3} 0

(23) Doy e Oy 0g A+ 2a,,42 = 0.
oy* 0y’ oyP

Being regular, w determines on E a unique generalized connection I', the horizontal
tangent vectors of which at h € E are such vectors X € T, Y that o(Y, X) = 0 for any
vertical vector Ye 7,Y. In [2] some properties of I" were found in the more general
case of w, when only the restriction w = wIVE is regular. It is easy to see that I' is
given by
dy* = ai(x, y)dx', af = —A4%a,,

where a,;4"" = §]. We say that I is conjugate to w. Throughout the remainder of
the paper, y and I' always denote the quasi-Riemannian connection of (E, ) and
the connection conjugate to w, respectively. The relation (17) implies

(24) Oy _ 0ip _ 0ix o\ oo (00 | Opy _ 0 _ g
oyf ay* ay’

for w to be I'-parallel.

Proposition 5. Let V denote the absolute differentiation with respect to y. Then
the restriction w of w to VE is I'-parallel iff VyZ is vertical for any vertical vector
fields Y, Z on E.

Proof. Setting AJ, evaluated from (23) in (21) we obtain

(25) Oaip \ 00 _ Q0ap \ (4 — apd¥a) 43, —
. oy* oy ox' v

- mém’v(%’l + _(?a_” — éa_ﬁ_“ =
oyt oy oy
Then (24) holds iff
(26) 2(ais - aiéAayasy) A:zﬁ =0.
As y is uniquely determined by the equations (18),...,(23), we deduce from (25)

that det (a;, — a;54”a,)|+ 0. Then (26) is fulfilled iff 45, = 0 and thus Vy/4,-(3/0y") =
= — A, 0|0x' — A%, 0/0y” completes our proof. '
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Proposition 6. Let I' be conjugate to w. Then the quasi-Riemannian connection y
of (E, w) is reducible to VE if and only if y . I is reducible to VE and w is I'-parallel.

Proof. By the proof of Proposition 5, @ is I'-parallel iff 43, = 0. then (10) and (11)
give the desired result.

Let Y = b* 9]0y be a vertical vector field on E. Let Lyw be the Lie differentiation
of w with respect to Y. Let hLyw or &y denote the bilinear form on E determined by
hLyo(X, Z) = Lyw(hX, hY) or &(X,Y) = o (ViY, Z) + o(X, V;Y).

Calculate explicitly
(27) hLyw — &y = (24 4 & ””+ﬁ’””+
oy* oy* oy*
aayﬂ Y B\ B2 i j j i
+~(—3~—; ala? ) b*(dx' @ dx/ + dx’ @ dx').
y

Recall that a I-form  on E is semi-basic if y(Y) = 0 for any vertical vector Y on E.
Let B(E) be the vector bundle of all semi-basic 1-forms on E. (27) yields

Lemma 5. The map ¢, : VE - 0> B(E), Y hLyw — &y, is a linear morphism.

Proposition 7. The connection y . I is reducible to VE iff I' is integrable and
0, = 0.

Proof. Denote by B the equations which we obtain from (20) putting here A2,
evaluated from (22). Then (25) and B give

‘ 6a~ da;;
28 2a;, — a;;A%ay,) (45 + ASyal + L L
( ) ( Js Jjo /)( ) (3 i ox) 6y°’

- %_%4.@2)4_ Oagp o 0djs _ Do) 1 _
oy  0y?  ox! oy oyP ox?
—ajaA‘SV 8_‘14‘14.6_“/2_%1 a?=0.
ayf oy
Comparing (11) with (28) we find that the connection y . I' is reducible to VE iff

2) 0o _ Qi sy gy (00 _ 0\ Oy
ox' ox! 0y* ay* 0y’ ox'

+ <5a,~ﬂ n 0a, _9."_«{z>ag _ a;(?’ﬂz + Odq, _‘jf’.ﬂ.@>at§ -0.
oy ayli Ox/ By” oy?
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Let (29') be the equation obtained from (29) by interchanging i < j. Because of (27)
and (1) the equations (29) + (29") and (29)—(29’) are fulfilled iff ¢, = 0 and I is
integrable.

Proposition 8. The connection y. T is reducible to VI if and only if ¢, = 0,
&, =0 and V'w = 0.
Proof. The equations (23) and (22) imply
(30) Q?,M_Q“_m+%+(fﬂ_vﬂ+ﬂﬂ_%,ag+
oy oyP  ox oy*  ayt  oyF
+ 2a4(A5; + A5,d)) + 2a,5(A45; + Ada

ayl

H=0.

Let y. I be reducible to VI'. By Proposition 7, g, = 0, &, = 0. In virtue of aj

= —A’”a,ﬂ and (14) the equations (30) give (24). Conversely, let &, = 0, g, = 0,
Tw = 0. Then by means of (11) and (24), the relations (30) imply 43, + 4%,al =
= éa,/oy This and (11) together give (14). Q.E.D.

Corollary of Proposition 6, 7, 9. The connection y . I' is reducible to VI if and
only if y is reducible to VE.

Proposition 9. The connection y . I' is reducible to HE iff it is red. cible to VE.

Proof. Interchanging o <> f§ in (22) and replacing i by j in (30) we get the equations
(22’) and (30’). Then the equations (22'), (19), (30) yield

Caix _ Oay | Oap) g\ (9. Ody aa“”) 4 09 00 _
oyF oy X! ayP oy ox/ oxt  ox!

da;; da,, Oa da N
-—+ 4+ <—y + 2 —YL’) ala’ + 2a, —al(A}; + Ajah) +

0y* oyt ayr  0y*
+ Aa + AB! i az(Ailj ﬂ/ J)a + (A Bv J B] =0.
Then, because of a,, = —a,;a3, (13) holds iff (29) is satisfied. Q.E.D.

Proposition 10. The connection y is reducible to HiE if and only if it is reducible
to VE.

Proof. Using a;, = —a,ga”, from the equations (22') af + (19) and (30) we deduce
that (12) is fulfilled if and only if the equations (29) and (24) are satisfied. Q.E.D.

5. Let I : dy* = a(x, y) dx’ be generalized connection on E. A bilinear form w
on E will be called a (F, @, g)-form if there are such a section w: E - V¥*E ® V*E
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and a bilinear form g on M that
o(X, Y) = o(vX, oY) + g(TnX, TrY).

In coordinates, if @ = a;; dx’ ® dx’ + a;, dx' @ dy* + a,;dy* @ dx' + a,;,dy* ®
@ dyf, w = A,,dy* ® dy’, g = g,;dx’ ® dx/ then w is a (I', @, g) — form iff

— B —
aa{ﬂ = Aaﬂ s Qig = —A[ha? sy Ay = -—'aa/}ai s aij - Aﬂﬂa‘:a@ + gij .

Hence it follows that if w is a (I', w, g) — form then

(a) I is conjugate to w,
(b) w is symmetric iff w and g are symmetric,
(¢) o is regular iff @ and g are both regular.

We assume that M is paracompact in what follows.

Proposition 11. Let (E, cu) be a quasi-Riemannian structure. Let I' be conjugate
to w. Let w be the restriction of w to VE. Then there is such a bilinear form g on M
that  is a (I', w, g) — form if and only if o, = 0.

Proof. As I is conjugate to w, then a;; = —a,gal. Therefore from (27)

da.: P 7 . . . .

0p = (=0 4 %a; + ajygi‘)(dx' ® dx/ + dx’ @ dx') ® dy*.
oy oy oy '

Then o, = 0 iff a;; = —aj,al + g;(x) = a,aial + g,4(x). Q.E.D.

A quasi-Riemannian structure (E, w) will be said to be reducible if there is such

a bilinear symmetric regular form g on M that w is a (F, w,g) — formandy. T =

= VI' @ ¢*AI', where y or 2 is the quasi-Riemannian connection of (E, w) or of
(M, g), respectively, I' is conjugate to w and w is the restriction of w to VE.

Theorem. A quasi-Riemannian structure (E, a)) is reducible if and only if the
quasi-Riemannian connection y of (E, w) is reducible to VE.

Proof. Let y be reducible to VE. Then by Proposition 6, ¢, = 0, ¢, = 0, V/w = 0.
Consequently, on account of Proposition 11, there is a bilinear form g on M such that
wisa (I, @, g) — form, where @ is the restriction of w to VE. Putting 2a,,Af; evaluated
from (19) in (18) and using &, =0, V'w = 0, a;; = —aza’ + gij, d, = —agal
we get

99i; , 09u _ 99u

5xi 6xj axk + 2gskAij =0.

Then the well known equations for the Christoffel symbols I'j; of the quasi-Rieman-
nian connection 1 of (M, g) induce

A =T3.
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By Proposition 10, y is reducible to HE. Hence because of (10) and (12) the equations
(16) are fulfilled and thus y . I' is reducible to ¢*A.I. According to Proposition 8,
y. T is redusible to VI'. Then by Lemma 1, y. I = VI @ ¢*1 .. Conversely, if
(E, o) is reducible then y . I is reducible to VI' and hence by Proposition 8, y is
reducible to VE. , Q.E.D.
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