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Czechoslovak Mathematical Journal, 32 (107) 1982, Praha 

EXISTENCE AND UNIQUENESS OF PERIODIC SOLUTIONS 
OF LINEAR DIFFERENTIAL EQUATIONS IN BANACH SPACES 

IVAN STRASKRABA, Praha 

(Received July 21, 1978) 

This work concerns the problem 

(0.1) p(^t,^^,Ay{t)=fit), 

u(t + со) = u(t) , r G я = (— 00, OO) , 

in a complex Banach space B. Here P(t, À, z) is a polynomial in X, z of degree m 
in X with real or complex coefficients, Л is a linear closed densely defined operator 
in В with a domain of definition D{A), A is supposed to be a generator of a strongly 
continuous group {^(s)}^ ;̂̂  of linear bounded operators defined on B, Consistently, 
и a n d / a r e Б-valued functions of t e R from which/ is supopsed to be periodic and и 
is required to be periodic with the same period. 

The problem (0.1) as w êll as more or less general ones were investigated in the 
abstract setting by many authors for m ^ 2 (see e.g. [1], [8], [12], [13], [14], [15], 
[16], [18], [19], [20], [21], [22]). 

The case m > 2 was treated by Ju. A. Dubinskij ([4], [5], [6]), N. Krylova, O. 
Vejvoda [11] and M. Sova [17]. 

Ju. A. Dubinskij proves the existence of a periodic solution to the equation 

w - l 

j = 0 

where A^, Л2, -.-, A^_-j^ are generally unbounded mutually commuting linear 
operators in a Hilbert space H whose joint spectrum satisfies a certain condition. 
He uses an explicit formula which is based on the spectral resolution of the operator 
i (d/d^) considered on smooth periodic functions in L2{R\H). N. Krylova and O. 
Vejvoda [11] describe the general Poincare scheme for the equation 

Du = g -\- г¥ 

with a set of general boundary conditions, where D is an m-th order differential 
operator with respect to dldt. 

In [17], which in revised form is included in [22], Chapter VII, §§ 1 — 3, M. Sova 

53 



proves the normal solvability in L2([0,27r]; Н) of an operator 

+ ^ + ... + a,„-2— + ^ 
d r d r ^ dr 

with a domain consisting of 27i:-periodic distributions, supposing that A is a normal 
linear operator in H and that the spectrum of A satisfies a certain condition. He uses 
Fourier expansions in Ь2([0,2л;]; H) and the theory of linear operators in Я. Section 1 
of the present work is auxiliary. In Section 2 we are concerned with the problem (0.1) 
in В with a given period со > 0 of the right hand side / . In Sees. 3 and 4 we are also 
concerned with some generalizations. We follow the idea of R. Hersh's paper [9], 
where the existence of a solution of the initial-value problem for the equation (0.1)| 
with f = 0 was proved. Hersh utilized the differential property of the group 
{T(5)} ,̂giî to transform the problem to the investigation of some properties of 
complex-valued fundamental solutions of the equation 

i'-irz)*-'^'"-
Later on, his results were generalized and improved in [3], [1], from which [3] by 
J. A. Donaldson provides the idea for the proof of uniqueness of a solution to (0.1) 
in our Theorem 2.2. 

1. NOTATION, DEFINITIONS, AUXILIARY RESULTS 

Let С denote the set of all complex numbers and let Б be a Banach space over С 
with a norm || • ||. (We denote by || • Ц̂  the norm in a normed space E if necessary.) 

If A is defined on D[A) Ç В and if it is Б-valued and linear then we denote by 
N(A), R(A), (T(A) and ^(^4) its kernel, range, spectrum and resolvent set, respectively. 
If A^ and A2 are linear operators from В into itself with Q{AI) Ф 0, ^(^2) + 0 then 
we say that A^, A2 are mutually commuting if so are R{^i, A^) ( = (Я^ ~ Л^)"^), 
R(À2, A2) for all Àj G Q(AJ), j = 1, 2. Operators A^, •.., ^„ are said to be mutually 
commuting if so is any pair Aj, Aj^ (1 ^ j , к ^_ n), 

A linear operator in В is called the generator of a strongly continuous group of 
linear bounded operators {T(s)}5gR (in the sequel only a group of operators) if 

(i) {r(s)}^.g^ c= L{B) ( = set of all bounded hnear ß-valued operators defined on B); 

(ii) D{A) = {x e B; hm (l/s) {T{S) X - X) exists}; 
s-»-0 

(iii) Ax = s - lim (l/s) {T{s) x - x), x e D{A). 

Theorem 1.1. (Hille-Yosida, see [23], p. 253). For a linear densely defined operator 
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Ä : D(A) ^ В -^ В let there exist non-negative constants c^, a^ such that 

\\R(À, -AYWUB) ^ • , Re Я > Ö-*- , 

||R(A, -AYl^s, й . ^ \ __--, КеЯ < - a - , 
( — KQ À — a ) 

n = 1, 2, ... . Then A is the infinitesimal generator of a group of operators {T(S)}S^R 
and there exists a positive constant К = К(а'^, a~) such that 

^̂ ^̂  " 'K{a\a-)c-'~\ s SO, 

Theorem 1.2. ([23], pp. 237 — 241). If A is the generator of a group of operators 
{T{s)},^R then 

(i) D(Ä) is dense in B; 

(ii) given n e N, A" is closed and Л(Л") is a Banach space with respect to the norm 
ll^lUc^n)- lî ll + |И"х||, XED{A^); 

(iii) (d/ds) T{s) x = - A T{s) x, x e D{A), S E R , 
(iv) hm Я" R(À, Af x = x, xeB, nsN; 

A->±oo 

(v) J^e"^^ T{s) xds = {À + A)-^x, xe B, Re Я > a + , 

jZ^Q^' T{s) X ds = {X- A)-^ X, XEB, Re Я > a". 

The integrals in (v) as well as below are taken in the sense of Bochner. 
For a given interval I ^ R, з, given Banach space E and a non-negative integer к 

we denote by C^(/; E) the Banach space of continuous functions и : I -^ E which are к 
times continuously diôerentiable in / , with 

||w||c'c(/,£) =^^^' sup {\\u^^\t)\\E ; tEl, I = 0,1, ...,/c} < 00 . 

If CO > 0 then СЦЯ; E) denotes the subspace of C\R; E) of co-periodic functions. 
Especially, we shall make use of the spaces C^(i^; ^ ( ^ 0 ) ' ^ = 0, 1, ..., / = 1, 2, . . . , . 
In what follows we use a formula of the type 

^ J ^ /(^,T)dT=J^ -l{t,T)dT + -{t)f(t,b{t)) 

for a vector-valued Bochner integrable function / depending on a parameter t (b being 
a real-valued-function) whenever its correctness is clear from the context. Here and 
elsewhere dujdt (or dujdt) for a Banach space-valued function и stand for the strong 
(partial) derivative of и with respect to t. Let M ^ JR be measurable and p ^ 1. 
Denote 

Lp{M; E) = If : M -> E; f strongly measurable, | | / ( 0 | | E dt < OO i 
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and 
yl /P 

W^M.E) = (Jjf{t 

Further CO(R"), n e N, denotes the space of functions with compact supports which 
are infinitely times differentiable. The topology on Co{R") is that of the inductive 
hmit of the semi-normed spaces CQ(K), where iC cz JR" is compact. 

If / e Li(jR"; E) then we define by 

the Fourier transform of/, while 

[InfjRn 

is the inverse Fourier transform of/. We have 

F Ц{К"; E) с C(R"; É) , F" ' L^{R''', E) с C{R''\ É). 

It is clear that 

F C( i^") = Z , FZ = C^(R") , F - 1 С^(Я") = Z , F - ^Z = C ( R " ) , 

where Z is the space of functions which are holomorphic in C" and satisfy 

|zV(^) | й Q exp (a X |lm z,.|), a e N" 

(see [7] Vol. 1, pp. 175—180). If Z is equipped with a suitable topology then F is 
a homeomorphism between C^{R') and Z. 

We shall need the following 

Theorem 1.3. Let f be a C-valned function holomorphic in an open set containing 

S = [ze C; -bj й Im Zj g fe/, ./ = 1, . . . , r} , {bf > 0, 7 = 1, ..., r) 

and let 

| / (z) | S const. [1 + ( I l z , . p y / ^ ] - - ^ , z = ( z , , . . . , z . ) e S . 
j = F 

Then Ff is continuous in R and there is a constant С such that 

\(Ff) {s)\ ^ С exp ( t ajsj), s = (5,, ..., 5,) e R^, 
j = i 

where aj = —b"^ if Sj ^ 0 and aj = bJ if Sj ^ 0, (7 = 1, ..., r). 
The p r o o f is standard and can be performed by successively integrating the 

function g,(z) = Q~'^^f(z) along rectangles with vertices — M, M, M + i b / , — M + 
+ i b t ; —M, —M - i b / , M •- ibj, M, (j = r, r - 1, ..., 1), using the Cauchy 
integration theorem and letting M -> 00. 
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Finally, the following theorem will be useful in what follows: 

Theorem 1.4. ([7], Vol 3, p. 78). Let P == (Pjk)7,k=i ^^ ^ matrix with complex 
elements and let Л ~- max Re Яу, Я ,̂ ..., Я^ being all eigenvalues of P. 

Then 
\\e^\\ ̂  e^(l + 2||P|| + ... + 2^"\i |P!| '"-^). 

(The symbol || • || denotes the norm of a matrix induced by the Euclidean norm in R".) 
In the next two sections we shall construct a solution of the problem (0.1) via 

a solution of a certain ordinary differential equation in B, the coefficients of which 
are scalar functions depending on a parameter a e C . That is why we formulate the 
forthcoming auxiliary lemmas. 

Lemma 1.1. Let r ̂  1 be an integer and let Q с С . Given functions qj^t, a), 
q^{t,G), .... q^{t,a), m '^ 1 on R x Q, continuous in t and a, holomorphic with 
respect to G at any GQ e Q^, with qj^t, a) ф 0 for all (t, a) e R x Q, there exists 
a unique function w(r, т, cr), т ̂  t, a e Q which is m-times continuously differen
tiable with respect to t and т, continuous in G, holomorphic with respect to G in Q^ 
and satisfies 

(1.1) îqÂt,-)^{t,r,a) = 0, 
j=o at-' 

(1.2) ^ - Г т , т , cr) == ^''"'-' , /c = 0 , l , - - . , m - 1, T<t, GEQ. 
dt^ q^{T,G) 

In the case that the functions q^ j = 1, 2, ..., m, are independent of t, i.e. 
qj{t, G) ~ qj{G), there exists a unique function w[t, G), t e R, G e Q which is infinitely 
times differentiable with respect to t, holomorphic with respect to G in Q^ and 
satisfies 

(1.2') Й!^(0,(х) = % ^ , k = 0 , l , . . . , m - l , teR. 

Moreover, the following relations hold: 

(U) и .). f (,. .) f-̂  (,, .))' = (-L- e.p -J- fiw) 
V df d r J \q„{(T) q,„{(r) J 

{o,o,...,o,iy, 
where the superscript T denotes the transposition, 

; = 0, 1, ..., m - 1 , 
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(1.5) dr 
{t,a) й " i l^mWr^ max \qj{o)\ . 

1 + ,M(») , f e Й , (T 6 ß , 

.6) 

ÖW = 

0, 
0, 

•îmH, 
0, 

0, 
^шС'^)' • 

. . , 0, 

.. , 0, 
0 
0 

о, о, о, 
-^o(ö-), -qx{^\ ~ci2{o\ 

о, qm{(^) 

and 
(1.7) Л[о) = шах ReAy(cr), Ö-e О, 

Яу(о-) бе'/пб̂  а// гоо?5 о/ /̂ï̂  polynomial ^ Д-̂  ^Х< )̂-
j = 0 

Proof. This result is an easy consequence of standard theorems on Hnear ordinary 
differential equations. 

Let us note that (1.4) follows from (1.3) and Theorem 1.4. The estimate (1.5) is 
derived from (1.Г) and (1.4). 

Lemma 1.2. Let Q, qj(t, a), j = 0, 1, ..., m and w(t, т, a) be as in Lemma 1.1. 
Suppose that qj are periodic in t with a period œ > 0 and that there are constants 
С > 0 and Po^ R such that 

(1 •«» i : 
d-'w 

àt 
- {t,t ~ T, a) dr ^ C(l + |cr|)^«, teR, (TeQ, j - 0, 1, .,., m >- 1, 

Then for any f e C^,{R; E) and any a e Q there exists a unique v{-, a) e CZ{R: E) 
such that 

d ^ 

dt' 
(1.9) j : ^ ^ ) ^ ( t , a ) = f(t), teR, 

j=o d r 

and it is given by 
poo Çt 

(1.10) v{t, a) = w{t, t - T,a) f{t - т) d i = w{t, т, (т)/(т) d t , teR. 
Jo J-oo 

Moreover, (d^vldt-^) (t, a), j = 0, 1, ..., m -~ 1, are continuous in t and a, holo-
morphic with respect to a in Q^ and 

Id-̂ 'i; 
(1.11) 

dt' 
(t^a) ^ Ф + НГ1|/|к(.;.)^ J = 0,l , . . . ,m-1, 

(̂ )̂ 
dr 

holds for all t e R and a e Q. 
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In the case when the q/s do not depend on t let us suppose that A((j) given by (1.7) 
satisfies 

(1.12) Л{а)й -d{l + \a\)\ aeQ, 

with some constants d > 0 and cce R. 

Then for any fe C^{R; É) and any a e Q there is a function v{-, a) e С^(Я; E) 
satisfying (1.9). This function is given by 

(1.13) i;(r, a ) = W{T, o)f{t - т)ат = \ w(t - T,G)f{T)dT , teR, 

with w(t, a) given by (1.3), the functions {d^vldt^)(t, a), j = 0, 1, ..., m are con
tinuous in t and a and holomorphic with respect to о in Q^ and 

(1.14) à'v 

àt 
ji^^'T) èl шигл 

.^i\g^iafcni+\a\f \\j \\cco{R;E) 5 

dr 0'^) 

j = 0, 1, ..., m - 1 , 

2^-^||6(^)ir^ ^ |g^((j)| ^ max \qj{(j)\ E 
o^j^m-i' ''it=i \q^{afd\l-^\(T\f' "" 

\\Cco{R;E) 

holds for t E R and a e Q, where Q((T) is defined by (1.4). 

Proof. By (1.8) the formula (1.10) defines a function v[t, a) which is continuous 
in t and a and holomorphic with respect to a in Q^. Moreover, 

d 
d^ 

-,{t,a)= \ -~r {t, T, d ) / ( T ) dr = -—{t,t - T, o)f[t - T) dr , 
г J - 00 dr Jo Ot^ 

7 = 0, 1, ..., m - 1 , 

(,, a) == — — f{t) + - - (^ T, a) fix) dr , 
df f7,„(L a) J-00 ^ r 

which immediately implies (1.9). Clearly, (d^vjat-') (t, a)J = 1, ..., m, are continuous 
in /, G and holomorphic with respect to a in Q^. The assumption (1.8) implies ( l .H) 
bv 

dt' 
{t,G) < 

d'w 
dt 

j{t,t - T, a) dr max ||/(т)||£ , j = 0, 1, ..., m , 
тб[0,со] 

from where (1.11) is obtained immediately by (1.8). The function v(t, a) is ш-periodic 
in t by virtue of (1.10) and the co-periodicity of the function/(f). 

The case of constant coefficients is similar except for (1.14) which results from 
(1.13), (1.4) and (1.5). It remains to verify the uniqueness of the ш-periodic solution 
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just found. Let v(t, a) be an co-periodic solution of 

(1.15) РиЛ, И Ч ^ с г ) = 0 . 

]f X(t, T, Ö-) is a fundamental matrix for (1.15) considered as a system then by the 
Floquet-Ljapunov theory there exists a continuous non-singular co-periodic matrix 
F(t, a) ( F ( 0 , a) = Id), such that the substitution x(r, a) = F(î, a) y(r, a), where 

x(r, a) = (xO, 4 I 0 , a), ..., ^ (/, a ) ) , 

transforms (1.15) into a system 

[t, a) = К (a) y(t, a) 

with K((j) = CO Mn X(T + CO, т, a). The function Wi(r, x, cr) = F(t, a) ^ w{t, т, о) 
satisfies (1Л6) and by (1.8) we have 

i: {t + T, T, a dr < 00 , j = 1, 2, . . . 

where the estimates for j ^ m can be reiterated from the equation. But as K{G) is 
independent of t and ^^(т, т, (j) = (0, 0 , . . . , 0, ^^(т, ( J ) "^ ) , the elements of the 
fundamental matrix Y{t, т, о) of (1.16) can be expressed as linear combinations of the 
components of Wj(f, т, er), (ôw^ldt) (t, т, a) etc. Thus 

\\v{t,a)\\j,..dt \\v{t,(j)y,ndt | | ^ ( r , 0 , ( j ) v ( 0 , ( j ) | | ^ . d ^ = 

л 00 

|lF(r, a) Y{t, 0, cr) v(0, a)\\j,n, dt й const. || Y{t, 0, (т) v(0, a)||;,., dt 

holds for all ne N. Hence we conclude that v(t, a) = 0. 

< CX) 

2. THE EQUATION WITH A SINGLE OPERATOR 

Let P{t, À, z) = Y Qj{t. 2) ^'. meN, 

where 

ОХ^) = Е Ы О ^ ' ' " J ^ O ' j = 0 , l , . . . , m , qj,eC^{R;C), 
k = 0 

/c = 0, 1, ..., Hj, j = 0,l,..,,m, 

CO > 0 being a fixed period. Let us suppose that we have a Hnear operator Л in 
a complex Banach space В which is the generator of a strongly continuous group 
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{T(5)}seK of hnear bounded operators in B. Let a function/e Q,(R; B) be given. The 
m 

purpose of this section is to construct a function и E f] C^J\Rl D^Ä"')) satisfying the 
j = o 

equation 

(2.1) p(t,~-^,Ä\u{t)==f{t), tER, 

in B. Our idea follows that of R. Hersh, [9] and consists in the following formahsm: 
Having a Б-valued function v[t, s) satisfying 

(2.2) p ( / , | , | ) . O , ^ ) = ^(s)/(0, 

(2.3) v{t -\-cD,s) = v{t, s ) , tER, se R 

(here Ô means the usual Dirac's ô), set formally 

(2.4) u{t) = T(s) v{t, s) ds. 

Assuming v{t, 5) -> 0 as |s| -> oo in an appropriate way and integrating by parts 
we have 

(2.5) P(t,~, л\ и (r) = P U -^ , Л I T{s) v{t, s) ds = 

v(t, s) ds = T(s) Pit,-, - 1 v(t, s)ds = 
J-00 \ dt ds/ 

= Г T{s) ô{s)f{t) ds = r(o)/(0 = /(0. 

In what follows we try to correct the equation (2.2) and the formula (2.4) in such 
a way to make the arrangements (2.5) justifiable. 

Choose numbers p ^ —1 and b"̂  > a" ,̂ b~ > a~, b > max{b"^, b " } , where 
a" ,̂ a" are the numbers from Theorem LL Suppose that / e Cj^R\ D{A^^^)) and 
put 

^ ± ( , ) = _ J e^-b±b^)s 

for s ^ 0 and ^"^(5) = 0 for s < 0, i.e. (p^{s) is the (p + 2)-fold primitive of ö{s) 
times e^-^±^*4 

Writing i;*(r, s) = e***** v{t, s) we have 
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Further, it can be easily verified that 

i: e-'-'{b + Ay^'T(s)f{t)ds=f{t) 
lo (p + 1)! 

(see the proof of Theorem 2.1). Finally, it appears to be convenient to search for the 
co-periodic solution of (2.1) in the form 

(2.6) «(0 = Г e*'^ T{s) v'it, s) ds + { e "* ' ' T{s) v*{t, s) ds , 

where the functions Ü*(/, S) are the solutions of 

(2.7±) P f / , - - , - + ьЛ v%t,s) = cp^{s){b + AY-^fit), 
\ dt ds J 

€"^{1 + œ,s) = v^(t,s), teR, seR 

with the corresponding signs. 
First of all we shall solve the problems (2.7=^) in the class of functions v{t, s) with 

continuous bounded derivatives ((9̂ "̂  ^i;/^^''^s^) (̂ , 5), teR, s e R, /c = 0, 1, ..., m, 
/ = 0, 1, ..., n = max Hj. Applying the Fourier transform to (2.7^), the functions 

OâJâm 

г)±(/, (j) = j e~^^^î;-(^s)d5 

are to satisfy 

(2.8^) P и -,ic7T bA v^(t, (j) = (b + b± + ia)-'-' {b + Ay^'f(t) , 

v~{t + œ,(T) = v'^(t,a), teR, aeR, 

with the corresponding signs. Suppose that 

(2.9) О Д ^ 1 ^ + Ь ± ) Ф 0 , teR, aeR. 

Then by Lemma 1.1 there are functions w-(t, т, a), т ^ t, a e R, satisfying 

(2.10) pft,-^,i(7T bA vv±(f, T, (j) = 0 , 

d̂ ^ ^ ' ' ^ Q^„{T,iaTb^y ~ 

aeR, /c = 0, 1, ..., m - 1 . 

Suppose that there exist constants С > 0 and Poe R such that 

(2.11) \-^j~{t,t - T,a)\dT йС(1 + \a\f\ (т e R , у - 0, 1, ..., m - К 
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Then by Lemma 1.2, (2.8'^) have the sohitions 

(2.12) v^{t, a) = {bj-b^ + i a ) -^-^ w^{t, t ~ T,(7), 

.{b + A)p^^f{t - т)ат , teR, a E R , 

with the corresponding signs. 
The functions (d-^v^ldt^) (r, a), j = 0, 1, ..., m are continuous in t and a and 

satisfy the inequalities 
(2-13) 

'^'^* (t, Л й C\b + Ь± + ïa\-<"' (1 + \а\У \\{b + Л)''̂  V||C„,«.B) , 
àt' 

à-^v-

àf 
{г, a) 

/ = 0, ] , . . . , m - 1 , 

й C\b + b* 4-ia|-''-^(l + Iffl)"". 

. max M.i^±4)j; .e[0,.], ,- = 0,l,...,m-lj. 
ô,(r,ia +5= )̂1 J 

. | |(b +Л)^+^/| |c^(к;ß), teR, GER. 

Theorem 2.1. Ler a polynomial P{t, À, z) and an operator A satisfy the assump
tions stated at the beginning of this section together with (2.9) and (2.11), where 
the functions w~ are determined by (2.10). 

Let n = max nj and suppose that p ^ n + Po- Moreover, assume that the foU 
luJâm 

lowing implication holds: 

(2.14) If z : R X R -^ В is a function such that 

dt^ ds'' 
EC{R X R-, B), 

d^-'h 
of ds' 

{t.s) 

< const. n == max nj 
luJam ' 

' , s^O, j = 0, 1, ..., m , к = 0 ,1 , 

' "% su О 

z{t + (У, s) = z{t, 5) , tER, SER , 
then z{t, s) = 0. 

Under these conditions for any f E C^lR; D{AP^^)) {fEC^{R;B) if p < - 2 ) 
the function и given by (2.6), where 

(2.15) 
2тс J - с 

e '̂̂  v-(t, a) da 
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with v^{t, a) given by (2.12), belongs to f] a(R; D{A% satisfies (2.1) and 
j = 0 

IdJu 
max 

Ой Jam dt' (0 
CUR-MA^)) 

^K 

holds with a constant К independent of f. 

Proof. By the assumption p ^ n + PQ and (2.13) it is clear that 

S' c o n s t . (1 + \G\)-^ \\f\\c^(R;DiAP-2y^ , /C = 0 , 1 , . . . , H. 
d r 

Note that ||(b + Af x\\ ^ const. (|jx|| + \\ЛЫ\\), x e D{A% I e N by the closed graph 
theorem. 

Thus (2.15) implies that the functions 

(t, s), / = 0, 1, ..., m , к ~ 0, 1, ..., n 

are continuous and their norms are bounded by const. ||/||CCO(JR:I>(^P + 2))- Hence the 
integrals 

Q-b~^ Tfs) "LJL h s)ds, e-^^^ T(s) "—^ (t, s) ds , 

7 = 0, 1, ..., m , /с = 0, 1, ..., /Î, 

converge and are continuous functions of t. 

In particular, the function u{t) given by (2.6) is continuous. Let 7 and к be integers, 
0 ^ j й Jn, 0 ^ к й n. Let us prove that u{t) e D(A^) for all teR and that the 
derivative (d-^A'^uldt-^) (t) exists and is continuous. Putting R^ = À R(À, A) for Xe R, 
|Я| > max {0"^, a~}, we have 

Л0 Г00 

(2.16) A'Rlu{t) = Q^'^A^ T{s) R4 v-{t, s)ds + e '^ 'M^ T{s) R \ t;-*-(r, s) ds = 
J-oo Jo 

+ 

+ E 
- / _ d V - ' - i 

0 |_\ ds 
r(5)f^e-^^i^i.-(M))T 

ds^ J,=o + 

+ 
r O f^k f oo л/с 

T(s) i L (e-^i?l . - ( / , s)) ds + T(s) f^ (o-'^^R^, v-(t, s)) ds = 
J-oo 5s Jo ds 
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/ - 0 

+ R\ Г е^"^ T{s) (^ + b-\v-{t, s) ds + R\ Ге"^^^ T{s) f^ - bA'v^{t, s) ds . 

Let z'^(t, s) = e"^^^^ v'^(t,s). Since the functions v'^(t, s) obviously satisfy (2.7"^) 
with the corresponding signs and the relations 

hold, it is clear that 

where e(s) is the usual Heaviside function. Thus we have 

Pit, — , — ) (z+(^ 5) - z-(t, 5)) = 0 , teR, seR. 
\ dt dsj^ ^ 

The assumption (2.14) implies z'^(t, s) — z~(t, s) = 0, i.e. e"̂ "̂ "" v^(t, s) = 
= e^~'v~{t,s), teR, se R, 

Differentiating successively the last relation by s and putting 5 = 0 we get 

( - - ьЛ v-'(t,s%=o = ( Г- + bj ^~it,s)l=o, teR, 1 = 0, 1, ..., n . 

Hence (2.16) is reduced to 

A'R'l «(0 = R\ j ° ^ e*- r(5) ß + Ь -Y v-{t, s) + 

+ R\ j j e-*^^ T(s) ß - b-J v-'it. 5) ds . 

Now letting /I ^ 00 we obtain by Theorem 1.2, (ii) and (iv) that u(t) e D(A'') and 

(2.17) A" u{t) = \ e"'" T{s)(- + ьЛ v-{t, s) ds + 

+ Г e * ' ' r (s) f- - fe+Yi'+(f, 5)d5 , teR. 

As we may interchange integration and differentiation when differentiating (2.17) 
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we have finally 

(2.18) -~ Л" «(f) = Г e""̂  T(s) —(- + b-Y v-it, s) ds + '̂  " 

+ f" e-"*' T{s) — f - - b+Y v^t, s) ds . 
Jo 'dt^yes ) ' 

We have proved u e 0 Ci{R\ D{A"')). Tt remains to verify (2.1). By (2.18) and 
j = 0 

(2.7*), the following arrangements are correct: 

, ( , . i , . ) „ ( , ) ^ - f _ ^ e ' - r « p ( . . | . | . b - ) „ - ( . . ^ ) ^ -

. £ e - r ( s ) p ( , , | . l - b * ) . 4 . . » ) ä . ' 

'OO < j P + l 

t-^'ib + yl)''+2T(s)/(<)ds = 
Jo(p + l)! 

J» <IS»*'UP + 1 ) U V is) / " " 

Jo ds 

where we integrated by parts and used Theorem 1.2, (v). 
The following theorem provides a more exphcit condition for the existence о 

a periodic solution of (2.1) than (2.14), along with a condition for the uniqueness 
of the given problem. 

Theorem 2.2. Let a polynomial P{t, À, z) and an operator A satisfy the require
ments stated at the beginning of this Section, Let the numbers b^ and b be chosen 
as in Theorem 2.1. Suppose that there are constants С > 0, Po^ ^- ß ^ ^^ 
ß~ > b~~ such that 

(2.19) оДг,1(т)фО, teR, (7eS = {ö-eC; -jß" ^ Im a é Z '̂'} 

and that the function w{t, т, a) determined by the equations 

p(tЛ,iЛ^^{t,x,a) = 0, ^ (,,,,,,) = ' A ^ , j ^ 0,1, ...,m - i 
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satisfies the inequalities 

(2.20) 

ô-'w 

df 
dT ^ C(l + j(j|)^° for j - 0, 1, ..., m - 1 , (J G S . 

Then the assumption (2.14) o/ Theorem 2.1 is satisfied and the problem 

(2.21) P A, - , /l) u{t) = 0 , 

w(r + ш) = ii(r), f e Я 
/za5 only the trivial solution. 

P r o o f Let the functions cp e C^(JR) and fe СДР; C) be arbitrary. 
We shall find a function v(t, s) satisfying 

(2.22) P и ^ , -^-) 4^' ') = /(0 4̂̂ ) ^ 
\ of ds / 

v{t + CO, 5) = ?;(?, 5) , t e R , s e R , 

in the classical sense. If we write v(t, s) = (27i)~^ j!?oo '̂(̂ ^ ̂ ) ^'^"^ ^^ then the function 
0 is to satisfy 

(2.23) P U ^ , -ia\v{t,a)=f{t)0{a), 

v{t + Ш, a) = v{t, (T) , teR, a e R . 

It follows from Lemma 1.2 that 

v{t,(j)==\ w{-t, -t ~ T, -a)f{-T - t)0{(j) dT , teR, a e S, 

is a solution of (2.23) even for a E S.By [7], Vol. 1, p. 175, the function ф[а) is holo-
morphic in all С and 

(2.24) (1 + НУ'|ф(а)| ^ Qê l̂ -̂ l̂ 
holds for all (7 G C, /c = 0, 1, ..., with some constants Q and with a > 0 such that 
supp Ф c: [ —0?, a ] . It is clear from (2.20) and Lemma 1.1 that the functions 
(d^D/dr^) (r, a), j = 0, 1, ..., m, are holomorphic in S and that 

i: (f, t - X, a)f(t - T)dT 
0 àt^' 

й C(l + \a\y ||/|!c„(R;e) 

holds for all j = 0, 1,..., fn, teR and (Т e S. This together with (2.24) implies that 

(1 + \a\f dJv, . 
- - - (t, tr) 
dt^ ^ 

^ MfcC"!'""'! , (76 S , fc = 0, I , . . . , ;" = 0, 1, ••• m 
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with appropriate constants M^̂ . Therefore, the functions {d^^^vjdt^ ds^) [t, s) are conti
nuous and satisfy (2.22). By Theorem L3 for any e > 0 there exist constants ^^(г, к) 
such that 

^) 

dt 

й С^{Е, 

^ С - ( гД)е ' 

\\CUR;C) 

iß--E)s\\ 

, teR, s ^ 0 , 

\\CUR;C) • 

teR, s < 0 , 7 = 0, 1 , . . . , m , /c = 0, 1, . . . . 

Now, let z : JR x JR -> Б be a function such that there exist continuous derivatives 
d^'^^zldt^ ds^ satisfying 

a^'+^z 

\dt' ds'' 

si ^ C^e' \ teR, s ^ O , 

^ C"e~^'^ re jR , s < 0 

for / = 0, 1, ..., m, A: = 0, 1, ..., n, and 

Ч'-1-Э*''="' 
z(r + a>, s) = z(f, s) , r e JR , s e JR . 

Choosing e > 0 so small that ß^ — e > b'^ and ß" ~ s > b~ WQ can write 

- a -^^ 
dt ' as 

/*co Too r<o Гоо 

fit)(p{s)z{t,s)àsdt = 
J o J - 0 0 J o J - o o 

Гсо /*oo 

i?(it, s) z(t, s) ds dr = v{t, s) 

P(t,-. ~\z(t,s)dsdt = 0 . 
V dt dsj ^ ^ 

Taking into account that / e Qj(JR; C) and cp e CQ{R) are arbitrary we conclude 
that 

<x*, z(f, s)> = 0 for all X* G Б* and all (r, s)eR\ 

where Б* is the dual space to В and <% •> denotes the duality between В and Б*. 
This finally leads to the conclusion z(t, s) = 0. 

If u{t) is an co-periodic solution of 

р(,.^,л)ц,) = о. 
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then according to the above consideration the function z(t, s) = T( —s) u( — t) must 
be identically zero. Thus u(t) must be identically zero as well. 

R e m a r k 2.L In the case when the coefficients of P{t, Д, z) are independent of t 
we can replace the assumptions (2.11) and (2.20) by (1.12), where 

Q = {ae C, Im Ö" = ±b^} and Q = S , respectively . 

If the inequality in (1.12) is replaced by Л{(т) ^ d{l + |Ö-|)" then taking the new 
variable t = —t, the new function A^a) corresponding to the polynomial P(r, — Я, icr) 
satisfies Д а ) ^ -d{l + \a\)\ 

R e m a r k 2.2. The assumption (2.19) in fact implies the existence of an every-
where defined, continuous inverse to the operator бДЛ). Indeed, if сг̂ , (72,..., o-,^^^ 
are all the roots of the polynomial Q^ia) then either Re cr̂  > "̂̂  > a"*" or Re (JJ < 
< -ß" < -a~. Hence ajEQ{A), j = 1,2, . . . ,n^ and 6m(^)"^ = (^i - Л)~^ . 
.{а2-Лу^,..{а„^~Ау^еЬ{В). Unfortunately, in the case that (2.19) fails 
to be satisfied at a point CQ E S^ our method is not apphcable exluding some par
ticular situations. This is illustrated by the following 

E x a m p l e 2.1. Let P{t, À, z) = Qi{z) À + Qo{z). Let S^ = {(J e C; | lm(j| < г}, 
where 8 > 0. Suppose that there is an CTQ G S such that ôi(io') = (icr — icio)̂  ßi(iö'), 
ßo(iö-) = (i(T — i(To)̂  Qo{^^)> where к and / are integers, /c ^ 1, J ^ 0 and ßi(iö'o) Ф 
Ф 0, Qo(i^o) Ф 0. If fc ^ /, then the equation ( l . l ) can be transformed into the system 

й,(А) ^ (0 + OVo - Л) ' -" QoiA) u{t) = v{t), 
at 

(ido - Af v{t) = /(0 , 
which can be solved provided the second equation is regularly solvable (the condition 
on A and / ) and that 

R^ К - i^y-' QoH ^-d{l + \a\y , ( J > 0 , а е К ) , a e S,, 
6i(i^) 

what implies к = I. 

If /c > / then obviously Re ((icTo — icr)^~^ So(i^)/Ôi(i^)) ranges over all reals when 
I (J ~ (Jo I ranges over any interval (0, ô), ô > 0. This means that the assumption 
(2.11) or (1.12) on which our method is based cannot be satisfied. 

3. THE EQUATION WITH SEVERAL OPERATORS 

Let A^, A2,..', А^Ы linear, possibly unbounded, and mutually commuting opera
tors in В which generate, respectively, strongly continuous groups {Ti(s|)}5^gR, 
{T2(s2)}s^eRy "-^{TrisrJjsreR ^f Ипсаг boundcd opcrators in B. Then also Tj(sj). 
. 7i(sfe) X = T},{sk) Tj{sj) X holds for Sj, Si,e R; j,k = 1, 2 , . . . , r; XEB (see [14], 
Lemma 11). 
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Let P(t, Я, Zi, • • , ^r) = Z ßX^' ^ 1 ' •••' ^r)'^^ ^^ ̂  polynomial of г + 1 variables 

À, Zi, ..., 2 ,̂ the coefficients of which are continuous, ш-periodic complex-valued 
functions of t. Denote by Пд the degree of the polynomial Qj with respect to the 
variable Zj^. 

Let us consider the problem 

(3.1) p(t,^^, A„...,A)ju{t)=f{t), 

u(t + ш) = u{t), teR, 
m r 

where feCJiR^B), A function ueV = (] 0^\К\ D{Y{ A""^^)) satisfying (3.1) is 

called a solution of (3.1). 
Let a^ ^ 0 be such constants that 

holds for /c = 1, 2, ..., r with an appropriate positive constant C. Take constants 
ßk ^ ^k > ^k ^ which are sufficiently close to a* (fc = 1, 2, ..., r), and let M be 
the set of all pairs (fc, /), where к =• {k^, ..., kq+), I = (Z ,̂ ..., /^-), /c u / == {1, 2, . . . 
..., r}, fc n / = 0, (̂ "̂  + ^" = r). For (/c, / ) е М denote by Ь̂ ,̂  the 2r-dimensional 
vector the /Cj-th component of which is b^. and the /^-th component is Ь̂~ (f == 1,... , ^^, 
j = 1, ..., (jf"), and by Dki(z) the r-dimensional vector the j 4 h component of which 
is equal to Zj — b^ if j e {k^, ..., к^+} and to Zj + bj if j e { / i , ..., l^-}. Further, 
we define the functions 

f . ^ j n T - ^ e - b - n e V - . n e - V - . if s^^O, / = l , . . . , r , 
ns, hi) = <J-i {Pj + 1)! J=i ;=i 

[O elsewhere in R'', 

where p = {pi, "•, Pr) is a vector with non-negative integral components, b> 
> max {b^, bj} and (fc, /) G M. 

Suppose that 

(3.2) Q^{t, i(7) Ф 0 , ^ e [0, со] , 

(jeS = {zeC; -ßj <lmzj< ß^^j = l , . . . , r } 

and let functions w(t, т, a, bj^i) be defined as solutions of the problem 

(3.3) P (t, ^ , D,i(ia)) w{t, T, a, b,,) = 0 , ^ (т, т, (т, Ь,,) = ^f^ , 

T ^ r , a e C " , j = 0, 1 , . . . , m - 1 , {к,1)еМ. 
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Assume that there exist constants С and PQ such that 

Jo |df-' I 

? е Я , 7 = 1, 2, ..., m - 1 , (k,l)EM, a e S . 

The following theorem, the proof of which follows the lines of the proofs of Theorems 
2.1 and 2.2, is valid: 

Theorem 3.1. Let a polynomial P{t, X, Z j , . . . , z )̂ and operators A^, Ä2, ..., A^ 
satisfy the requirements stated at the beginning of this section. Moreover, let (3.2) 
be fulfilled and let the functions w(t, т, a, bj^i), (/c, Г)е M defined as the solutions 
of (3.3) satisfy (3.4). 

г 

Then there exist pj eN, j = 1, ,.., r, such that for any fe F = СДТ^; D( Yl ^jO) 

there exists one and only one solution o/(3.l). This solution is given by 

(271;)'' i{ki,...,kg-^},{h,..-,lq-})eM Jo J o 

^ -times 

J - c o J - 0 0 j = l j = l 

^~-times 

f e'- П (b - bl + m,)-'"^-' U{b + bi, + \о,у^Г^ . 
J ВТ j=l j = l 

" w{t, t - T, (7, b,0 П (b + Л /^^ V(^ - T) dT 
0 j = l 

d(7 dsi^... d5/^_ dsj,^... dsfĉ + , t e R , 
and satisfies 

where U is the space of solutions, F is the space of the right-hand sides and К is 
a constant independent offeF. 

4. EXTENSIONS TO MORE GENERAL SPACES 

In this section we sketch how to employ the techniques of Donaldson [3] and Carrol 
[1] to obtain a periodic solution to (2.1) in a linear topological space X, In accordance 
with [1] we suppose that Z is a complete, separated, locally convex topological 
vector space, Ц{Р) denotes continuous linear maps X -> X with the strong operator 
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topology. Further, we assume that a closed densely defined hnear operator A in X 
generates a group {Г(5)},̂ 1^ с Ь^(Х) and there is a constant a ^ 0 such that for any 
continuous semi-norm p on X, there exists a continuous seminorm q on X such that 
p{T{s) x) ^ e"'"' q{x) for all se R and all xeX. Following Gelfand-Silov [7], Vol. 
2, 3 we choose linear, complete, separated, barreled, locally convex topological 
spaces Ф and Ф of complex-valued functions, which are topologically isomorphic 
under the Fourier transform: F : Ф -^ Ф, F~'^ : Ф -^ Ф. Further, we assume that 
polynomials are multipliers in Ф. Let Ь .̂(Ф, X) and Ц{Ф, X) denote continuous linear 
maps Ф -> X and Ф -^ X, respectively, endowed with the strong operator topology, 
that is, R^ -^ R means <^R^, cp} -> <JR, cp} in X for each cp e Ф. It is clear that the 
Parseval type formula <^, ф> = 27i<R, (p( — s)y for (p e Ф extends F onto Ь^{Ф, X). 
It is easily seen that F is a topological isomorphism of Ь^{Ф, X) onto L^{$, X) with 
{{ôlôs)Ry = i(xR. 

Now we suppose that we are given a continuous map J : X -> Ь^{Ф, X) defined 
by < Jx, ф> = ^°^^ (p(s) T(S)X ds, cp e Ф, XEX, where the integral sign on the 
right-hand side stands for the vector-valued integration (see [23], p. 237). 

Theorem 4.1. Let Ф be a linear topological space of complex functions defined 
on R, with the properties listed above. Let the function w(t, т, a) given by 

(4.1) pU^,ia\w{t,T,(j)=^0, 

AJ 's 
^-^ (T, T, G) = —b^^i:::^- , т u t , a e S = {z E C; llm zl < b} (b > Ö) , 
dt' б^(т, 1(т) 

as well as its derivatives (d-̂ w/df̂ ) (t, т, a), j = 0, 1, ..., m — 1, generate multiplier 
functions in Ф which are continuous operator functions in the strong operator 
topology of Ф. Further, suppose that 
(4.2) ^ 

— {t,t-T,G)\^Cj{(j)Q~'' for Tut, GES, ; - 0, 1, ..., m - 1, 
dt' I 

where a > 0 and C/s increase at most as polynomials in |(т| if \G\ -> oo. Finally, 
let PEN be sufficiently large and let {b + Äf f[t) be a continuous function in X. 
Then there exists a generalized solution u{t) of (2.1) in X in the sense that 

(4-3) Д ^ ^ ПОЧО, ôX .̂ i-) ^̂ ) = <ПОДО. ФУ 

holds for all ф E Ф, the relation taking place in L^{$,X). 

Proof. Put 

J 0 J - 00 L(^ + ^v J 
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This is a well defined function in X since by (4.2) and Theorem 1.3 

| F - I Г ^- w(f, t - T, (T)1 (S)| й с е-<«̂ >̂1̂ 1 e-"^ 
I L(b + î )̂  J I 

for T ̂  f, 5 G R, whenever p e N is sufficiently large and г > 0 sufficiently small. 
It remains to verify (4.3). This can be accomplished by means of the standard dis
tributional calculus. 

Remark 4.1. The preceding theorem and its proof provide only a rough informa
tion on the subject. We mention it trying to bring the reader's attention to the interes
ting technique of [1] and [3], avoiding the details which make it difficult to under
stand. 

5. AN ABSTRACT SECOND-ORDER DIFFERENTIAL EQUATION ARISING 
FROM THE TELEGRAPH EQUATION W ÎTH AN INNER DAMPING TERM 

In this last section we wish to give conditions on continuous co-periodic positive 
functions a[t), b(t), c{t), d(t) and an operator A : В z:> D(A) -^ В which is the 
generator of a group {T(5)}̂ gĵ , in order that the equation 

(5.1) ^ (0 + {a{t) - b{t) A-) ^ (0 + (c(0 - d{t) A-) u{t) = /(/) 
d r dt 

have a solution и in Cl{R\ B) n Cl(R; D{A^)). 
As is shown in Sec. 2, this task can be solved by imposing conditions on the func

tions a, b, c, d such that the solution w(t, t — т, a) of the equation 

(5.2) ^ + {a(t) + b{t) a') — + (c{t) + d{t) a') w = 0 , 
d r d̂  

W(T, T, (T) = 0 , — (T, T, Ö-) = 1 
dî  

decreases in an appropriate way (e.g. exponentially) when Г — т -> oo for [(т] < ^ 
with 3. ß > у = max lim sup (1п||Т(5)||/|5|). To this purpose we derive the following 

± S-* ±00 

Lemma 5.1. Let the function ö(t) = d(t) b(t)~^ be continously differentiable on R. 
Suppose there exists a ß > 0 such that 

(5.3) a{t) - ô{t) - ß b(t) > 0 

for all t e [0, o]. Let Уо ^^^ 7i ^^ positive constants satisfying 

y,u4{e{t)[a{t)-eit)-ßb{tW'\ 

, f e [0, <y] . 11^2 ^{t)-ôity + a{t)ô(t) 
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(5.4) 2С^,,>{А, + У^УУО^ - A,, 

where C^in = ^^^ c{t), ^max == r n ^ ^ к о ^ ^ ^ "^c = ^max ~ ^min? ^^^^ ^/ î^re exlst 
f6[0,o>] fe[0,co] 

constants с > 0 and a > 0 st/c/г /̂îflif f/ie solution w(t, т, er) о/ the equations 

(5.5) ^ + {a(t) + b(0 (7̂ ) ^ + (c(0 + 4 0 ^') ^ = 0, 
dr ^ dr 

dx 
X(T) •= 0 , —^ (T) = 1 , T ^ t 

dt 
satisfies the inequality 

(5.6) meix(\w{t,T,(T)l \—{t,T, ai\ й CQ-""^'-'^ 

for all t '^ T and all a = a^ + ia2, where сг̂  G R and |(J2| S ß-

Proof. The equations (5.5) can be written equivalently in the form 

(5.7) ^ ^ _sx,+x,, 
dt 

^ :^ r ^ __ ^2 + ^^ ^ ;̂ 2̂Л S - с - doA X, + 
dt Idt J 
+ {Ô ~ a ~ ba^) X2 , Xi(0) = 0 , ^2(0) = 1 , 

where x^ = x. Let m > 0 be an arbitrary constant. Putting F(xi, X2) = iw|xi |^ + 
+ il^il^ (we omit the arguments) we have 

(5.8) — = m Re ( Xi —~ + Re ( X2 —~ . 
^ ^ dt \ dtj \ dtj 

Assuming that (x^, X2) in (5.8) is a vector-function satisfying (5.7) we get 

— = - m(5|xi|^ ~ (ri - Ô) \x2\^ + 2D Re (X1X2) , 

where r^ = a + b{o-l - af), r^ = с + d{al - al) and D = 2"^(d<5/d/ - ^^ + 
+ ^1^ ~ Го + m). Using the inequality 2|Re(xiX2)| S ^l^'ij^ + ^^^l-^'aj^ (which 
holds for all 8 > 0) we get 

(5.9) — ^ - m ô\x,\' - (r, - Ô) \x2\' + \D\ e\x,\' + ^ \x2\' , 
d^ e 

E = e{t) arbitrary. By (5.3) we have r^ — ô > 0. Requiring mo — eJD| > 0 and 
r^ ~ ô ~ e~^|i)| > 0 the inequalities \D\ (r^ — ö)~^ < s < m ^ | D | ~ ^ have to be 
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satisfied. It is clear that 

m d{r^ - Ô) - D^ ^ [m S{r, - ô)]'^^ {[m ô(r, - (5)]^/^ - \D\} ^ 

^ 4-'yom'^'Ï4~'yom'^^ - 2-'\m - c\ - 2'' 1 ^ - ^^ + ad\\ ^ 

^ 4-1у^т^/^[4-^Уо^^/^ - 4 - ^ 1 - 2"^|m - c|] . 

If we put m == 2~^(c^in + c^^J then [m - c| ^ 2~^A^ and by (5.4) Уопг^^^' - y^ -
— Ac can be bounded below by a positive constant, say ao- In (5.9) set г = 
==2-'[mô\D\-^ + \D\{r, - ô)-'l 

Then 

^ й -[mô{r, - ô) - D^] {2~\r, - Ô)-' \x,Y + 
d^ 

+ {r,-ô)\mè{r, _ ^) + D^]-i |x,|^} . 

We have proved mô{r^ — 3) — D^ ^ 2~ '̂'̂ ao7o(<^min + <̂ max)̂ ^̂  and, particularly, 
D^ S m (5(г1 - ô). Hence (r^ - (5) [m (5(ri - ^) 4- D^]"^ ^ (2m(5)-^ Thus we 
obtain the final estimate 

- ^ ^ ( О ^ - а К ( г ) , te[r,cn), 
at 

where a is a positive constant which can be computed in terms of the coefficients 
a, b, c, d and which does not depend on a if this is contained in the domain 
{|lm a\ S ß}- This inequality easily yields our estimate (5.6). 

Lemma 5.1 and Theorems 2.1 and 2.2 give a result which is summarized in the 
following 

Theorem 5.1. Let A be the generator of a group {T^s)}^^^ c: L[B) and let ß > 
> max lim sup (In||r(s)||/|5|). Suppose that a, b, с and d are continuous œ-periodic 

± s-> ± 00 

positive functions on R, which satisfy (5.3) and (5.4), ô(t) being continuously dif-
ferentiable on R. Then for any f e F = C^JR; D(A'^)) there exists a unique solution 
ueU = Cl{R; В) n C\R; D{A^)) of (5.1). Moreover, \\u\\u й кЩр holds with 
a positive constant k. 

Proof. In Theorems 2.1, 2.2 put n = 2. Lemma 5.1 ensures that (2.20) holds with 
pQ = 0. Our assertion follows immediately. 
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