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Czechoslovak Mathematical Journal, 31 (106) 1981, Praha 

ON QUASI-RIEMANNIAN FIBER MANIFOLD 

ANTON DEKRET, Zvolen 
(Received August 14, 1979) 

Let 7Г : £ -^ M be a fiber bundle with a total space £, a base space M and a projec­
tion 7Г. Let CO be a symmetric regular bilinear form on E. Denote by y the quasi-
Riemannian connection of the quasi-Riemannian fiber manifold {E, со). Let Г be 
the generalized connection on n: E-^ M the horizontal vector of which at any 
w e £ are such vectors X e T„£ that со(У, X) = 0 for every vertical vector Ye T^,E. 
The purpose of this paper is to find the necessary and sufficient condition for у . Г 
to be reducible to the connection VF on VE -> M, where VF is the vertical prolonga­
tion of Г, VE is the vector bundle of vertical vectors on E and 7 . Г is the composition 
of 7 and Г. 

1. First we recall two equivalent definitions of the generalized connection F 
on a fiber bundle E. 

(a) Let J^E -^ £ be a fiber bundle of the 1-jets of all local sections a : M -> £. 
Then a generalized connection on £ is a global cross-cestion Г : £ -» J^£, see for 
example [4]. In the case of a vector bundle £, a connection F is linear if the map­
ping F : E -> J^E is hnear on every fiber of £. 

(b) A generaHzed connection on £ is a splitting F of the exact sequence 

0 -> F£ -> T£ ±>^ TM -> 0 . 

In local coordinate charts (x') on M, (x\ y"") on £, (x\ y"", ^\ tj"") on TE, [x\ ^^) 
on TM, (x\ 3;̂ , y'l) on J^E 3, generalized connection Г on £ is determined by 

{x\y')^{x\y\y', =^a%x,y)) or 

{x\ / ) b^ [{x\ e) h^^ {x\ y\ l\ t = a%x, y) (̂ 0] 

or quite shortly by the equation 
dy« = a%x, y) dx^ . 

Let X € TJÄ, h e E^. Then FX e T^E is called a F-lift of X at h. Denote by F^ the 
subspace Е^(Т,пМ) с Tf^E of all the so called F-horizontal vectors at h. We have 
Tf^E = V^E + Ff^ and two canonical projections Vp : TE -^ VE, hp : TE -^ HpE, 
where HpE is the vector bundle of all F-horizontal vectors on £. 
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Let us recall that the curvature of Г is a global cross-section Ф : £ -> FE ® 
® /\^T^M, which has the coordinate form 

(1) Ф = (^ + ^ a^^ ax' A dx^ ® djdy^. 
\dxj a / J 

In the case of a generalized connection F^ on a subspace я^ : Е^ -^ M of л; : £ -> M 
we say that a generalized connection Г on £ is reducible to E^ or to F^ if r L is 
a connection on E^ or if Г|£^ = Г^, respectively. 

Let p,- : Fl -^ E, i = 1, 2, be vector bundles over a fiber bundle £. Let p : F^ ф 
Ф F2 -> E be the direct sum of F^ and F2 over E. Denote by Xi : F^ @ F2 -^ Fi 
the canonical projection on the z-factor. Let Y^ e T^F^, Y2 E Т^,£2, where Tp^ 7^ = 
= Tp2 5̂2- Then there is such a unique vector F = 7^ © Y2^ '^a+b(^i ® £2) that 
Tx^(y) = Yf. The construction of the direct sum y^ + 72 of two connections ŷ  
on £1 -> £ and 72 on £2 -^ £ is well known, see [3]. Now, let 7̂  be a connection 
on n . Pi : Fl -> M, i = 1,2, projectable over a connection £ on £ -> M, i.e., every 
vector TpiX is £-horizontal for any 7i-horizontal vector X e TFi. Let 7 Д be the 
7i-lift of X e TM Sit ai e £,-. We will say that a connection 7 : = 7i © 72 on тгр : £1 ф 
© £2 -> M is the semi-direct sum of y^ and y2 if 

yX = ууХ © 72^ , 

where yX is the 7-lift of X at a^ + ^2 6 £1 © £2. Let us recall that a connection 7̂  
on Fl -> M projectable over £ on £ is semi-linear if the morphism 7̂  : £ | -> J^Fi 
over Г :E -^ J^E is linear, see [6]. Identifying £1 = £1 © 0 с £1 © £2, £2 = 0 © 
© £2 с: £ i © £2 we have 

Lemma 1. Let 7i, 72, 7 be semilinear connections on npi : F^ -^ M, np2 : £2 -^ M, 
np : Fl @ F2 -^ M projectable over Г on n : E -> M. Then 7 = 7i © 72 if and 
only if у is reducible to y^ and to 72. 

2. Let T be the tangent functor from the category J/ of differentiable manifolds 
to the category 'V^M of vector bundles: if M e . # then TM is the tangent bundle 
of M and if / : M -> ^{М, N e . # ) is differentiable then Tf is the tangent mapping 
of/. Let X = a\x) ôjdx^ be a vector field on M with a flow Ф .̂ Then ТФ^ determines 
the field 

TX = a'djdx' + —i'djo^' 
dx^ 

on TM. For any h e TM it yields a linear morphism 

T, : J\TM%, -> T,TM , 
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where p : TM -> M is the fiber projection. Let h = (x', ^'), и = (x\ c', c}) G 
G J\TM)pf^, There is such a vector field У on M that и = j^Y. Then T„(W) - T y(/i) = 
= (x', (̂ ', c', c}̂ -̂ ). In the case of a general prolongation functor the mapping t^ 
was estabhshed by Kolaf [5]. 

Let (x', c^) h-̂  (x', c\ Cj = fl}(x, c)) be a connection on TM. Then the mapping 
т,Я : T,,M -> T„TM, 

(x', cO -^' {x\ c\ c] = аЦх, с) ->^" {x\ ^\ c\ a]{x, c) ^^), 

is a connection on TM if abd only if X is hnear, i.e., iff a}(x, c) ^•' = Гд(х) ĉ ĉ -̂ . 
This yields 

Proposition 1. / / Я is a linear connection on TM, then h н-> Т;,Я is the connection 
transposed to Я. 

Let Г be a connection on 71 : £ -> M. Let X be a vector field on M and let ГХ 
be the Г-lift of Z on E, Denote by J^FX the set of all 1-jets of the cross-section FX : 
:E -^ TE, Then /1 \-^ xJ^J^FX) is a vector field on TE. In coordinates, Г : dy^ = 
= a?(x, y) ùx\ X = a\x) djdx\ h = (x^ / , ^\ n% hence 

(x', / , c\ c\ cj, c ,̂ ĉ , c;) Ĥ '̂̂  (x\ J;^ e', n\ c\ c\ c%^ + c^, c\^' + c^^^ • 

So the equations of J^FX a J\TY-^ Y) are 

da^ 
3c' = x' , f = / , c' = a ' , c" = a^a^, cj - — , , ĉ  = 0 , 

^x^ 

' dx' ox' '^ dy" 
Then 

(3) 4{J'rX) = a' djdx^ + aW ojoy" + — ^^ Bjd^' + 
dx' 

дх^ ' дх^ 5 / 7 + 

After restricting xJ^J^FX) to KE, (3) describes lifting v/ith respect to a unique con­
nection VF on VE -> Z , see [6]: 

(A) d / = a?(x, j ) d x ' , d^^ = Щ rjP d x ' . 
dyP 

Let Z = c' djdx' + b' ^/3(^' G TjnhTM, There is such a local vector field X = a ' (x) . 
. djôx' on M that TX{Tnh) = 2 , i.e. a'(x) = c\ {даХх)1дх^) . ^^ = b\ Putting 
TF(Z) = Th{J^FX) we have a splitting ТГ of the exact sequence 

Q^VTE-^ TTE ±5^^ ТГМ -^ 0 , 
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i.e., we have a connection ТГ on Tn : TE ~> TM: 

d / = a%x, y) dx^, d^« = (^, ^^ + Щ A dx^ + «? d^ . 
\dx-^ dy'^ J 

(Another construction of ТГ is given in [7].) 
Let À : d<̂ ' = a}(x, ä,) dx^ be a generahzed connection on TM. Then the composi­

tion TT . À 

(4) d^' = ai{x,e)dxJ, 

d / = a^(x, j;) dx', 

d̂ ^ = f —̂  ^J + Щп^ + aX ] dx' 

is a connection on TE --^ E -^ M, restricting Tn to HfE we obtain the morphism 
(p : Hĵ E -> ГМ which on Я^^Е -> £ determines the induced connection (/)*Я. As 
"̂̂  = ö^(x, 3;) (̂ ' are the equations of the subspace HfE с ТЕ, then a vector 

dx '̂ djdx' + dj;" ^/^3;^ + df' ^ /^f + d̂ y« djdr]'' is tangent to Я^^£ if and only if 

(5) 
da^ da^ 

d̂ /« = ::ii' ^' dx^ -f ^ ^'' d / + a^ d(.̂ ' 

That yields the following equations of <р*Я: 

(6) 

Then 

(7) d^' = aj dxJ , 

dy'^ = a^ ax', 

drt" 
dx 

are the equations of the connection <p*l. Г on HpE -^ E -* M. The connections VF 
and (p*À . Г are projectable over Г. Since T£ = KE ® HfE, (x', / , '̂•, ?/'') = 
= (x', j ^ 0, ri" - a?^'} + (x', y", e, a^^'), then 

(8) 

d>? ' -

d / - a°; d x ' , 

d^' = aj(x, ^) dx^', 

^^ ox dy'^ dy 
dx' 
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is the semi-direct sum VF ® cp'^X . Г of VF and ф^Я . Г. Comparing (4) with (8) we 
obtain 

Proposition 2. VF © cp^À , F = TF . À if and only if the connection F is integrable. 

3. Let y: 

(9) dt = (Л^^' + Ä^tßri^) dx' + {A^ß.e + A^ßy^f) d / , 

d^' = {A),e + A)f^) dx^ + ( 4 , ^ + 4^цУ) d / , 

be a connection on E, i.e., a linear connection on ТЕ -^ E. Denoting the absolute 
derivative with respect to у by V we have 

Va/a.<^/^^^) = -Al djdx' - A^j djdy^, 

УтЛ^М = 'Ai djdx' - Al djdy^ , 

W.^UdjOx^) = ~Al, djdx' ~ Ai, d\dyß , 

Va/a,«(^/^/) = -Kß djdx^ - Alß djdf . 

Let us recall that y is symmetric if and only if A\J = A],, A]^ = A^,, A^j = Л^ ,̂ 
A^ß = Al^Alß = Aiß, 4^, = A'^ß. From (9) it follows that у is reducible to VE if and 
only if 
(10) A), = 0, 4 , = 0, 

i.e., if and only if Vĵ У is vertical for any vector X on £ and any vertical vector 
field У on £. 

Let Г, dy"" = a1{x, y) dx\ be a generalized connection on £ -> M. Then the com­
position у , F of 7 and Г is a semihnear connection on ТЕ -^ £ -> M, projectable 
over Г. Putting dy'^ = a^ dx' in (7), we obtain the equations of у . Г. Then the 
necessary and sufficient conditions 

(11) A)^ + 4yj = 0 

for 7 . г to be reducible to VE yield 

Lemma 2. The connection у . F is reducible to VE if and only if У^У is vertical 
for any vertical vector field Y on E and any F-horizontal vector X on E. 

Restricting the equations of y and 7 . Г to HpE and using (5) we obtain the following 
coordinate necessary and sufficient conditions: 

(12) Alj + A\,a] = 1 ^ + а1{А% + A^,a^, 

A;J + A;^a] = ^l + a^j + Ala]) 
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for y to be reducible to HrEy and 

(13) A^j + A^a^ - g - al{A\j + A%a^j) + 

^h + ^?.̂ J ~ ^ ~ <(^^i + ^>^) a? = 0 

for y . Г to be reducible to И^Е. 

Lemma 3. у . Г /5 reducible to HfE if and only if V^Y is Г-horizontal for any Г-
horizontal vector field Y and any Г-horizontal vector X on E. 

Proof. For X = djdx' + a^djôy^ 7 = djdx' + apy\ V^F is Г-horizontal if 
and only if the relations (13) hold. This gives our assertion because Vj^/F = X[f) Y + 

Lemma 4. Let y be symmetric. Then y . Г is reducible to HfE iff Г is integrable 
and "^xY + VyX is Г-horizontal for any Г-horizontal vector fields X, Y on E. 

Proof. Denote by (13') the relations which follow from (13) by interchanging 
/<->/. Using the symmetry of y and calculating (13) —(13') we obtain 

(*) M_^^i^.M,|^^,f = o. 
^ dx' dx' dyP ' dy^ 

For X = djdx' + a1djdy\ 7 = Ôjdx^ + a] д\ду\ V^Y + VyX is Г-horizontal if 
and only if the equations (13) + (13') hold. This completes our proof. 

Let A : d^' = a} àx\ a) = r]J^x) ^^, be a Mnear connection on TM. As above we 
construct the connection ф*А on Н^Е. Using {A), (9) and (6), (9) and (7), (9) we obtain: 
у . Г is reducible to VE iff 

(14) Л?,+ Л>?=?-! ' 4/, + '4>]: = 0, 
dy' 

у is reducible to ^*Я iff 

(15) 4 , + 4,ai; = 0, А], +A)^a{^r],, 

J« j _ J« /7^ - ^ 4. л^г^ A'^ Л. 4^ ^y - ^ 
ox oy'^ 

у . Г is reducible to (p*A . Г iff 

(16) Ab + A1,a^j + ( 4 , + 4,f l ]) af = ^^: + ^ J a? + а1Г%, 
OX CyP 

A), + A),4 + (4 , + 4,aO a'j = Г],. 
Let у be transposed to y'. Then the conditions (14), (15), (16) yield 
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Proposition 3 . Let Г be a generalized connection on E. Let y or À be a linear con­
nection on TE or on TM, respectively. Then y is reducible to ф*Я if and only if у . Г 
is reducible to ф*А . Г and y ^ . Г is reducible to Vf. 

Corollary. A symmetric connection y is reducible to cp^À if and only if y . Г is 
reducible to cp^X . Г and to VT. 

By L e m m a 1, у . Г =-VF @ cp^^k . Г iff у . Г is reducible to VF and to ç)*A . Г . 
Then we have 

Proposition 4. If у is symmetric then у . F = VF @ ф*Я . F iffy is reducible to cp*À. 

4. The first order absolute differentiation with respect to a generalized connection F 
on E is of the same form as in the classical case, see [8], [1], [3]. For example, in 
the case of a vertical vector field Y = b''(x, y) djdy'' and X = a' djdx^ e T^M, the 
author [1] estabhshed at h e E, nh = m: 

where FX is the Г-lift of X at /i and / is the canonical identification / : F„F;, -> V^E, 

Considering œ = a^ß(x, y) dy"" ® dy^ : E -> F£* ® KE* we put 

(17) V X y , Z) = FX{œ{Y, Z)) - CO{WCY, Z) - œ{Y, V^Z) = 

da^o da„o ,, da] da]\ , „ n i 

where Y = b"" djdy'', Z = c"" dldy"" are vertical vector fields on £, Ĵ  = a' djdx' e TJ^ 
and FX is the Г-lift of X a.t h e E, nh = m. It means that V^œ is a section E -^ 
-> (F£* ® F£*) ® T^M, We say that œ is Г-parallel if V ĉo == 0. 

Let (£, œ) be a quasi-Riemannian space, where со is a symmetric regular bilinear 
form on E. Let у be the quasi-Riemannian connection on E determined by (£, со), 
i.e. 7' = у and Vco = 0, where V denotes the absolute differentiation with respect 
to y. If CO = ау{х, у) dx' ® dx-^ + a^dx^' ® d / + d / ® dx') + a^ß d / ® d / and 
(9) are the equations of у then the well known classical relations between the coef­
ficients of 0) and 7, see for example [9], in the case of the quasi-Riemannian connec­
tion on (£, со) have the following form: 

ÔX^ dx^ Ox"" 

(19) ^ + ' ^ - ^ ^ + 2а^Л, + 2a,X = 0, 
dx ox-' о у 
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(20) ^ - ^ + ^ ^ 2а^Л. + 2а,,Л1 = О , 
ёх' ôxJ 5 / ' "^ " 

(21) ^ + ^ - i^-lÊ + 2a,,A:ß + 2a,,Alß = О, 
ö/ а/ дx^ '̂  ' '̂  

Being regular, со determines on £ а unique generahzed connection Г, the horizontal 
tangent vectors of which at he E are such vectors X e T;, 7 that co(7, X) = 0 for any 
vertical vector Ye T^Y. In [2] some properties of Г were found in the more general 
case of Û), when only the restriction w = co|̂ £ is regular. It is easy to see that Г is 
given by 

d / = a^(x, y) d x S < = -A'f^a.ß, 

where a^pA^^ = öl. We say that Г is conjugate to со. Throughout the remainder of 
the paper, у and Г always denote the quasi-Riemannian connection of (£, со) and 
the connection conjugate to со, respectively. The relation (17) implies 

(24) ^ _ ̂  -

for w to be Г-parallel. 

Proposition 5. Let V denote the absolute differentiation with respect to y. Then 
the restriction w of со to VE is F-parallel iffVyZ is vertical for any vertical vector 
fields Y, Z on E. ,, 

Proof. Setting Aly evaluated from (23) in (21) we obtain 

(25) ^ , | |_^^.2( . . - . . .ИХ)^:.-

Then (24) holds iff 

(26) 2(fl,., - a,,A'^a,,) Л^^ = 0 . 

As у is uniquely determined by the equations (18),..., (23), we deduce from (25) 
that det (a-, - а,И''«.у)/Ф 0. Then (26) is fulfilled iff Alp = 0 and thus Veiey^idjôy^) = 
= —Al,ß djôx^ — Alp djdy^ completes our proof. 
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Proposition 6. Let Г be conjugate to œ. Then the quasi-Riemannian connection y 
of {E, СО) is reducible to VE if and only if у . Г is reducible to VE and m is Г-parallel. 

Proof. By the proof of Proposition 5, w is Г-parallel iïï A^ß = 0. then (10) and (11) 
give the desired result. 

Let Y = b'^ djdy°' be a vertical vector field on E, Let Lyco be the Lie differentiation 
of CO with respect to У. Let /iLyCO or Sy denote the bihnear form on E determined by 

hLyu){X, Z) = LyCo{hX, hY) or Ey{X, Y) = oj (У .̂У, Z) + co(X, V^Y) . 

Calculate explicitly 

(27) .L,c«-., = (^f^4^P^f+^^^af + 
\ dy dy^ dy^ 

+ ^ c{^,a^]\ b\àx' ® àx^ + dx̂ " ® dx') . 

a/ / 
Recall that a 1-form i// on £ is semi-basic if ^{Y) — 0 for-any vertical vector Yon E, 
Let B(E) be the vector bundle of all semi-basic 1-forms on £. (27) yields 

Lemma 5. The map Q^ : VE -> 0^ ^(^)j ^^~^ /iLyCO — Sy, is a linear morphism. 

Proposition 7. The connection у . Г is reducible to VE iff Г is integrable and 

Proof. Denote by В the equations which we obtain from (20) putting here Л^ 
evaluated from (22). Then (25) and В give 

(28) 2(a,. - a,,A^4^,) {Al, + ^J,«?) + ^-^Jf ^ ^-^ + ^-^^ -
ox' ox-' dy 

Ajß^ 

/dOiy dai, . da,Л . {да^о . да:, да а.аА^Ц^^- ^^ + ^^\ + Р ^ + jß , ^^"ia 
07 

\ а / а / дхЧ \ду^ а / дх^ 

' \ду' а / df) 

Comparing (И) with (28) we find that the connection 'у. Г is reducible to VE iff 

^ ^ dx' dx^ a/ ' \ а / Ö/ ax̂  

\ a / a/ axv ' ' \ а / a/ a/ ' ' 

237 



Let (29') be the equation obtained from (29) by interchanging г ^ j . Because of (27) 
and (1) the equations (29) + (29') and (29)-(29') are fulfilled iff ^^ = 0 and Г is 
integrable. 

Proposition 8. The connection у . Г is reducible to VF if and only if Qo = 0, 
Фг = 0 and V^m = 0. 

Proof. The equations (23) and (22) imply 

a / г / дх' V ^ / à у' ду^, 

+ 2a,ß{A:, + Aiy;) + 2a,ß{Al + 4 , ^ 0 = 0 . 

Let у . Г be reducible to КГ. By Proposition 7, Q^ = 0, Ф/̂  = 0. In virtue of a^ = 
= -A^^aiß and (14) the equations (30) give (24). Conversely, let Ф^ = 0, ^^ = 0, 
У^ш = 0. Then by means of (11) and (24), the relations (30) imply Л^ + ^f^aj = 
= da]ldy\ This and (11) together give (14). Q.E.D. 

Corollary of Proposition 6, 7, 9. The connection у . Г is reducible to VF if and 
only if у is reducible to VE. 

Proposition 9. The connection у . F is reducible to HfE iff it is red. cible to VE. 

Proof. Interchanging a <-̂  /? in (22) and replacing / byj in (30) we get the equations 
(22') and (30'). Then the equations (22'), (19), (30') yield 

^^ioc ^^iß , ^^рЛ и ^ f^^f^ dajß oa^ß\ ß daj^ ôai^ 

dy" dy" dx'J ' Уду" 5 / дхЧ дх' дх' 

+ ( ^ " + ^ - —^^) a>f + 2a^l-a%A^,j + А^,а^ + 
ду"" \dyf^ ду-^ ду 

+ 4 + 4i^^- - <{^h + Äl^^a]) a\ + {A\, + Л^,а}) af] ^ 0 . 

Then, because of â ^ = ~a^^a\^ (13) holds iff (29) is satisfied. Q.E.D. 

Proposition 10. The connection у is reducible to HpE if and only if it is reducible 
to VE. 

Proof. Using aj^ = ~a^ßa]^ from the equations (22') of + (19) and (30) we deduce 
that (12) is fulfilled if and only if the equations (29) and (24) are satisfied. Q.E.D. 

5. Let F : ày^ = a]{x, y) àx^ be generalized connection on E. A bilinear form со 
on E will be called a (Г, ш, gyform if there are such a section w : E -^ V^E ® K*£ 
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and a bilinear form g on M that 

œ{X, Y) = Tu(vrX, VrY) + g{TnX, TnY) . 

In coordinates, if œ = a-.j ax' ® dx-̂ ' + ai^ dx' ® d / + a^i dy" ® dx' + a^p dy"" ® 
® dy^, w = A^ß d / ® dy'^, g = g^ dx' ® dx-̂ ' then со is a (Г, ш, g) - form iff 

Hence it follows that if со is a (Г, w, g) — form then 

(a) Г is conjugate to со, 
(b) CO is symmetric iff w and ^ are symmetric, 
(c) œ is regular iff w and Ö' are both regular. 

We assume that M is paracompact in what follows. 

Proposition 11. Let (£, œ) be a quasi-Riemannian structure. Let Г be conjugate 
to oj. Let w be the restriction of w to VE. Then there is such a bilinear form g on M 
that CO is a (Г, ш, g) — form if and only if Q^ = 0. 

Proof. As Г is conjugate to со, then a^ß = —ayßa]. Therefore from (27) 

g^ = (^ + ^ a ] -h ajy ^] {dx' ® dx^ + dx '̂ ® dx') ® dy'. 
\ dy"" dy"" dy"^/ 

Then Q,^ = 0 iff aij = -aj^a] + gij{x) = a^pa'^a'j + ди{х). Q.E.D. 

A quasi-Riemannian structure (£, w) will be said to be reducible if there is such 
a bilinear symmetric regular form ^ on M that со is a (Г, m, g) — form and у . Г = 
= VF @ (р^ХГ, where у or Я is the quasi-Riemannian connection of (£, œ) or of 
(M, g), respectively, Г is conjugate to œ and w is the restriction of ю to VE. 

Theorem. A quasi-Riemannian structure (£, o}) is reducible if and only if the 
quasi-Riemannian connection у of[E,œ) is reducible to VE. 

Proof. Let y be reducible to VE. Then by Proposition 6, Фр = 0, Q^^ = 0, V^w = 0. 
Consequently, on account of Proposition 11, there is a bilinear form g on M such that 
CO is a ( r , Ö5, g) — form, where w is the restriction of со to VE. Putting laß^A^ij evaluated 
from (19) in (18) and using Фр = 0, У^ш = О, a^j == —dßia'j + gtj, â « = ~^ßa^k 
we get 

dx'^ ôxJ 5^. + 2 0 , И . . - 0 . 

Then the well known equations for the Christoffel symbols r]j of the quasi-Rieman­
nian connection Я of (M, g) induce 

AS _- rs 
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By Proposition 10, y is reducible to H^^E. Hence because of (10) and (12) the equations 
(16) are fulfilled and thus y . Г is reducible to ф*Я . F, According to Proposition 8, 
y . Г is redusible to VF. Then by Lemma \, y . F = VF @ cp^^X . Г. Conversely, if 
(JE, ш) is reducible then 7 . Г is reducible to VF and hence by Proposition 8, y is 
reducible to F£. . Q.E.D. 
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