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ON SEGAL'S POSTULATES FOR GENERAL QUANTUM MECHANICS 

VAcLAV ALDA, Praha 

(Received December 3, 1979) 

Segal's postulates [1] deal with real algebraic systems. There are two groups of 
postulates. 

LL The system ^ is a real linear space. 
2. In Ш there exist an identity element / and for every Ue^ and a positive 

integer n an element W of % such that usual rules for operations with polynomials 
in a single variable are valid: if f, g and h are polynomials with real coefficients, 
and if f{g{(x)) = h{a) for all real a, then f{g{U)) = h{U); here f{U) = ß^I + 

m m 

II. 1. 21 is a real Banach space with the norm || ||. 

2. \U^ - F^ll й Max[||L/^||, IIF^IJ]. 
3. \\Щ = \\U\\\ 

4- 11 S ^^11 ^ 11 Z ^ i if ^ ^ ^ and S is a finite subset of Ш, 

5. U^ is a continuous function of U. 

The reality of ^ is expressed in II.2 and II.4. 
Sherman [2] proved that II.4 is redundant as it is a consequence of the other 

postulates — he in fact showed that the sum of squares is a square and this, by 
Corollary 1 of [ l ] (II.4 is not needed for its proof), implies the desired result. 

However, this can be also seen directly. 

\\иЦ = \\(U' + V') - V'W è Max(||[/^ + V% \\УЦ) 

as the sum of squares is a square and so II.2 can be used. If we suppose ||t7^|| > \\V^\\, 
then ||C7='|1 й\\и^ + V^. If \\иЦ = ЦУ̂ Ц then we can write 

\\иЦ = \\{U^ + tV^) - (F^ll , 0 < К 1 , 
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and thus \\иЦ й \\U^ + tV% As \\U^ + V^ - {U^ + tV^)\\ = {1 - t) \\УЦ -^ 0 
for f -> 1, we have \\иЦ й \\U^ + УЦ as well. 

Remark. When proving that the sum of squares is a square [2], the author uses 
the series for ^ ( l — t). Now, we must know how the values of Ци̂̂ Ц̂ are distributed 
for using the series for ^(l — U). 

If we have II.2, then we can calculate 

t/« + i = i{(t7« + uy - (U^ ~ Uy} 

and consequently, if Ц̂Ц ^ 1, then, by induction, ЦС/'*̂ !̂ ^ 1. 
If we have 11.4, then we have to use the inequality ||ï7"|| ^ 2[|l[/''"^|| • ||C/|| (see 

below) for evaluating \\W\\ and so Ц /̂"""̂ ! й 2" for \\U\\ й 1. 
In [2] only a non-vanishing radius of convergence was used for the proof. 

End of the remark. 
We shall show now: 
For a commutative system of observables ^ the positivity of squares as expressed 

in II.4 is sufficient for the demonstration of Theorem 1 in [1] and so II.2 is a con
sequence of II.4 (for commuting observables). 

The product in 3t is x о j ; = i{{x + уУ — (x - уУ} and so 4||x о j[| = 
= ||(x + УУ -{Х- УУ\\ ^ \\{x + УУ\\ -f ||(X - >.)̂ 1| = ||x Ч- УГ == \\x - УГ by 
II.3. 

Hence for ||x||, ||y|| ^ 1 we have 4||xo>'|| ^ 8 and thus ||x о Д'Ц ^ 2||x|| . \\y\\ 
for all X, y. 

If we set |x| = 2||x|| as a new norm, ^ will be a real Banach algebra. In this new 
norm, we have 

|x|^ = 2\x'\ . 

Let 9Ic be the complexification of 21: 

51 = {z I z = X 4- i>̂ , х,уеЩ, 

For z = X + i>' we set |z| = |x| + |>'|, z* = x — iy. Then |z + C| ^ \z\ + |C|, 
\az\ = \a\ . |z| for a real a, 

|zC| = |x{- j^ / l + . . . ^ | x | . | ^ | + ... = |zl.|Cl. 
Finally, 

|zp = (|x| + \y\y = \x\' + \y\' + 2|x| . \y\ й 2\x\' 4- 2|xp = 

= 4|xp = Sjx l̂ й 8|x^ + y^\ for |x| ^ |>;| . 

On the other hand, 
\zz*\ = \x^ + y^\ , hence \z\^ й 8|zz*| . 

If we set 
N(z) = sup |exp (i5) z\ , 
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we have 
N{z + С)й N{z) + N(0 , N{az) = \a\ N{z) , 

N{zC)uN{z)N{C), 
and 

N^{z) й 8 N{zz*) . 

Now we shall apply the result of 26.E from [3]. 9Ic with the norm N is •-alge
braically isomorphic to С(Ш) — the space of continuous functions on a compact — 
and we have 

\й\^ й N{z) й Щ^ , ze^c, 

where ê is the corresponding function and \z\^ is the norm in С{Ш). 
Now N{x) ~ ^(2) [|x|| for X G 21 and hence 

By II.3, l|jc '̂|| = Ixf' in % and the same is true in С{Ш) : {St^\ = Щ^^, 
Hence it must be ||x|| = Щ^ and this is the rest of Theorem 1. 

Remark. The proof works well with the inequaUty 

Ap^W й lll/ll^ è В\\иЦ for all [/ e 21 

and log (IIL/II*/II I/''II) bounded for every U and a sequence к -^ oo instee of 11.3. 

I should Hke to express my thanks to Dr. Vrbova for helpful discussions. 
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