Czechoslovak Mathematical Journal

Ivan Chajda; Juhani Nieminen

Direct decomposability of tolerances on lattices, semilattices and quasilattices

Czechoslovak Mathematical Journal, Vol. 32 (1982), No. 1, 110-115

Persistent URL: http://dml.cz/dmlcz/101788

Terms of use:

© Institute of Mathematics AS CR, 1982

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

DIRECT DECOMPOSABILITY OF TOLERANCES ON LATTICES, SEMILATTICES AND QUASILATTICES

Ivan Chajda, Přerov, and Juhani Nieminen, Oulu

(Received November 27, 1979)

In the paper [2] the authors considered tolerances on direct products of monoids and distributive lattices in order to obtain conditions under which a tolerance is a direct product of tolerances on direct factors. Actually, the following result is proved:

Theorem. Let \mathfrak{A} and \mathfrak{B} be two monoids or two distributive lattices with greatest and least elements. Then the following two implications are equivalent:
(1) $T \in L T(\mathfrak{A} \times \mathfrak{B}) \Rightarrow$ there exist $T_{1} \in L T(\mathfrak{A}), T_{2} \in L T(\mathfrak{B})$ such that $T=T_{1} \times T_{2}$.
(2) $\langle a, b\rangle \in T \Rightarrow T_{A}\left(p r_{1} a, p r_{1} b\right) \times T_{B}\left(p r_{2} a, p r_{2} b\right) \subseteq T$.

The aim of this paper is twofold:

- to extend the above result for algebras in the title;
- to prove that (2) of Theorem holds automatically in lattices, i.e. lattices have directly decomposable tolerances without any constraints.

0. BASIC CONCEPTS

Let $\mathfrak{H}=(A, F)$ be an algebra. By a tolerance T (or tolerance relation) on \mathfrak{A} we mean a reflexive and symmetric binary relation on A with the Substitution Property with respect to F, i.e. T is a subalgebra of the direct product $\mathfrak{A} \times \mathfrak{M}$. The set of all tolerances on an algebra \mathfrak{H} constitutes an algebraic lattice $L T(\mathfrak{A})$ [1], and the meet in $L T(\mathfrak{V})$ coincides with the set intersection. We denote the join in $L T(\mathfrak{H})$ by \vee_{A}.
Let \mathfrak{A} and \mathfrak{B} be two algebras of the same type, $\mathfrak{H} \times \mathfrak{B}$ their direct product and $T \in L T(\mathfrak{H} \times \mathfrak{B}) . T$ is called directly decomposable if there exist $T_{1} \in L T(\mathfrak{H})$ and $T_{2} \in L T(\mathfrak{B})$ such that $T=T_{1} \times T_{2}$. If every tolerance on $\mathfrak{H} \times \mathfrak{B}$ is directly decomposable, we say that $\mathfrak{A} \times \mathfrak{B}$ has directly decomposable tolerances. If \mathscr{C} is a class of algebras such that for every pair $\mathfrak{N}, \mathfrak{B} \in \mathscr{C}, \mathfrak{H} \times \mathfrak{B}$ has directly decomposable tolerances, \mathscr{C} is said to have directly decomposable tolerances.

Let a and b be two elements of an algebra $\mathfrak{N} . T_{A}(a, b)$ denotes the least tolerance
on \mathfrak{A} collapsing the pair $\langle a, b\rangle$, i.e. $T_{A}(a, b)=\bigcap\{T \mid T \in L T(\mathfrak{H})$ and $\langle a, b\rangle \in T\}$. Thus $T_{A}(a, b)$ is a generalization of the concept of a principal congruence.

Let \mathfrak{U} and \mathfrak{B} be two algebras of the same type and x an element of $\mathfrak{A} \times \mathfrak{B}$. When $x_{1}=p r_{1} x$ and $x_{2}=p r_{2} x,\left[x_{1}, x_{2}\right]$ is a componentwise denotation for x. Further, if $T_{1} \in L T(\mathfrak{U})$ and $T_{2} \in L T(\mathfrak{B})$, we have $\langle x, y\rangle \in T_{1} \times T_{2}$ if $\left\langle x_{1}, y_{1}\right\rangle \in T_{1}$ and $\left\langle x_{2}, y_{2}\right\rangle \in T_{2}$. As noted in [2], the direct product of two tolerances is a tolerance on the direct product of the corresponding algebras.

1. TOLERANCES ON DIRECT PRODUCTS

The aim of this section is to give conditions under which the identity

$$
\begin{equation*}
\left(T_{1} \times T_{2}\right) \vee_{A \times B}\left(S_{1} \times S_{2}\right)=\left(T_{1} \vee_{A} S_{1}\right) \times\left(T_{2} \vee_{B} S_{2}\right) \tag{1}
\end{equation*}
$$

is valid for two algebras \mathfrak{A} and \mathfrak{B} of the same type and for every $T_{1}, S_{1} \in L T(\mathfrak{H})$ and every $T_{2}, S_{2} \in L T(\mathfrak{B})$. It is worth noting that (1) holds for congruences T_{1}, T_{2}, S_{1} and S_{2} on any algebras $\mathfrak{A l}$ and \mathfrak{B} of the same type, see [3].

An algebra is called idempotent if for every m-ary polynomial $q\left(x_{1}, \ldots, x_{m}\right)$ over \mathfrak{A} and for every $a \in A, q(a, \ldots, a)=a . \mathfrak{G}$ is called superidempotent if it is idempotent and for every m-ary polynomial q and every two elements a and b of \mathfrak{H} there are elements c and d such that $q(k, \ldots, k, a, k, \ldots, k)=a$ and $q(k, \ldots, k, b, k, \ldots$ $\ldots, k)=b$, where k is c or d according to the following rule: if k on i th place is $c(d)$ in the expression for a then k on the i th place is also $c(d)$ in the expression for b, and vice versa. When \mathfrak{H} is a lattice, it is superidempotent: the elements c and d corresponding to given a and b are $a \vee b$ and $a \wedge b$.

Theorem 1. Let \mathscr{C} be a class of superidempotent algebras of the same type, where for every $\mathfrak{H} \in \mathscr{C}$ and every $T, S \in L T(\mathfrak{H}),\langle u, v\rangle \in T \vee_{A} S$ if and only if there exists a positive integer N such that for every even $n>N$ there are elements u_{i}, v_{i} of $\mathfrak{A}(i=1, \ldots, n)$ and an n-ary polynomial p over \mathfrak{A} with the properties
(i) $p\left(u_{1}, \ldots, u_{n}\right)=u$ and $p\left(v_{1}, \ldots, v_{n}\right)=v$;
(ii) $\left\langle u_{i}, v_{i}\right\rangle \in T$ for even and $\left\langle u_{i}, v_{i}\right\rangle \in S$ for odd values of $i(i=1, \ldots, n)$.

Then the identity (1) is valid for all $\mathfrak{A}, \mathfrak{B} \in \mathscr{C}$ and every $T_{1}, S_{1} \in L T(\mathfrak{H}), T_{2}, S_{2} \in$ $\in L T(\mathfrak{B})$.

Proof. The proof is a modification of the proof of [2, Thm. 1]. Evidently $T_{1} \times T_{2}$, $S_{1} \times S_{2} \subseteq\left(T_{1} \vee_{A} S_{1}\right) \times\left(T_{2} \vee_{B} S_{2}\right)$, whence it remains to prove the inclusion $\left(T_{1} \vee_{A} S_{1}\right) \times\left(T_{2} \vee_{B} S_{2}\right) \subseteq\left(T_{1} \times T_{2}\right) \vee_{A \times B}\left(S_{1} \times S_{2}\right)$.

Let $a_{1}, b_{1} \in A$ and $a_{2}, b_{2} \in B$ be elements such that $\left\langle\left[a_{1}, a_{2}\right],\left[b_{1}, b_{2}\right]\right\rangle \in$ $\in\left(T_{1} \vee_{A} S_{1}\right) \times\left(T_{2} \vee_{B} S_{2}\right)$. Then $\left\langle a_{1}, b_{1}\right\rangle \in T_{1} \vee_{A} S_{1}$ and $\left\langle a_{2}, b_{2}\right\rangle \in T_{2} \vee_{B} S_{2}$. According to the assumption, there are two positive integers N_{1} and N_{2} such that for every even integer $n>\max \left(N_{1}, N_{2}\right)$ there exist elements u_{1}, \ldots, u_{n} and v_{1}, \ldots, v_{n}
of $\mathfrak{N}, u_{1}^{\prime}, \ldots, u_{n}^{\prime}$ and $v_{1}^{\prime}, \ldots, v_{n}^{\prime}$ of \mathfrak{B}, and n-ary polynomials p and q over \mathfrak{H} and \mathfrak{B} having the properties
(i) $p\left(u_{1}, \ldots, u_{n}\right)=a_{1}, p\left(v_{1}, \ldots, v_{n}\right)=b_{1}, q\left(u_{1}^{\prime}, \ldots, u_{n}^{\prime}\right)=a_{2}$ and $q\left(v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right)=b_{2}$;
(ii) $\left\langle u_{i}, v_{i}\right\rangle \in T_{1}$ and $\left\langle u_{i}^{\prime}, v_{i}^{\prime}\right\rangle \in T_{2}$ for even and $\left\langle u_{i}, v_{i}\right\rangle \in S_{1}$ and $\left\langle u_{i}^{\prime}, v_{i}^{\prime}\right\rangle \in S_{2}$ for odd values of $i, i=1, \ldots, n$.
We define now an n^{2}-ary polynomial r as follows: $r\left(y_{1}, \ldots, y_{n^{2}}\right)=p\left(q\left(x_{11}, \ldots\right.\right.$ $\left.\ldots, x_{1 n}\right), \ldots, q\left(x_{n 1}, \ldots, x_{n n}\right)$, where $x_{k, j}=y_{(k-1), n+j}$. Let c_{i} and d_{i} be elements of \mathfrak{G} such that $q\left(k_{i}, \ldots, k_{i}, u_{i}, k_{i}, \ldots, k_{i}\right)=u_{i}$ and $q\left(k_{i}, \ldots, k_{i}, v_{i}, k_{i}, \ldots, k_{i}\right)=v_{i}$, where k_{i} is c_{i} or $d_{i}, i=1, \ldots, n$. Furthermore, $\left\langle c_{i}, c_{i}\right\rangle,\left\langle d_{i}, d_{i}\right\rangle \in S_{1}, T_{1}$ for every value of i. Accordingly, we can now write the following scheme:
$-t$ and s are indices, $t, s=1, \ldots, n$;

- for each separate value of $t, z_{s}=w_{s}=k_{t}$ when $s \neq t$, and $z_{s}=u_{t}, w_{s}=v_{t}$ when $s=t$;
$-\left\langle\left[z_{s}, u_{t}^{\prime}\right],\left[w_{s}, v_{t}^{\prime}\right]\right\rangle \in T_{1} \times T_{2}$ when t is even and $\left\langle\left[z_{s}, u_{t}^{\prime}\right],\left[w_{s}, v_{t}^{\prime}\right]\right\rangle \in S_{1} \times S_{2}$ when t is odd.
Moreover, $r\left(\left[z_{1}, u_{1}^{\prime}\right],\left[z_{2}, u_{1}^{\prime}\right], \ldots,\left[z_{n}, u_{n}^{\prime}\right]\right)=\left[r\left(z_{1}, \ldots, z_{n}, z_{1}, \ldots, z_{n}, \ldots, z_{n}\right)\right.$, $\left.r\left(u_{1}^{\prime}, \ldots, u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{2}^{\prime}, u_{3}^{\prime}, \ldots, u_{n}^{\prime}\right)\right]=\left[r\left(u_{1}, k_{1}, \ldots, k_{1}, k_{2}, u_{2}, k_{2}, \ldots, k_{2}, k_{3}, \ldots\right.\right.$ $\left.\left.\ldots, k_{n}, u_{n}\right), r\left(u_{1}^{\prime}, \ldots, u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{n}^{\prime}\right)\right]=\left[a_{1}, a_{2}\right]$ and similarly $r\left(\left[w_{1}, v_{1}^{\prime}\right],\left[w_{2}, v_{1}^{\prime}\right], \ldots\right.$
$\left.\ldots,\left[w_{n}, v_{n}^{\prime}\right]\right)=\left[b_{1}, b_{2}\right]$. Obviously, $\mathfrak{H} \times \mathfrak{B}$ is superidempotent when \mathfrak{A} and \mathfrak{B} are, whence one can derive from the polynomial r a new polynomial r^{*} such that r^{*} is $\left(n^{2}+j\right)$-ary, where j is even and $r^{*}\left(y_{1}, \ldots, y_{n^{2}+j}\right)=p r_{1}\left(r\left(y_{1}, \ldots, y_{n^{2}}\right), y_{n^{2}+1}, \ldots\right.$ $\left.\ldots, y_{n^{2}+j}\right)$. But then, according to the superidempotency of $\mathfrak{A} \times \mathfrak{B}$ with respect to r^{*}, $\left[a_{1}, a_{2}\right]$ and $\left[b_{1}, b_{2}\right]$, we have two sequences of elements and a polynomial r^{*} over $\mathfrak{N} \times \mathfrak{B}$ such that (i) and (ii) hold for every even $m>n^{2}-2$ and thus $\left\langle\left[a_{1}, a_{2}\right]\right.$, $\left.\left[b_{1}, b_{2}\right]\right\rangle \in\left(T_{1} \times T_{2}\right) \vee_{A \times B}\left(S_{1} \times S_{2}\right)$. This completes the proof.

A join-semilattice $\mathbb{S}=(S, v)$ is called down directed, if for any two elements $a, b \in S$ there is a common lower bound c of a and b in \mathbb{S}. An up directed meetsemilattice is defined dually. A quasilattice $\mathfrak{Q}=(Q, \vee, \wedge)$ is a structure, where \vee and \wedge are commutative, associative and idempotent (see Płonka [4]), i.e. \mathfrak{Q} is a join-semilattice with respect to \vee and a meet-semilattice with respect to $\wedge . \mathfrak{Q}$ is a lattice if and only if the absorption laws hold in $\mathfrak{Q} \mathfrak{Q}$ is down directed, if it is down directed as a join-semilattice, and up directed, if it is up directed as a meet-semilattice. Obviously, down directed join-semilattices and quasilattices as well as up directed meet-semilattices and quasilattices are superidempotent.

Theorem 2. Let $\mathfrak{C b}$ be one of the following classes of algebras:
(i) the class of all lattices;
(ii) the class of all down directed join-semilattices;
(iii) the class of all up directed meet-semilattices;
(iv) the class of all down directed quasilattices;
(v) the class of all up directed quasilattices.

Then (1) is true for each $\mathfrak{A}, \mathfrak{B} \in \mathscr{C}$ and for every $T_{1}, S_{1} \in L T(\mathfrak{H}), T_{2}, S_{2} \in L T(\mathfrak{B})$.
Proof. We have to show that when $\mathfrak{H} \in \mathscr{C}, T, S \in L T(\mathfrak{H})$ and $u, v \in A$, then $\langle u, v\rangle \in T \vee_{A} S$ if and only if there exists an even positiev integer N such that for every even integer $n>N$ there are elements u_{1}, \ldots, u_{n} and v_{1}, \ldots, v_{n} and an n-ary polynomial p over \mathfrak{A} such that (i) and (ii) of Theorem 1 hold. After proving this the assertion of the theorem follows from Theorem 1 . We shall present the proof only for lattices; the proofs for (ii) -(v) are analogous and hence we omit them.

As proved in [1, Thm. 2], $\langle u, v\rangle \in T \vee_{A} S$ if and only if there is a polynomial $p^{*}\left(y_{1}, \ldots, y_{m}\right)$ and elements $u_{1}^{*}, \ldots, u_{m}^{*}$ and $v_{1}^{*}, \ldots, v_{m}^{*}$ such that $\left\langle u_{i}^{*}, v_{i}^{*}\right\rangle \in T$ or $\left\langle u_{i}^{*}, v_{i}^{*}\right\rangle \in S, i=1, \ldots, m, p^{*}\left(u_{1}^{*}, \ldots, u_{m}^{*}\right)=u$ and $p^{*}\left(v_{1}^{*}, \ldots, v_{m}^{*}\right)=v$. Thus if the conditions (i) and (ii) of Theorem 1 hold, then $\langle u, v\rangle \in T \vee_{A} S$. So it remains to show the converse and we shall do it by modifying the polynomial $p^{*}\left(y_{1}, \ldots, y_{m}\right)$ and the sequences $u_{1}^{*}, \ldots, u_{m}^{*}$ and $v_{1}^{*}, \ldots, v_{m}^{*}$ in a suitable manner.

Let us denote $u_{1}^{*} \wedge \ldots \wedge u_{m}^{*} \wedge v_{1}^{*} \wedge \ldots \wedge v_{m}^{*}$ by a^{*}. Trivially, $\left\langle a^{*}, a^{*}\right\rangle \in T, S$, $u_{i}^{*} \vee a^{*}=u_{i}^{*}$ and $v_{i}^{*} \vee a^{*}=v_{i}^{*}$ for each $i, i=1, \ldots, m$. If $\left\langle u_{1}^{*}, v_{m}^{*}\right\rangle \in S$, we put $u_{1}=u_{1}^{*}$ and $v_{1}=v_{1}^{*}$, and if $\left\langle u_{1}^{*}, v_{1}^{*}\right\rangle \notin S$, we put $u_{1}=v_{1}=a^{*}, u_{2}=u_{1}^{*}$ and $v_{2}=v_{1}^{*}$; clearly then $\left\langle u_{2}, v_{2}\right\rangle \in T$. Assume that $\left\langle u_{1}^{*}, v_{1}^{*}\right\rangle \in S$, whence $u_{1}=u_{1}^{*}$ and $v_{1}=v_{1}^{*}$. If now $\left\langle u_{2}^{*}, v_{2}^{*}\right\rangle \in T$, we put $u_{2}=u_{2}^{*}$ and $v_{2}=v_{2}^{*}$, and if $\left\langle u_{2}^{*}, v_{2}^{*}\right\rangle \notin T$, then we put $u_{2}=v_{2}=a^{*}$. In that case $\left\langle u_{2}, v_{2}\right\rangle \in T$ and because then $\left\langle u_{2}^{*}, v_{2}^{*}\right\rangle \notin S$, we put $u_{2}^{*}=u_{3}$ and $v_{2}^{*}=v_{3}$. So from $u_{1}^{*}, \ldots, u_{m}^{*}$, from $v_{1}^{*}, \ldots, v_{m}^{*}$ and from a^{*} we can easily construct two new sequences $u_{1}, \ldots, u_{2 k}$ and $v_{1}, \ldots, v_{2 k}$ such that $\left\langle u_{i}, v_{i}\right\rangle \in$ $\in T$ for even and $\left\langle u_{i}, v_{i}\right\rangle \in S$ for odd values of $i, i=1, \ldots, 2 k$. Assume that $\left\langle u_{1}^{*}, v_{1}^{*}\right\rangle \notin$ $\notin S$, and so $u_{1}=v_{1}=a^{*}, u_{2}=u_{1}^{*}$ and $v_{2}=v_{1}^{*}$. Then we replace y_{1} in the polynomial $p^{*}\left(y_{1}, \ldots, y_{m}\right)$ by the expression $x_{1} \vee x_{2}$ and obtain a new polynomial $p^{\prime}\left(x_{1}, x_{2}, y_{2}, \ldots, y_{m}\right)$. After performing all similar necessary modifications in the polynomial p^{*} we have a new one: $p\left(x_{1}, \ldots, x_{2 k}\right)$. Because $u_{i}^{*} \vee a^{*}=u_{i}^{*}$ and $v_{i}^{*} \vee a^{*}=v_{i}^{*}, p\left(u_{1}, \ldots, u_{2 k}\right)=u$ and $p\left(v_{1}, \ldots, v_{2 k}\right)=v$. Now we may put $N=$ $=2 k-2$ and if $n>N$, we put $u_{i}=v_{i}=a^{*}$ for $i=2 k+1, \ldots, n$, and moreover $p\left(x_{1}, \ldots, x_{n}\right)=p\left(x_{1}, \ldots, x_{2 k}\right) \vee x_{2 k+1} \vee \ldots \vee x_{n}$. In this case the conditions (i) and (ii) of Theorem 1 also hold, and the required result follows from [1, Thm. 2].

It is proved in [2] that the identity (1) implies a similar identity for an arbitrary number of tolerances on direct factors, i.e.

$$
\begin{equation*}
\mathrm{V}_{A \times B}\left\{T_{\gamma} \times S_{\gamma} \mid \gamma \in \Gamma\right\}=\mathrm{V}_{A}\left\{T_{\gamma} \mid \gamma \in \Gamma\right\} \times \mathrm{V}_{B}\left\{S_{\gamma} \mid \gamma \in \Gamma\right\} \tag{2}
\end{equation*}
$$

(Γ is an arbitrary index set) in the class of all distributive lattices with a least and a greatest element as well as in the class of all monoids with a unit element. In the following we extend this result. The proof follows from that of [2, Thm. 2], where the unit element is substituted by a lower bound (by an upper bound) of the elements under consideration and the operation \circ by $\vee($ by $\wedge)$. Hence the proof is omitted.

Theorem 3. Let \mathscr{C} be one of the classes (i)-(v) of algebras in Theorem 2. Then (2) is valid for each pair $\mathfrak{A}, \mathfrak{B} \in \mathscr{C}$ and for every $T_{\gamma} \in L T(\mathfrak{H}), S_{\gamma} \in L T(\mathfrak{B})$, where Γ is an arbitrary index set.

2. DIRECT DECOMPOSABILITY

Theorem 5 of [2] can be generalized in the following way:
Theorem 4. Let \mathfrak{H} and \mathfrak{B} be two algebras of the same type satisfying (2). Then the following conditions are equivalent:
(1) $\mathfrak{H} \times \mathfrak{B}$ has directly decomposable tolerances;
(2) $\langle a, b\rangle \in T$ implies $T_{A}\left(a_{1}, b_{1}\right) \times T_{B}\left(a_{2}, b_{2}\right) \subseteq T$ for each $T \in L T(\mathfrak{H})$.

Proof. (1) \Rightarrow (2). The equality $T_{A \times B}(a, b)=T_{1} \times T_{2}$ evidently implies that $T_{A}\left(a_{1}, b_{1}\right) \subseteq T_{1}, T_{B}\left(a_{2}, b_{2}\right) \subseteq T_{2}$, and thus $\langle a, b\rangle \in T$ implies that $T_{A}\left(a_{1}, b_{1}\right) \times$ $\times T_{B}\left(a_{2}, b_{2}\right) \subseteq T_{1} \times T_{2} \subseteq T$.
(2) $\Rightarrow(1)$. Let
$T_{1}=\left\{\left\langle a_{1}, b_{1}\right\rangle \mid\right.$ there exist a_{2}, b_{2} of \mathfrak{B} such that

$$
\left.\left\langle\left[a_{1}, a_{2}\right],\left[b_{1}, b_{2}\right]\right\rangle \in T\right\} \quad \text { and }
$$

$T_{2}=\left\{\left\langle a_{2}, b_{2}\right\rangle \mid\right.$ there exist a_{1}, b_{1} of \mathfrak{A} such that

$$
\left.\left\langle\left[a_{1}, a_{2}\right],\left[b_{1}, b_{2}\right]\right\rangle \in T\right\} .
$$

By Theorem 14 in [1], $T_{1}=\bigvee_{A}\left\{T_{A}\left(a_{1}, b_{1}\right) \mid\langle a, b\rangle \in T\right\}$ and $T_{2}=\bigvee_{B}\left\{T_{B}\left(a_{2}, b_{2}\right) \mid\right.$ $\mid\langle a, b\rangle \in T\}$. Then it follows from (2) that $T_{1} \times T_{2}=\left(\bigvee_{A}\left\{T_{A}\left(a_{1}, b_{1}\right) \mid\right.\right.$ $\langle a, b\rangle \in T\}) \times\left(\bigvee_{B}\left\{T_{B}\left(a_{2}, b_{2}\right) \mid\langle a, b\rangle \in T\right\}\right) \subseteq \bigvee_{A \times B}\left\{T_{A}\left(a_{1}, b_{1}\right) \times T_{B}\left(a_{2}, b_{2}\right)\right.$ $\mid\langle a, b\rangle \in T\} \subseteq T$. The converse inclusion is evident. Because $T_{1} \in L T(\mathfrak{H})$ and $T_{2} \in L T(\mathfrak{B})$, (1) is proved.

Next we shall prove two lemmas, by means of which we can prove the second result from the introduction.

Lemma 1. Let $\mathfrak{H}=(A, F)$ be an algebra and $a, b \in A .\langle x, y\rangle \in T_{A}(a, b)$ if and only if there exists a binary algebraic function φ over \mathfrak{H} such that $x=\varphi(a, b)$ and $y=\varphi(b, a)$.

Proof. Clearly the set of all pairs $\langle x, y\rangle$ for all binary algebraic functions φ from the theorem over \mathfrak{H} constitute a reflexive and symmetric binary relation T having the Substitution Property and collapsing $\langle a, b\rangle$, i.e. $T_{A}(a, b) \subseteq T$. The converse inclusion is evident.

Lemma 2. Let \mathfrak{A} and \mathfrak{B} be two lattices. Then $T_{A}\left(a_{1}, b_{1}\right) \times T_{B}\left(a_{2}, b_{2}\right) \subseteq T_{A \times B}(a, b)$ for every pair $\langle a, b\rangle$ of elements of $\mathfrak{H} \times \mathfrak{B}$.

Proof. Let $\langle x, y\rangle \in T_{A}\left(a_{1}, b_{1}\right) \times T_{B}\left(a_{2}, b_{2}\right)$. Then $\left\langle x_{1}, y_{1}\right\rangle \in T_{A}\left(a_{1}, b_{1}\right)$, $\left\langle x_{2}, y_{2}\right\rangle \in T_{B}\left(a_{2}, b_{2}\right)$ and, according to Lemma 1 , there exist $(2+n)$-ary and $(2+m)$-ary polynomials p and q such that $x_{1}=p\left(a_{1}, b_{1}, c_{1}, \ldots, c_{n}\right), y_{1}=$ $=p\left(b_{1}, a_{1}, c_{1}, \ldots, c_{n}\right), x_{2}=q\left(a_{2}, b_{2}, d_{1}, \ldots, d_{m}\right)$ and $y_{2}=q\left(b_{2}, a_{2}, d_{1}, d_{2}, \ldots, d_{m}\right)$. Let $s=\max (m, n)$ and let us put $c_{i}=c_{n}$ and $d_{j}=d_{m}$ for $i=n, \ldots, s$ and $j=m, \ldots, s$. Now we can construct a $(4+s)$-ary polynomial r as follows: $r\left(x, y, k_{1}, \ldots, k_{s}\right.$, $\left.e_{1}, e_{2}\right)=\left(e_{1} \wedge p\left(x, y, k_{1}, \ldots, k_{s}\right)\right) \vee\left(e_{2} \wedge q\left(x, y, k_{1}, \ldots, k_{s}\right)\right)$. But then $p\left(x, y, c_{1}, \ldots\right.$ $\left.\ldots, c_{n}\right)=r\left(x, y, c_{1}, \ldots, c_{s}, h, g\right)$ and $q\left(x, y, d_{1}, \ldots, d_{m}\right)=r\left(x, y, d_{1}, \ldots, d_{s}, g, h\right)$, where $h=x \vee y \vee c_{1} \vee \ldots \vee c_{n} \vee d_{1} \vee \ldots \vee d_{m}$ and $g=x \wedge y \wedge c_{1} \wedge \ldots \wedge c_{n} \wedge$ $\wedge d_{1} \wedge \ldots \wedge d_{m}$. Further, $\langle x, y\rangle=\left\langle\left[x_{1}, x_{2}\right],\left[y_{1}, y_{2}\right]\right\rangle=\left\langle\left[r\left(a_{1}, b_{1}, c_{1}, \ldots\right.\right.\right.$ $\left.\left.\ldots, c_{s}, h, g\right), r\left(a_{2}, b_{2}, d_{1}, \ldots, d_{s}, g, h\right)\right],\left[r\left(b_{1}, a_{1}, c_{1}, \ldots, c_{s}, h, g\right), r\left(b_{2}, a_{2}, d_{1}, \ldots\right.\right.$ $\left.\left.\left.\ldots, d_{s}, g, h\right)\right]\right\rangle=\left\langle r\left(a, b,\left[c_{1}, d_{1}\right], \ldots,\left[c_{s}, d_{s}\right],[h, g],[g, h]\right), r\left(a, b,\left[c_{1}, d_{1}\right], \ldots\right.\right.$ $\left.\left.\ldots,\left[c_{s}, d_{s}\right],[h, g],[g, h]\right)\right\rangle=\langle\varphi(a, b), \varphi(b, a)\rangle$, where $\varphi(x, y)=$ $=r\left(x, y,\left[c_{1}, d_{1}\right], \ldots,\left[c_{s}, d_{s}\right],[h, g],[g, h]\right)$. According to Lemma $1,\langle x, y\rangle \in$ $\in T_{A \times B}(a, b)$. This completes the proof.

Now we can prove

Theorem 5. The class of all lattices has directly decomposable tolerances.
Proof. By Theorem 3, the class from the theorem satisfies the identity (2), and thus Theorem 4 can be used. According to Lemma 2, 2) of Theorem 4 holds, whence the proof is a direct consequence of Theorem 4.

References

[1] I. Chajda and B. Zelinka: Lattices of tolerances. Časop. pěst. mat. 102 (1977), 10-24.
[2] I. Chajda and B. Zelinka: Tolerance relations on direct products of monoids and distributive lattices. Glasnik mat. 14 (1979), 11-16.
[3] G. A. Fraser and A. Horn: Congruence relations in direct products. Proc. Am. Math. Soc. 26 (1970), 390-394.
[4] J. Plonka: On distributive quasilattices. Fund. Math. 40 (1967), 191-200.
Authors' addresses: I. Chajda, 75000 Přerov, tř. Lidových milicí 22, ČSSR; J. Nieminen, 90570 Oulu 57, Faculty of Technology, University of Oulu, Finland.

