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Czechoslovak Mathematical Journal, 32 (107) 1982, Praha 

A NEW METHOD FOR OBTAINING EIGENVALUES 
OF VARIATIONAL INEQUALITIES: OPERATORS WITH 

MULTIPLE EIGENVALUES 

MILAN KUCERA, Praha 

(Received March 2, 1979) 

We shall consider a real Hilbert space Я, a closed convex cone К in H with its 
vertex at the origin and a Hnear symmetric completely continuous operator A : H -^ 
-^ H. The inner product in H is denoted by < •, • > and the corresponding norm 
by II • ||. The following eigenvalue problem for a variational inequality will be studied: 

(I) ueK, 
(II) <Яи - Лм, t? - M> à 0 for all veK. 

We shall say that a real number 1 is an eigenvalue of the variational inequahty (I), (II) 
if there exists a corresponding eigenvector of (I), (II), i.e. a nontrivial ue H satisfying 
the conditions (I), (II). Analogously as in the papers [3], [4], we shall prove the 
existence of an eigenvalue of the variational inequality lying between given eigen
values À^^\ Я̂ °̂  of a certain type of A. 

More precisely, it was proved in [4] that if X^^\ Â ^̂  (0 < Я̂ ^̂  < Я̂ ^̂ ) are siinple 
eigenvalues of A and each of them has an eigenvector in the interior of K, then there 
exists an eigenvalue of (I), (II) in (2S^\ Я̂ ^̂ ) having the corresponding eigenvector 
on the boundary of K. Moreover, it was proved that there exists a closed connected 
(in a certain sense) and unbounded in a set of triplets \_?., u, s]e R x H x R satisfying 
the penalty equation Au — Au + sßu = О, starting with e = О at Я̂ °̂  in the direction 
of the corresponding eigenvector u^^^ фК of A. The mentioned eigenvalue and eigen
vector of (I), (II) were obtained by the Hmiting process e -> -h oo along this set. 
The theory was further developed in [5] in order to obtain bifurcation points of 
a more general problem. 

The aim of this paper is to extend these results to the case of eigenvalues X^^\ Я̂ ^̂  
of arbitrary multiplicities. For a given couple of eigenvalues X^^\X^^^ (0 < Я̂ ^̂  < 
< Я̂ ^̂ ) such that each of them has at least one corresponding eigenvector in the 
interior ofK, we shall approximate the operator A by operators A„ such that )S^\ Я̂ ^̂  
are simple eigenvalues of A„. The existence of branches of solutions of the equation 
with the penalty with the mentioned properties for A^ will follow from [4] and we 
shall show that the analogous branch for A can be defined by a suitable Hmiting 
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process. Under certain assumptions, the theory ensures the existence of infinitely 
many eigenvalues of the variational inequality having the corresponding eigenvectors 
on the boundary of K. 

The branch of solutions of the penalty equations in [4] was in fact obtained as 
a global bifurcation branch for a certain equation in R x H (an extension of the 
penalty equation) and the present result can be viewed also as a global bifurcation 
result for a special equation. 

In the connection with the eigenvalue problem for variational inequalities, we must 
mention the results of E. Miersemann [7], [8], who has proved by another method 
the existence of a finite number (depending of the character of the problem) of 
bifurcation points of a more general variational inequality. Further references are 
given in [4]. 

Some definitions and modifications of the results from [4] are recalled in Section 
I. Particularly, a small correction to [4] is given in Remark 1.2. Main results of the 
present paper are contained in Theorems 2.1, 2.2 (Section 2). 

1. TERMINOLOGY AND REMARKS TO SOME FORMER RESULTS 

In the whole paper, К will be a closed convex cone in H with its vertex at the 
origin and A will be a linear completely continuous symmetric operator in H. We 
shall denote by K^ and дК the interior and the boundary of i^, respectively. The set 
of all eigenvalues and the set of all eigenvectors of the operator A will be denoted 
by yî  and Ej_, respectively. The set of all eigenvalues and eigenvectors of the varia
tional inequahty (I), (II) will be denoted by Ay and Ey, respectively. Moreover, 
£^(Я) will be the set of all eigenvectors of A corresponding to a given eigenvalue A e 
e Л^ and Ey(X) will be the set of all eigenvectors of (I), (II) corresponding to a given 
eigenvalue Я e Ay. Analogously, we shall write Л^ ,̂ Ед ,̂ Ay^, Ey^, ^д„ W? ̂ Vni^) 
if the operator A is replaced by Л„ and (I), (II) is replaced by (I), 

(II„) {ÀU - A„u, V - u)^0 for all veK. 

The strong and the weak convergence is denoted by -> and -^, respectively. 

Definition 1.1. We shall write 

ÀeAi if 1 e Л^ and Ej^X) n K^ Ф 0 ; 
А е Д if À€{A^\Ai) and £^(Я) n Ж Ф 0 ; 
Я e Ay^f, if Я 6 Ay and Ey(X) cz дК ; 
le A, if Я € A^ and £^(Я) пК = ф. 

The elements of Л,., Л̂ , and A^ are called the interior eigenvalues, boundary eigen
values and external eigenvalues, respectively, of the operator A. The elements of Л^ ,̂ 
are called the boundary eigenvalues of the variational inequality (I), (II). 
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Remark 1Л. The basic properties of and relations between the sets Ai, Л ,̂ Ay^i,, A^ 
are explained and illustrated by examples in [4, Section 1]. Let us mention only 
that Xe Ai if and only if Я e Л^ with Ey{}) n X° #= 0. Thus, we can also speak 
about interior eigenvalues of (I), (II) but they coincide with interior eigenvalues of A. 
Moreover, the following assertion si true: 

temma 1Л. (see [4, Lemma 1Л]). If ke Ai then E^{X) r\ К = Еу{Х). 
In the sequel we shall consider a nonhnear completely continuous operator 

ß : H -^ H satisfying the following assumptions: 

(p) M̂ = 0 if and only if и eK, <jÎM, м> > 0 for all ифК (i.e. ß is the penalty 
operator corresponding to iC); с 

(H) ß{tu) = tßu for all t > О, и e H (i.e. ß is positive homogeneous); 

(M) ißu — ßv, и — v} ^ 0 for all u,ve H (i.e. ß is monotone); 

(ß. К) if w e К^ V ф К, then ф, и} < 0; 
(ß, дК) if UE дК, then there exists а neighborhood U of и such that (ßv, и) = О 

for all VE и. 

Remark L2. The assumptions (P), (H), (М) were used also in [4], (ß, К) is a shght 
modification of (ß, K^) from [4] (where ФО was writen instead of <0). These as
sumptions are fulfilled in all examples discussed in [4]. In [4], additional assumptions 
(CC), ( s c ) were introduced, but they were not necessary as we shall explain in 
Remarks L3, L4. There is a mistake in [4, Remark 2.1] where it is stated that (CC) 
is fulfilled in the case of the penalty operator 

(LI) <[ßu,vy = — u~{x)v(x)dx for all u,veH 

(the penalty operator corresponding to the cones of the type К = {ue H; и ^ 0 
on / } , where Я is a subspace of W2{0,1), / is a subinterval of <0,1>). This assumption 
is satisfied for the operators of the type 

n 

(L2) <J8M, i?> = — ^ w~(xf) i;(x̂ ) for all U,VEH 

only (the penalty operators corresponding to the cones of the type {u e Я; и{х-) ^ 0, 
i = 1,..., n}, where H is as above, x,-e (0,1), i = 1, ..., n are given points). Non-
etheles all the assertions concerning the examples in [4, Section 4] are true because 
it is possible to use Theorem 1.1 formulated below instead of Theorem 2.3 from [4]. 

The last assumption (ß, ^K) was not considered in [4] but will be used in the study 
of multiple eigenvalues in Section 2. Unfortunately, (ß, дК) is fulfilled for the penalty 
operators of the type (1.2) only. 

Definition 1.2. We shall denote by Z the closure (in IR x H x й) of the set of all 
\_X, V, a] E й X H X й satisfying the conditions e Ф 0 and 
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(a) l|.P = ^ . 

(b) ÀV - Av + eßv = 0. 

If Л is replaced by Ä^^ then we shall write Z„ instead of Z. 

R e m a r k L3, The assumption (CC) in [4] was used in the proof of the following 
implication only: 

(13) if [Я„, u„, e„] satisfy (b), и„фК (n = 1,2,..,), X„-^ 1 > 0, u„ --̂  u, e^-^ +oo, 

then w„ -> w. 

This implication follows directly from (P), (ß, К) (without using (CC)) in the fol
lowing way. We have 

and this gives 

À lim sup ||м„р — A||WP = lim sup e„<^ßu„, и} — lim inf e„<ĵ w„, w„> . 

But JSM„ -* 0 (because {e„ßUn} is bounded by (b)) and it follows from here by the 
standard procedure that ueK (for details see [4], proof of Lemma2.4or [5, Remark 
3.3]). The assumptions (P), (ß, К) imply <,ßu„, м„> ^ О, <jîw„, w> ^ О and therefore 
we obtain 

limsup||w„|| g ||w||. 

This implies u„ -^ и and (L3) is proved. Hence, the assumption (CC) in [4] can be 
omitted. 

R e m a r k L4. The assumption (SC) in [4] was necessary in Lemma 2.2. But 
Lemma 2.2 was used for the special sequences {[Я„, u„, e„]} with г̂  -> 0 only. In fact, 
Lemma 2.2 in [4] can be replaced by the following weaker Lemma L2 in which 
(SC) is not assumed. Hence, the assumption (SC) in [4] can be omitted. 

Lemma 1.2 (cf. [4, Lemma 2.2]). Let [Я„, u„, ß„], [Яо, Wo> 0] satisfy (b), ||мо|| + 0 
{n = 1, 2 , . . . ) , [/l„, M„, e„] -^ [Яо, Wo, Ö]in R X H X R and let (P), (M) be fulfilled. 
Then 

lim ^» ~ ^ o = __ <Ê^9i^R> ^ 0 . 
n-*co 8„ \\Uo\\^ 

If UQ Ф X, then the last expression is negative. 

Proof. We have 
Я А - Äu„ + eJUn = 0 , 

ЯоМо - AUQ = 0 
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and it follows from here (using the symmetry of A) that 

This together with (M), (P) imphes the assertion. 

R e m a r k 1.5. The condition (a) cannot be fulfilled with e e ( — I, 0). Hence, if ZQ 
is a connected subset of Z containing a point of the type [Я, 0, 0], then s ^ 0 
for all [Я, V, e]e ZQ. 

R e m a r k 1.6. If [Я, 0, 0] e Z, then Я e Л^. Moreover, if [Я,„ v„, s J e Z, [^X„, v„, e„] -> 
-^ [1, 0, 0], î̂ rt/||î̂ „|| -^ u, then w G £_4(Я) and t;„/||î^„|| -^ w. Indeed, we have 

for w„ = n̂/||̂ Aj|h using the complete continuity of A, ß, we obtain from here u„ -^ и 
and ÀU — Au = 0. 

R e m a r k 1.7. It follows from Remark 1.6 and the assumption (P) that for each 
lo e A^ there exists ô > 0 such that г > 0 and v ф К for all [Я, y, г] e Z with Я ф Яо? 
Я G {ÀQ — Ô, ÀQ + ô). (We have used the fact that the eigenvalues of A are isolated.) 

R e m a r k 1.8. In the following, we shall investigate connected subsets ZQ of Z 
starting at a given point [Я^^\ 0, 0], 2S^^ e A^ and such that the following conditions 
are fulfilled for all [Я, v, BJE ZQI 
(c) if [Я, V, s] Ф [Я, 0, 0] for all Я e Л^, then v ф K; 
(d) if [Я, V, a] Ф [Я(°>, 0, 0], then Я e (Я^̂ ,̂ Я^̂ )̂. 
Let us remark that the sets Z and ZQ can be obtained from the sets S and SQ con
sidered in [4] by the transformation [Я, u, s] -^ [Я, t?, sj with i; = e/(l + s) w. The 
conditions (c), (d) are natural modifications of (c), (d) considered in [4] for the 
set So- The set Z seems to be more advantageous than S from [4] because we can 
consider connected subsets ZQ of Z, while the corresponding sets SQ in [4] had a dis
connectedness at the points of the type [Я, w, 0], Я e Л^ (see [4], Remark 2.2) and 
the description of this situation was formally complicated (see [4, Theorem 2.3]). The 
mentioned disconnectedness vanishes by the transformation of SQ onto ZQ. 

The following theorem represents a sHght modification of Theorem 2.3 from [4] 
and will be of basic importance for the proof of the main result of the present paper. 

Theorem 1.1 (cf. [4, Theorem 2.3]). Let À^^\ Я̂ >̂ e Ai be simple, О < ?S^^ < Я̂ «)̂  
(Я^̂ ,̂ Я̂ ^̂ ) п (Л ,̂ U Ai) = 0. Assume that there exists a completely continuous 
operator ß satisfying the conditions (P), (H), (M), (ß, К). Then there exists an 
unbounded closed connected subset ZQ cz Z containing the point [Я^^\ 0, 0] and 
such that the implications (c), (d) hold for all [Я, f, e] G ZQ. If {[Я„, v„, e j } c: ZQ, 
e„ -» +00 *), then there exists a subsequence of indices {r„) such that r̂  -> +oo, 
Я,,̂  -> Я^, v,^ -> V, where Я^ e Л^^^ n {X^^\ Я^̂ >), v^ e дКп Ey{À^)\Ej^X^). 

*) It follows from (d) that ZQ is unbounded in e. 
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Proof, Let So be the set from [4, Theorem 2.3]. (All the assumptions are fulfilled 
with the exception of (CC), (SC), but these can be omitted by Remarks 1.3, L4). 
Define 

ZQ = Hx, V, a] G R X H X R ; v = и , [Я, и, S]E SQ\ . 
I 1 + e J 

It follows from the assertion of [4, Theorem 2.3] that ZQ has all the properties 
mentioned in Theorem 1Л. 

The following Lemmas give information about the properties of the equation 
with the penalty and will be useful for the proof of the main result. Analogous 
assertions were used also in [4]. 

Lemma 1.3 (see [4, Lemma 2.1]). / / Я e Л,- and the condition (ß, К) is fulfilled, 
then 

Xu — Au Ч- Eßu Ф О 
for all и ф К, e > 0. 

Lemma 1.4 (cf. [4, Lemma 2.4]). Let Я^^^Я^^^еЛ^, О < Я̂ ^̂  < Я<̂> and let the 
assumptions (P), (M), (ß. К) and (ß, дК) be fulfilled. Suppose that there exist 
Я„, w„, e„ [n = 1, 2, . . . ) satisfying the conditions 

s (a') ||w„|| = — '^—, П = 1,2, ..., г„ -> +00, 
1 + e„ 

(b') X„u„ - Äu„ + eju^ = 0, n = 1, 2, ..., 

(c^) и„фК\п== 1,2,..,, 
(dO Я, Е(Я^Ч ЯН. ^ = 1,2,..., 
and such that Я„ ~> X^, w„ -^ u^, e„ -^ +oo for some X^, u^. Then X^ e Ay^j n 
n {X^^\ X^^^), u„ -^ u^ and u^ e Ey{X^) n дК. 

Proof. The assertion of Lemma 1.4 is the same as that of Lemma 2.4 in [4], 
but the assumption (CC) is omitted, (ß, K°) is replaced by (formally) stronger (ß, К) 
and the simplicity of ?S^\ X^^^ is replaced by the assumption (ß, ^К). We have ex
plained in Remark 1.3 how Lemma 2.4 from [4] can be proved without the as
sumption (CC). Realizing this, we can prove X^ e Ay^j,, u„ -^ u, u^e Ey(X^) n дК 
in Lemma 1.4 analogously as in Lemma 2.4 from [4]. It was clear in [4] that X^ e 
G {X^^\ X^^^) because neither Я == Я̂ ^̂  nor Я = ?S^^ was possible as a consequence of 
the assumption that X^^\ X^^^ e A^ are simple. In the case of the present Lemma 1.4, 
the assertion X^ e (Я̂ >̂, Я̂ >̂) follows from (ß, дК). Indeed, if Я = X^^\ then Lemma 
1.1 implies that u^e £:̂ (Я<̂ ^̂ ) and therefore 

X^'^u^ ^ Au^ = 0 . 

This together with (b') and the symmetry of A implies 

{K - Я^^^) <Mrv Ua,y + ^n<ßUn, Woo> = 0 , 
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(ß, дК) gives {ßu^, u^} = О for n sufficiently large and this is not possible by (d'). 
Analogously, Я = Я̂ °̂  cannot occur. 

R e m a r k 1.9. If A is replaced by A„ in Theorem 1.1, then we write ZQ„ instead 

2. EIGENVALUES OF THE VARIATIONAL INEQUALITY CORRESPONDING 
TO MULTIPLE EIGENVALUES OF THE OPERATOR 

Theorem 2.1, Let Я^^Я^1>бЛ„ 0 < Я̂ >̂ < Я^Ч ( A ^ ' U ^ ' V ^ i = 0- ^^^"^^ 
that there exists a completely continuous operator ß satisfying the conditions (P), 
(H), (M), (ß, К), (ß, Ж ) . Then there exists À^ e Лу^, n {À^'\ Я̂ ^О-

R e m a r k 2.1. We have Л̂ , c= Ау^, and therefore the assertion of Theorem 2.1 is 
trivial if (Я̂ >̂, Я̂ >̂) n Л̂ , Ф 0. In the case {X^^\ Я̂ ^̂ ) n Л, = 0 it follows from the 
following theorem. 

Theorem 2.2. Let all the assumptions of Theorem 2.1 be fulfilled and let (Я^^\ 
)S^^) r\ Aij = ^. Then there exists an unbounded closed connected subset ZQ of Z 
containing the point [Я^^\ 0, 0] and such that the implications (c), (d)from Remark 
1.8 hold for all [Я, v, e] e ZQ. If {[Я„, v„, e j } с ZQ, e„ --> +OO *), then there exists 
a sequence of indices {r„} such that r„ -> + oo, Я̂ ^ -» Я^̂ , Î;̂ ^ -> v^, where Я^ e Л,/^, n 
n (Я<̂ >, Я(̂ >) and v^EdKn £^ , , (Я,) \£д(Я, ) , ||t;^|! = 1.'̂  

R e m a r k 2.2. Let the assumptions of Theorem 2.2 be fulfilled. We shall choose 
orthonormal bases {u['\..., u^'^} and {wf ^ ..., wf }̂ of £д(Я(^>) and E^(À^''^), respec
tively, such that u^^\ u[^^ EK^. Introduce operators Л„ (n = 1, 2, . . . ) by 

(2.1) A„u = A u - ~ t <^^'^ "> "i'^ + " Z <"f ^ "> ^ f ^ • 
n i = 2 n j = 2 

It is easy to see that 

(2.2) Л„ -> A in the operator norm . 

Further, 1^^\ Я̂ ^̂  are simple interior eigenvalues of Л„, Л_д̂  n (Я^̂ ,̂ Я̂ ^̂ ) = А^ п 
n (Я^^\ Я^̂ )̂, £д^Я) = Ед(Я) for all Я e Л^ n (Я̂ >̂, Я̂ >̂) and therefore the assumptions 
of Theorem 1.1 are fulfilled for Л„ (with an arbitrary uxQd n = 1,2,...). 

R e m a r k 2.3. Let Zo,„ denote the set from Theorem 1.1 for the operator Л„ from 
Remark 2.2 (see Remark 1.9). Introduce the set Zj^ as the set of all [Я, v, s]e й x 
X H X R such that there exist a sequence {r„} of indices (r„ -^ oo) and a sequence 
{[Я„, г;„, e j } such that [Я„, i;̂ , e j e Zo,,^, [Я„, t;„, e j -^ [Я, г;, s] in ^ x Я x ^ . We 
have 

(bO Я„!;„ - Л,̂ 1;„ + 8jv„ = 0 

*) It follows from (d) that ZQ is unbounded in s. 
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for such points and thus it follows by (2.2) that [Я, v, E] E Z , i.e. Zj^ a Z. The set Z^ 
is not connected in general. We shall denote by ZQ the component of Z^ containing 
the point l_À^^\ 0, 0]. Our aim is to prove that ZQ has all the properties described 
in Theorem 2.2. 

Lemma 2.1 (see [9]). Let К be a compact metric space and Л, В disjoint closed 
subsets of K. Then either 
(2.3) there exists a closed connected subset of К meeting both A and В 
or 
(2.4) К = Kj^ u Kß, where K^, Kß are disjoint compact subsets of K, A cz K^, 

BczKß. 

Lemma 2.2. The set Zofrom Remark 2.3 is unbounded. 

Proof. The sets Zo,„ from Remark 2.3 are unbounded (in s) by Theorem 1.1 and 
it follows from here that also Ẑ ^ is unbounded. Let us suppose that ZQ is bounded. 
Then there exists R > 0 such that ZQ a Б^, (Ẑ ^ \ ZQ) n дВ^^ Ф 0, where B^ denotes 
the open ball in й x H x R with the centre at the origin and with the radius R, дВ^^ 
denotes its boundary. It is easy to see that Z^ is locally compact in R x H x R and 
therefore К = Б̂ ^ n Ẑ ^ is a compact metric space under the induced topology from 
R X H X R, If we set A = ZQ, Б = (Zĵ  \ ZQ) n дВ^, then A, В are disjoint closed 
subsets of i^. The case (2.3) from Lemma 2.1 cannot occur because A = ZQIS a, com
ponent of i^. Hence, Lemma 2.1 implies that there exist disjoint compact sets Kj^, Kß 
such that ZQ С X ^ , (Z^ \ ZQ) n ôBj^ с Kß, Z^ n Bj^ = X^ u Kß. Denote the dis
tance between X^, Kß by г]. We have f/ > 0 and it follows from the definition of Z^ 
(Remark 2.3) and from the connectedness of Zo,„ that there exists a bounded sequence 
{[A„, v„, e j } a BR such that [Я„, v„, г„] e Zo,,„, r„ -> + oo and 

dist ([A„, v„, e j , ZQ) ^ - , dist ([A„, v„, s„], Z ,̂ n Б̂ ^ \ Zo) ^ - . 
4 4 

We can assume that A„ -~> л, Ü„ --̂  v, s„ -> e. The condition (b'), the complete conti
nuity of ß and (2.2) imply v„ --> v and therefore [A, v, e] e Z^. But simultaneously 
we obtain 

dist ([Я, V, e], Zo) è ^ , dist ([Я, v, e], Z^ ^ ^o) ^ ^ 

and this a contradiction. 

Lemma 2.3. The conditions (c), {d)from Remark 1.8 are fulfilled for all [A, v, e] e 
e ZQ, where ZQ is the set from Remark 2.3. 

Proof. It follows from Theorem 1.1 and from the definition of ZQ that for all 
[Я, f, e] e ZQ we have 
(2.5) рфК\ 

(2.6) Яб<Я<ЧЯ(°^>. 
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Hence, if (с) is not fulfilled then there exists [Я, V^SJEZQ with vedK, \\v\\ > 0. 
The equation (b) together with (P) implies 

(2.7) ÀV ~ Av = 0. 

The case Яе(Д^^\ Â ^̂ ) is impossible due to the assumption (À^^\ X^^^) n Д = 0. 
The definition of Zo ensures the existence of [Я,,, v„, e„] e Zo,r„ (^n ̂  suitable sequence 
of indices, r„ -> oo) such that [!„, v„, e„] -> [Я, i;, e]. The points [Я„, y„, £„] satisfy (b') 
and this together with (2.7) and the symmetry of A implies 

{K - ^) <v„, v} - {A,^v„, v} + (Av,, v} + sXßv„, D> - 0 . 

But {ßv„, v} = 0 for n sufficiently large by (ß, ^K) and using (2.1) we obtain 

(2.8) 

{K - X) (v„, vy + ~ t <"Г^ ^'пУ <t^r^ ^> - ^ Z <uf\ v^y iuf\ Î;> = 0 , 
r^i = 2 r „ y = 2 

where éi^\uf^ were introduced in Remark 2.2. If Я = X^^\ then iuY\vy = 0 

(/ = l , . . . , r ) and iv,,vy-^\\vf>0, t(uf\v„y<uf\vy-^t<^r^^y >^ 
j=2 J=2 

because v e £^(Я^^^), v Ф cwf ^ for all celR. Further, Я„ < Я̂ ^̂  and therefore the left 
hand side in (2.8) is negative, which is a contradiction. Analogously the case Я == Я̂ ^̂  
leads to the contradiction and (c) for all [Я, v, e] e ZQ is proved. 

Now, let us suppose that (d) is not fulfilled. Then there exists [Я, v, e] e ZQ such that 
[Я, V, e] Ф [Я(°>, 0, 0] and either Я = Я<̂ ^ or Я = Я^^\ Let [Я, у, в] = [Я^̂ ,̂ О, 0]. 
Then it follows from the connectedness of ZQ and Remark L7 that there exist 
[Я„, V,, s„] e ZQ such that Я„ > Я^^^ в, > О (л = 1, 2 , . . . ) , [Я„ t;„, г„] -> [Я<^\ О, 0] . 
This is not possible by Lemma L2 and therefore [Я, t;, e] Ф [Я^^\ 0, 0]. Hence, 
V Ф K, 8 > 0 by (c), (a) and this contradicts Lemma L3. 

P roo f of T h e o r e m 2.2 follows directly from Remark 2.3 and Lemmas 2.2, 2.3, 
L4. 

Theorem 2.3. Assume that there exists a completely continuous operator ß satis
fying the conditions (P), (H), (M), (ß, К), (ß, дК). If А^ is an infinite sequence, 
then Ау^ъ contains an infinite sequence converging to zero. If, moreover, A^ contains 
an infinite sequence of couples X[^^, X^^^ such that {X\^\ X^^^) n Л̂ , = 0 (fe = 1, 2, . . . ) , 
then the set Ay^j, contains an infinite sequence of eigenvalues of (l), (II) converging 
to zero such that the corresponding eigenvectors are not eigenvectors of the opera
tor A. 

P r o o f follows immediately from Theorems 2.1, 2.2 and Remark 2.1. 

E x a m p l e 2.1. Let ß be a bounded domain in R^ with the lipschitzian boundary 
dQ. The points from Q will be denoted by x = [x^, X2]. Let H be the Sobolev space 

205 



W^ with the inner product defined by 

<w, Î;> = Ali Av dx for all u, v e H . 

Consider the cone 
К = {ueH; u{xi) ^ 0, i = 1 , . . . , n} , 

where x '̂̂  e ß (f = 1 , . . . , n) are given points, and the operator Ä defined by 

{Au, î > = X — " — ^ ^ ^^^ ^^^ U.VEH . 
J ß t = i dXi dXi 

Then X is a closed convex cone in H and Л is a linear symmetric completely conti
nuous operator in H. (We use the fact that the space W2{Q) is continuously imbedded 
into the space of functions continuous on Ü and into the space ^24^)0 ^^^ ^^ remark 
that the eigenvalues and eigenvectors of A are eigenvalues and eigenvectors of the 
boundary value problem 

(2.9) Я Л^м + Лм = О on Q , 

Du. 
(2.10) M - — = 0 on Ш , 

dn 
and the variational inequahty (I), (II) in our case corresponds to the problem with 
fixed obstacles from below at the points x '̂̂  (cf. [4, Section 4]). We can use the penalty 
operator defined by 

R 

ißu, vy = -Ya ^~{^i) K^O for all u,veH\ 

where u" denotes the negative part of u. All the assumptions of our theory are 
fulfilled. Let us remark that Я e Л^ if and only if there exists a corresponding eigen
vector и of (2.9), (2.10) satisfying w(x<-̂ >) > 0 for all 7 = 1 , . . . , n; Я E Л̂ , if and only 
if ХфА^ and there exists a corresponding eigenvector и of (2.9), (2.10) satisfying 
u{x^'^) ^ 0 for j = 1, ..., n, w(x<̂ >) = 0 for at least one k; Àe A, if and only if for 
each corresponding eigenvector of (2.9), (2.10), we have u{x^^'^) > 0 for at least one 7 
and w(x̂ ^̂ ) < 0 for at least one k; Àe Ау^ъ if and only if for each corresponding 
eigenvector of (I), (II), we have u{x^^^) ̂  0, j = 1, . . . , n and u{x^^^) = 0 for at least 
one k. 
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