Czechoslovak Mathematical Journal

N.Ya. Medvedev К теории многообразий решеточно упорядоченных групп

Czechoslovak Mathematical Journal, Vol. 32 (1982), No. 3, 364-372

Persistent URL: http://dml.cz/dmlcz/101811

Terms of use:

© Institute of Mathematics AS CR, 1982

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-GZ: The Czech Digital Mathematics Library* http://dml.cz

К ТЕОРИИ МНОГООБРАЗИЙ РЕШЕТОЧНО УПОРЯДОЧЕННЫХ ГРУПП

Н. Я. Медведев, Барнаул¹)

(Поступило в редакцию 29/XII 1980 г.)

Пусть \mathcal{X}_o , \mathcal{X}_l — категории линейно упорядоченных и решёточно упорядоченных групп соответственно. Как обычно, понятия общей теории групп, отнесённые к этим категориям, отличаются приставками o-, l-, например: o-группа, l-гомоморфизм, o-аппроксимируемая l-группа, l-многообразие и так далее. Для других целей буквы o, l употребляться не будут.

Хорошо известно, что множество *І*-многообразий \mathscr{L} является решёткой относительно естественно определённых операций \vee и \wedge [7].

l-многообразие $\mathscr{L}W$, определённое тождеством $|x|^2 \vee |y|^{-1} |x| y = |x|^2$, называется l-многообразием жёстко упорядоченных l-групп [4]. В этой статье построены два o-аппроксимируемых l-многообразия V_1 и V_2 , таких, что: 1) $V_i \wedge \mathscr{L}W = \mathscr{L}A - l$ -многообразие абелевых l-групп, 2) V_i не являются конечнобазируемыми, 3) V_i не замкнуты относительно лексикорасширений, 4) V_i являются строго свободными l-многообразиями, (i=1,2). Исходя из l-многообразий V_i (i=1,2) построены o-аппроксимируемые двуступенно разрешимые l-многообразия W_i (i=1,2), обладающие свойствами 1)—3). Выписаны базы тождеств l-многообразий V_i , W_i (i=1,2).

Из свойств 1), 4) l-многообразий V_i (i=1,2) следует, что l-многообразие жёстко упорядоченных l-групп не является наименьшим строго свободным l-многообразием в решётке $\mathscr L$, это дает отрицательный ответ на вопрос 10 работы [7].

Отметим, что существование неконечнобазируемых l-многообразий установлено ранее В. М. Копытовым, Н. Я. Медведевым [5] и Т. Фейлом (препринт). Основыне факты и определения по линейно и решеточно упорядоченным группам можно найти в [3], [9], по теории групп — в [2] и [6]. Как обычно $|x| = x \vee x^{-1}$. $|a| \gg |b|$ означает, что |a| и |b| архимедово неэквивалентны, то есть $|a| > |b|^n$, при $n = 1, 2, \ldots$ Буквой N будем обозначать множество всех натуральных чисел. (G, P) обозначает группу G, наделённую линейным

¹) Работа выполнена автором при прохождении научной стажировки на кафедре математики Высшей технической школы в Кошице.

порядком P. l-многообразие V называется строго свободным l-многообразием, если любая линейно упорядоченная группа $(G,P) \in V$ есть o-гомоморфный образ линейно упорядоченной группы $(F,Q) \in V$, где F-свободная группа [7]. l-многообразие $\mathscr{L}R$, определяемое тождеством $(x \land y^{-1}x^{-1}y) \lor e = e$, называется l-многообразием o-аннроксимируемых l-групп и совпадает с классом l-групп, аппроксимируемых линейно упорядоченными группами. Любое l-многообразие $V \subseteq \mathscr{L}R$ будем называть o-аппроксимируемым l-многообразием.

Отметим, что в [7] *І*-многообразие жёстко упорядоченных групп $\mathcal{L}W$ называется *І*-многообразием слабо абелевых *І*-групп и *о*-аппроксимируемые *І*-группы называются представимыми *І*-группами.

1. ВСПОМОГАТЕЛЬНЫЕ РЕЗУЛЬТАТЫ

Пусть G=A wr B- сплетение групп A и B [3]. Предположим, что A и B линейно упорядочены. Любой элемент $g\in G$ однозначно представим в виде $g=ba_{b_1}\dots a_{b_k}$, где $A_{b_i}\simeq A$, $a_{b_i}\in A_{b_i}$, $b\in B$ и $b_1<\dots< b_k$ при линейном порядке B и $a_{b_1}^b=a_{b,b}$. Считаем $g=ba_{b_1}\dots a_{b_k}\in P\setminus e$, если b>e в линейно упорядочен ной группе B, либо b=e и $a_{b_k}>e$ в A_{b_k} . Заметим, что при этом линейном порядке $|a_{b_1}|\gg |a_{b_2}|$, если $b_1>b_2$ и a_{b_1} , $a_{b_2}\neq e$. Назавём такой порядок на группе G порядком типа A0. Отметим, что существует естественный порядковый гомоморфизм A0 группу A0 и линейно упорядоченную по типу A1 группу A2 на линейно упорядоченную группу A3 и кег A4.

Пусть $\{(G_i, P_i), i \in I\}$ — система линейно упорядоченных групп, множество I линейно упорядочено, причём для любой пары индексов $i, j \in I, i \leq j$, задан o-гоморфизм $\pi_i^j: (G_j, P_j) \to (G_i, P_i)$, отображающий линейно упорядоченную группу (G_i, P_i) , причём: 1) π_i^i -тождественное отображение (G_i, P_i) для каждого $i \in I$, 2) для всех $i \leq j \leq k$ из I имеет место $\pi_i^j \pi_j^k = \pi_i^k$. Тогда система $\{(G_i, P_i), i \in I; \pi_i^j\}$ называется обратным спектром линейно упорядоченных групп. Обратным пределом или пределом обратного спектра линейно упорядоченных групп называется подгруппа декартова l-произведения $D = \prod_{i \in I} (G_i, P_i)$, состоящая из элементов $a = (\dots, a_i, \dots)$, для которых $\pi_i^j a_j = a_i$ $(i \leq j)$. Обратный предел будем обозначать $\varprojlim_I (G_i, P_i)$. Заметим что порядок на D покоординатный и относительно этого порядка D является l-группой.

Предложение 1. Пусть $\{(G_i, P_i), i \in I; \pi_1^i\}$ — обратный спектр линейно упорядоченных групп. Тогда $\lim_I (G_i, P_i)$ — линейно упорядоченная группа.

Доказательство. Покажем, что любой элемент $a \in \varprojlim_I (G_i, P_i)$ сравним с единицей в l-группе D. Пусть $a = (..., a_i, ...) \neq e$.Тогда существует $i \in I$, такой, что $a_i \neq e$ в линейно упорядоченной группе (G_i, P_i) . Пусть $a_i > e$. Тогда

 $a_k = \pi_k^i a_i \ge e$ в (G_k, P_k) при $k \le i$. Если k > i, то $e < a_i = \pi_i^k a_k$, но (G_k, P_k) линейно упорядочена, значит $a_k > e$. Это означает, что a > e относительно (покоординатного) l-порядка D. Значит порядок, индуцированный на $\varprojlim_I (G_i, P_i)$ l-порядком D, линеен.

Замечание. Пусть V-l-многообразие и $(G_i,P_i)\in V(i\in I)$. Тогда $\varprojlim_I (G_i,P_i)$ является l-подгруппой l-группы $D=\prod_{i\in I} (G_i,P_i)\in V$ и, значит $\varprojlim_I (G_i,P_i)\in V$.

l-многообразие V называется замкнутым относительно лексикорасширений, если из того, что (G, P) и (H, Q) — линейно упорядоченные группы l-многообразия V, следует, что лексикографическое произведение $\overleftarrow{G \times H} \in V$.

2. l-МНОГООБРАЗИЯ V_1 И W_1

Рассмотрим следующую бесконечную систему тождеств

(A)
$$\begin{cases} a) & (|z| \lor |x| \lor |y|)^{-1} |[|x|, |x| \lor |y|]| (|z| \lor |x| \lor |y|) \land |[|x|, |x| \lor |y|]|^n = \\ & = |[|x|, |x| \lor |y|]|^n \quad (n \in \mathbb{N}) \\ 6) & (x \land y^{-1}x^{-1}y) \lor e = e \end{cases}$$

Пусть $V_1 - l$ -многообразие, определяемое системой тождеств (A). Очевидно $V_1 \subseteq \mathcal{L}R$. Покажем, вначале, что $V_1 \neq \mathcal{L}A$. Для этого рассмотрим группу $G_0 = (a_0)$ wr (b_0) , где (a_0) и (b_0) – бесконечные циклические группы. Пусть (a_0) и (b_0) линейно упорядочены. Упорядочим G_0 линейно по типу (A) и обозначим P_0 этот поярдок группы G_0 , тогда $(G_0, P_0) \in V_1$. Действительно рассмотрим произвольные элементы $x, y, z \in G_0$, такие, что $e < x < y \le z$ в линейном порядке P_0 . Тогда, если [x, y] = e, то тождества а) выполнены автоматически. Если же $[x, y] \neq e$, то тогда, как следует из определения линейного порядка на типа (A)

$$z^{-1}|[x, y]| z \ge y^{-1}|[x, y]| y \gg |[x, y]|.$$

Огсюда следует выполнимость тождеств а) для каждого $n \in N$. Так как (G_0, P_0) линейно упорядочена, то тождество б) выполнено очевидным образом. Более того справедлива

Лемма 1. Пусть A — линейно упорядоченная абелева группа, B — линейно ипорядоченная группа из l-многообразия V_1 . Тогда линейно упорядоченное по типу (A) сплетение G = A wr B принадлежит l-многообразию V_1 .

Доказательство. Рассмотрим произвольные элементы e < x < y < z из линейно упорядоченной группы (G, P). Если [x, y] = e, то все тождества а) из (A) справедливы. Считаем, что $[x, y] \neq e$. Если $\varphi([x, y]) \neq e$ при естественном о-гомоморфизме G = A wr B на B, то выполнимость тождеств а) следует из выполнимости их на B и из определения порядка типа (A) на G. Если же $e \neq 0$

+ $[x, y] \in \ker \varphi = \prod_{b \in B} A_b$, то по определению порядка типа (A) и того, что $z, y \in \ker \varphi$ следует, что

$$|z^{-1}|[x, y]| z \ge |y^{-1}|[x, y]| y \gg |[x, y]|.$$

Отсюда вытекает справедливость тождеств а) на (G, P). Поскольку (G, P) линейно упорядочена, то тождество б) выполняется на (G, P) очевидным образом.

Напомним, вкратце, вложение Магнуса. Пусть группа $G=gp(g_i, i\in I)$ порождена элементами $\{g_i, i\in I\}$. Пусть $G\cong F_I/R$ — её представление в виде фактор-группы F_I по нормальной подгруппе R, где F_I — свободная группа с множеством свободных порождающих $\{f_i, i\in I\}$. Пусть A_I — свободная абелева группа с множеством свободных порождающих $\{a_i, i\in I\}$ и $H=A_I$ wr G. Пусть $\alpha_i\in\prod_{g\in G}(A_I)_g$ определяются по формулам:

$$\alpha_i(g) = \begin{cases} a_i & \text{если} & g = e \\ e & \text{если} & g \neq e \end{cases}$$

Теорема (Магнус). Отображение группы F_I в группу H, заданное отображением $\mu: f_i \to g_i \alpha_i$ её свободных порождающих, индуцирует мономорфизм $\bar{\mu}$ группы $F_I/[R,R]$ в H.

Доказательство можно найти в [10].

Обозначим этот мономорфизм $\bar{\mu}$ через $\bar{\mu}_2$ и положим $H=H_2$. Далее применяем теорему Магнуса к группе $F_I/[R,R] = F_I/R^{(1)}$, получаем существование мономорфизма $\bar{\mu}_3$ группы $F_I/R^{(2)}$ в $H_3'=A_I$ wr $\bar{\mu}_2(F_I/R^{(1)})\subseteq H_3=A_I$ wr H_2 . Отметим, что если φ_3 -естественный гомоморфизм H_3 на H_2 , то $\varphi_3(\bar{\mu}_3(F_I/R^{(2)}))=$ $=\bar{\mu}_2(F_I/R^{(1)})$. Теперь опять применяем теорему Магнуса к группе $F_I/R^{(2)}$, получаем существование мономорфизма $\bar{\mu}_4$ группы $F_I/R^{(3)}$ в $H_4'=A_I$ wr $\bar{\mu}_3(F_I/R^{(2)})$ $\subseteq A_I$ wr $H_3 = H_4$. Опять, если φ_4 -естественный гомоморфизм H_4 на H_3 , то $\varphi_4(\bar{\mu}_4(F_I/R^{(3)}) = \bar{\mu}_3(F_I/R^{(2)})$. Теперь применаем теорему Магнуса к группе $F_I/R^{(3)}$ и так далее. Получаем последовательность групп H_n , таких, что $H_{k+1}=$ $=A_I$ wr H_k . И для каждого n определён мономорфизм μ_n группы $F_I/R^{(n-1)}$ в группу H_n . Причем, если φ_n -естественный гомоморфизм H_n на H_{n-1} , то $\varphi_n(\bar{\mu}_n(F_I|R^{(n-1)}))=\bar{\mu}_{n-1}(F_I|R^{(n-2)})\subseteq H_{n-1}.$ Положим $H_1=G$ и $\bar{\mu}_1$ -естественный мономорфизм F/R на $G=H_1$. Очевидно, что $\varphi_2(\bar{\mu}_2(F_I/R^{(1)}))=\bar{\mu}_1(F_I/R)=G$. Предположим теперь что $(G, P) = (H_1, P_1)$ — линейно упорядоченная группа из l-многообразия V_1 . Тогда упорядочивая линейно группы $H_2, H_3, ..., H_n, ...$ по типу (А) (что возможно по лемме 1), мы получаем последовательность линейно упорядоченных групп $(H_1, P_1), (H_2, P_2) \dots, (H_n, P_n), \dots$ из *l*-многообразия V_1 . При этом естественные гомомофизмы φ_n являются θ -гомоморфизмами. Если положить $\pi_i^j = \varphi_{i+1} \dots \varphi_i$, то π_i^j является *о*-гомоморфизмом (H_i, P_i) на (H_i, P_i) при j > i. Если i = j, то π_i^i считаем тождественным отображением (H_i, P_i) на себя. Очевидно, что $\pi_i^j \pi_j^k = \pi_i^k$ $(i \le j \le k)$. Значит система

Теорема 1. V_1 — строго свободное l-многообразие.

Предложение 2. l-многообразие V_1 не замкнуто относительно лексикорасши-рений.

До казательство. Рассмотрим линейно упорядоченную по типу (A) группу (G_0, P_0) . Пусть (c_0) — линейно упорядоченная бесконечная группа, $c_0 > e$. Рассмотрим $(H_0, S_0) = \overleftarrow{G_0 \times (c_0)}$. Тогда $(H_0, S_0) \in V_1$. Действительно, тождества а) нарушаются на (H_0, S_0) при $x = a_0$, $y = b_0$, $z = c_0$ и $n \ge 2$, так как в этом случае

$$(|z| \lor |x| \lor |y|)^{-1} |[|x|, |x| \lor |y|]| (|z| \lor |x| \lor |y|) =$$

$$= c_0^{-1} |[a_0, b_0]| c_0 = |[a_0, b_0]|.$$

Отсюда

$$c_0^{-1}|[a_0, b_0]| c_0 \wedge |[a_0, b_0]|^n = |[a_0, b_0]| \wedge |[a_0, b_0]|^n =$$
$$= |[a_0, b_0]| \neq [a_0, b_0]|^n$$

при $n \ge 2$.

Пусть $N_0 = \langle a, b, c | [a, b] = c, [c, a] = [c, b] = e \rangle$ — свободная 2-ступенно нильпотентная группа. Определяем на N_0 линейный порядок Q_0 следующим образом: $N_0 \ni g = a^m b^k c^p > e$ при линейном порядке Q_0 , если m > 0, либо m = 0 и k > 0, либо m = k = 0 и p > 0.

Лемма 2. Пусть l-многообразие $V \subseteq \mathcal{L}W$ и $V \neq \mathcal{L}A$. Тогда V содежит линейно упорядоченную группу (N_0, Q_0) .

Доказательство. Пусть (G, P) произвольная неабелева линейно упоря-

доченная группа из l-многообразия V. Тогда система выпуклых подгрупп G центральна [4]. Поскольку G неабелева, то существуют такие $g,h\in G$, что $q=[g,h]\neq e$. Можно считать, что, g>e,h>e. Если q=[g,h]< e, то поменяв g и h местами, можно считать, что g>e. Элемент q определяет скачок ывпуклых подгрупп $\overline{G}_{\alpha}\supset G_{\alpha}$ линейно упорядоченной группы (G,P) и $q\in \overline{G}_{\alpha}\setminus G_{\alpha}$. Рассмотрим естественно линейно упорядоченную фактор-группу $(G/G_{\alpha},\overline{P})$. Очевидно, что $\overline{q}>e,\overline{g}>e,\overline{h}>e$, где $\overline{q},\overline{g},\overline{h}$ — образы элементов q,g,h соответственно. Заменяя $\overline{g},\overline{h}$ на $\overline{g},\overline{h}$ можно считать, что $\overline{g}>\overline{h}>e$, $\overline{q}>e$. Подгруппа $gp(\overline{g},\overline{h},\overline{q})=H$, порождённая элементами $\overline{g},\overline{h},\overline{q}-2$ -ступенно нильпотентная группа изоморфная группе N_0 и линейно упорядоченная. Пусть \overline{P}' -линейный порядок H. Известно [1], что подгруппа (\overline{q}) всегда выпукла, поэтому $\overline{h}\gg \overline{q}$. Рассмотрим счётную декартову l-степень группы (H,P') и в ней элементы $a=(e,\overline{g},\overline{g}^2,\ldots), b=(\overline{h},\overline{h},\overline{h},\ldots)$. Пусть $\overline{a},\overline{b}$ — образы этих элементов в фактор-группе по прямой l-степени (H,\overline{P}') . Очевидно, что $\overline{a}\gg \overline{b}\gg \overline{c}=[\overline{a},\overline{b}]$, поэтому линейно упорядоченная группа $\overline{H}=gp(\overline{a},\overline{b},\overline{c})$ o-изоморфна (N_0,Q_0) .

Теорема 2. $V_1 \wedge \mathscr{L}W = \mathscr{L}A$.

Доказательство. Пусть $V_1 \wedge \mathscr{L}W = V \neq \mathscr{L}A$. Тогда $V \subseteq \mathscr{L}W$, V_1 , и по лемме 2 линейно упорядоченная группа $(N_0, Q_0) \in V$. Покажем, что $(N_0, Q_0) \in V$. Действительно, тождества а) на (N_0, Q_0) невыполними при x = b, y = z = a и $n \ge 2$, так как

$$a^{-1}|[b, a]| a \wedge |[b, a]|^n = |[b, a]| \wedge |[b, a]|^n = |[b, a]| \neq |[b, a]|^n$$

при $n \ge 2$.

Значит $(N_0, Q_0) \in V_1 \supseteq V$. Следовательно $V_1 \wedge \mathcal{L}W = \mathcal{L}A$.

Теорема 3. l-многообразие V_1 не является конечнобазируемым.

Доказателство. Рассмотрим l-многообразия U_n , определяемые следующими системами тождеств

(A)_n
$$\begin{cases} a) (|z| \lor |x| \lor |y|)^{-1} |[|x|, |x| \lor |y|]| (|z| \lor |x| \lor |y|) \land \\ \land |[|x|, |x| \lor |y|]|^k = |[|x|, |x| \lor |y|]|^k & (k = 1, 2, ..., n) \\ 6) (x \land y^{-1}x^{-1}y) \lor e = e \end{cases}$$

Очевидно, что $U_1 \supseteq U_2 \supseteq \ldots \supseteq U_n \supseteq \ldots$ Покажем, что $U_n \neq U_{n+1}$. Рассмотрим группу B_n , являющуюся полупрямым произведением естественно упорядоченной аддитивной группе действительных чисел R с помощью бесконечной циклической группы (g_n) и автоморфизм сопряжения задаёется формулой:

$$g_n^{-1} r g_n = r^{g_n} = n \cdot r \quad (r \in R)$$

Считаем $B_n \ni g = g_n^k r \ge e$, если k > 0, либо k = 0 и $r \ge 0$ в линейно упорядоченной группе R. Обозначим этот порядок L_n . Тогда (B_n, L_n) — линейно упорядоченная группа. Непосредственная проверка показывает, что тождества

а) и б) из (A_n) на (B_n, L_n) выполнены, то есть $(B_n, L_n) \in U_n$. Покажем, что $(B_n, L_n) \in U_n$. Действительно, тождество

$$(|z| \lor |x| \lor |y|)^{-1} |[|x|, |x| \lor |y|]| (|z| \lor |x| \lor |y|) \land |[|x|, |x| \lor |y|]|^{n+1} = |[|x|, |x| \lor |y|]|^{n+1}$$

на (B_n, L_n) нарушается при $x=r\neq 0$, $y=z=g_n$. Действительно, положим $|[r,g_n]|=r_1(\neq 0)$ и тогда $g_n^{-1}\,r_1\,g_n=nr_1$. Отсюда $g_n^{-1}\,r_1\,g_n\wedge(n+1)\,r_1=nr_1+(n+1)\,r_1$. Следовательно, l-многообразие V_1 являясь пересечением строго убывающей последовательности l-многообразий U_n , не может допускать конечной базы тождеств.

Если к тождествам (A), определяющим \emph{l} -многообразие \emph{V}_1 добавить тождество

(*)
$$[|y| \wedge |[u,v]|, |z| \wedge |[w,p]|] = e$$

то мы получим двуступенно разрешимое *l*-многообразие W_1 . Заметим, что $W_1 \neq \mathcal{L}A$. Действительно, рассмотрим линейно упорядоченную по типу (A) группу (G_0, P_0) . Непосредственная проверка показывает, что на (G_0, P_0) тождество (*) выполнено, то есть $(G_0, P_0) \in W_1$ и, следовательно, $W_1 \neq \mathcal{L}A$.

Следствие. Двуступенно разрешимое l-многообразие W_1 обладает следующими свойствами:

- 1) W_1 не является конечнобазируемым,
- 2) $W_1 \wedge \mathscr{L}W = \mathscr{L}A l$ -многообразие абелевых l-групп,
- 3) W_1 не замкнуто относительно лексикорасширений.

Доказательство. 1) Заметим, что на o-группах (B_n , L_n), определённых в доказательстве теоремы 3, тождество (*) справедливо. Далее рассуждения дословно повторяют доказател μ ство теоремы 3.

- 2) Очевидно, что $W_1\subseteq V_1$. По теореме 2 $V_1\wedge \mathcal{L}W=\mathcal{L}A$, значит и $W_1\wedge \mathcal{L}W=\mathcal{L}A$.
- 3) Следует из предложения 2 и того, что на линейно упорядоченной группе (H_0, S_0) тождество (*) выполнено.

3. l-МНОГООБРАЗИЯ V_2 И W_2

Перейдём к определению l-многообразий V_2 и W_2 . Рассмотрим следующую бесконечную систему тождеств

(B)
$$\begin{cases} a) & (|z| \vee |x| \vee |y|)^{-1} | [|x|, |x| \vee |y|]|^n (|z| \vee |x| \vee |y|) \wedge \\ & \wedge |[x|, |x| \vee |y|]) = (|z| \vee |x| \vee |y|)^{-1} | [|x|, |x| \vee \\ & \vee |y|]|^n (|z| \vee |x| \vee |y|) \quad (n \in \mathbb{N}) \\ 6) & (x \wedge y^{-1}x^{-1}y) \vee e = e \end{cases}$$

Пусть V_2-l -многообразие, определяемое системой тождеств (Б). G==A wr B— сплетение групп A и B. Предположим, что группы A и B линейно упорядочены. Любой элемент $g\in G$ однозначно представим в виде $g=ba_{b_1}\dots$ a_{b_k} , где $a_{b_i}\in A_{b_i}$, $b\in B$ и $b_1<\dots< b_k$ при линейном порядке B. Считаем $g=ba_{b_1}\dots a_{b_k}\in P\setminus e$ если b>e в линейно упорядоченной группе B, либо b=e и $a_{b_1}>e$. Заметим, что при этом порядке $\left|a_{b_2}\right|\leqslant \left|a_{b_1}\right|$, если $b_2>b_1$. Назовём такой линейный порядок G— линейным порядком типа (Б). Отметим сразу, что $V_2\neq \mathscr{L}A$, так как V_2 содержит группу $G_0=(a_0)$ wr (b_0) — сплетение бесконечных циклических групп, упорядоченную по типу (Б). Доказательство аналогично уже проделанному в §2 для упорядочения по типу (А).

Теорема 4. l-многообразие V_2 , определяемое системой тождеств (B), обладает следующими свойствами:

- 1) V_2 является строго свободным l-многообргием,
- 2) $V_2 \wedge \mathcal{L}W = \mathcal{L}A$,
- 3) V_2 не допускает конечной базы тождеств,
- 4) V_2 не замкнуто относительно лексикорасширений.

Доказательство тоеремы 4 аналогично рассуждениям, проведённым ранее, с той лишь разницей, что везде упорядочение по типу (A) надо заменить на уплрядочение по типу (Б) и вместо групп B_n рассмотреть группы B'_n , являющиеся полупрямым произведением аддитивной группы действительных чисел R с помощью бесконечной циклической группы (h_n) , где автоморфизм сопряжения определяется формулой:

$$h_n^{-1} r h_n = r^{h_n} = \frac{1}{n} r.$$

Порядок L_n определяется аналогично L_n . Далее, если к тождествам (Б) добавить тождество (*), то мы получим двуступенно разрешимое l-многообразие W_2 . Так как $G_0=(a_0)$ wr (b_0) , линейно упорядоченная по типу (Б), содержится в W_2 , то $W_2\neq \mathscr{L}A$. Аналогично предыдущему получаем

Следствие. Двуступенно разрешимое l-многообразие W_2 обладает следующими свойствами:

- 1) W_2 не является конечнобазируемым,
- 2) $W_2 \wedge \mathcal{L}W = \mathcal{L}A$,
- 3) W_2 не замкнуто относительно лексикорасширений.

Литература

- [1] *А. А. Виноградов:* Метабелевы частично упорядоченные группы, Уч. зап. Ивановского пед. ин-та, *34* (1963), 20—26.
- [2] М. И. Каргаполов, Ю. И. Мерзляков: Основы теории групп, Москва, 1972.
- [3] А. И. Кокорин, В. М. Копытов: Линейно упорядоченные группы, Москва, 1972.

- [4] В. М. Копытов, Н. Я. Медведев: О линейно упорядоченных группах, система выпуклых подгрупп которых центральна, Мат. заметки 19, 1 (1976), 85—90.
- [5] В. М. Копытов, Н. Я. Медведев: О многообразиях решёточно упорядоченных групп, Алгебра и Логика, 16 (1977), 417—423.
- [6] А. Г. Курош: Теория групп, Москва, 1967.
- [7] J. Martinez: Varieties of lattice ordered groups, Math. Z., 137 (1974), 265-284.
- [8] *Н. Я. Медведев*: О решётках многообразий решёточно упорядоченных групп и алгебр Ли, Алгебра и Логика, *16* (1977), 40—45.
- [9] Л. Фукс: Частично упорядоченные алгебраические системы, Москва, 1965.
- [10] R. H. Fox: Free differential calculus, I. Derivation in free group ring, Ann. of Math., (2) 57 (1953), 547-560.

Адрес автора: СССР, 656 099, Барнаул-99, пр. Социалистический 68, Алтайский Государственный университет, кафедра алгебры и математической логики.